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A conformally invariant zero-mass scalar field with a traceless energy momentum
tensor is discussed in static space-time. Exact solutions are obtained for a diagonal metric
representing planar, cylindrical and toroidal symmetries in special cases and the calculations
are extended to the case of a spherically symmetric spacetime including electromagnetic
field. The scalar field may be shown to be formally the same as in Nordtvedt’s general scalar
tensor theory for a particular choice of the parameter @ as a function of the scalar field .

PACS numbers: 04.20.Jb

1. Introduction

The important property of the action integral for the conformally invariant scalar
field 0 is that the action integral remains invariant under the conformal transformation

v > £, 8™ = &7 and  0'(x) — ¢MH(x)0(x).

Apart from the conformal invariance of the scalar field equation, another characteristic
of such a field is that the energy momentum tensor is tracefree. For a zero mass conformally
invariant scalar field, the field equations can be derived from the appropriate action integral

—_[(—-6*6)R
I =Jd4x \/_g[(_T/) +%0”0“],

&G

c4

where R is the curvature scalar and & == -

Such fields have been considered earlier by Penrose [1] and Callan, Coleman and Jackiw
[2]. Recently, this conformally invariant scalar field has attracted interest of many workers.
Fryland [3] obtained exact spherically symmetric solutions for matterfree space in curva-
ture coordinates and Vaidya and Som [4] extended his procedure to planar symmetry.
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Accioly, Vaidya and Som [5] discussed the behaviour of a Bianchi type 1 cosmological
model with this scalar field.

In the present paper, we make an extensive study of this scalar field in static spacetime
including electromagnetic field in some special cases. It can be shown that the conformally
invariant scalar field discussed here is formally equivalent to that in Nordtvedt’s [6] scalar

3y
Al—y)’

tensor theory with a particular choice of the parameter w(y), namely w(y) =

where y is the scalar field.

In Section 2 we write the field equations and the equation for the scalar field and derive
some general relationships between the metric and the scalar field for a general static
spacetime. These calculations are extended to the presence of electromagnetic field as well.
In Section 3, static spacetime with a diagonal metric, describing cylindrical, planar or toroi-
dal symmetry, is discussed and corresponding solutions obtained. In Section 4, spherically
symmetric metric in curvature coordinates is considered only to show that conformally
flat solution in this case does not exist. In Section 5 exact solutions are obtained in isotropic
form of the spherically symmetric metric for the static spacetime surrounding a charged
particle in the scalar tensor theory under consideration. Finally it is shown how one can
pass over to the present theory from Nordtvedt’s scalar tensor theory and vice-versa.
Thus the solutions obtained in Section 5 are noted to correspond to a class of solutions
obtained previously by the authors (Banerjee, Duttachoudhury and Banerjee [7]) in Nordt-
vedt’s scalar tensor theory.

2. Field equations and some general results connecting goo and the scalar field in static
spacetime

The standard technique of variation of equation (1.1) with respect to g,, and 6 yields
the following equations for the metric and the scalar field respectively,

(1 _k62/6) (Ruv—% guvR) = k(% guveaga-enev)
k 2 LN
+ Z [(6 );uv_guv(g );1] (2'1)

O6++ RO = 0. 2.2)

With (2.2), the trace of the equation (2.1) yields
R=0. (2.3)
In view of (2.3), one may express the equations (2.1) and (2.2) in the following forms
(1—u*)RY = (1—-u*)G! = Suu’—du'u,+2uu’, 2.4)

Ou = u’, = 0, (2.5)
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where we have introduced u defined by

k 1/2
(€> 0 =u. (2.6)

Now we consider a static spacetime described by the line element

ds? = goodt® + g;dx'dx’, 2.7
where i, j run from 1 to 3. If we define .
f=1-u?, 2.8
then from (2.4) and (2.5) one can write ’
SRy = 3u*+f*,~f", (2.9)
and
[ = —2uu’. (2.10)

For a static spacetime, time derivative of any variable is zero and from the definition of

R,, one can write

1
Rg === 00 U \/ g goo j) i (211)

2y :—
From the last three equations we obtain
f(8%°8" V=8 800 = —[8” V—2f1i—V —2 8°°8 800,/
With g%g,, = 1 this equation can be written as

00 ” \/ g goo;f) i = “(googoogij \/——gfl)l (2.12)
or

00 U \/ g (800Sf) J]

Assuming that gy, is functionally related to the scalar field u, equation (2.12) can
be written as ’

[6%g" V=g uigoo )] = 0, (2.13)
where “1” represents differentiation with respect to u. So we get
(87 V=2 7),.8" (oo /) +8" V=8 uu[g°%(go0 )] = 0
which in view of the wave equation (2.5) yields
g \/ -8 “j“i[goo(goof )f]f =0 (2.149)
For non-vanishing scalar field we have g'uu; # 0 and (2.14) gives

[8°°(goof )"T' =0
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or
googooftf”goo(goo)ff: p,

where p is a constant of integration. With g%g,, = 1, we obtain
p g

1 e _ P
f (goo0) f

" du 1+u\’
In =p | -—y =Ik|—-
n goof =P J (1—142) . <1-u>

_ k [1+u\?
goo—f —a)’

k being a constant of integration which can be absorbed in go, by a scale transformation.
So with f= (1—u?), we finally obtain

1 /1+u\P (4w !
f\i—u/  (-uwptt’
If we include an electrostatic field given by Fy; = Fq = ¢, Fyo = Fy = 0 where

¢ is the electric potential, the wave equation will remain unchanged as the energy mo-
mentum tensor for an electromagnetic field is traceless. Equation (2.4) will become

)

or,

i.e.

oo = (2.15)

(1—u?)RY = Shuu*—Adutu,+2uut ,—% T (2.16)
The electric field will also satisfy Maxwell’s equation
(googij \/:g ¢ =0 2.17)
From (2.16) we can write
SRS = %87+ 38w+ 1= %. (2.18)

Assuming that both g, and u are functionally related to the electric potential ¢, the
equations (2.17), (2.18), (2.5) and (2.11) will lead, after a straightforward calculation,
to the result

goof = &% +a-+b, (2.19)

where a and b are constants of integration.
With the same assumption that « is a function of ¢, equations (2.5) and (2.17) will
lead to another general result

Zooll' = ¢, (2.20)

where ¢ is a constant of integration and the prime represents differential with respect to ¢.
The equation (2.19) and (2.20) may be used to find the scalar field » in terms of the electric
potential ¢ alone. All the general relations are verified in the explicit solutions given sub-
sequently.
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3. Static solutions with planar, cylindrical and toroidal symmetry
We now consider a static spacetime described by the metric
as® = >t — 24X gx? — 21X p? . 2B g2, 3.1

This metric has been considered by Bronmikov and Kovalchuk {8], and Banerjee and
Santos [9]. It corresponds to cylindrical symmetry if ¢ and # represent azimuthal and
longitudinal coordinates respectively so that 0 <C £ < 27 and ~o0 <5 =% + 0. If both
¢ and 5 are angular coordinates, it represents toroidal symmetry whereas if both £ and #
represent longitudinal coordinates, the metric represents pseudo-planar or planar symmetry.
For the static spacetime under consideration, one can use without loss of generality the
following coordinate condition,

A= v+u+p. (3.2
The field equations (2.4) for this metric are
(1—u*)U = 3u? +2Auu, —uu,,, (3.3)
A=u?) By +v4,—U) = —ul—2p,uu,, (34
(L=u?) (vyy+ 4y, —U) = —ui—2B,uu,, (3.5)
(1—u?) By +uy, —U) = —ui—2vuu,, (3:6)

and the wave equation (2.5) becomes

u, =0, (3-7)
where
U= Bvi+viss+pBy, 3.8

and the subscript “1” indicates differentiation with respect to x. Adding equations (3.3)
to (3.6) together and then using (3.2) and (3.7) one easily finds that for (1—4?) = 0

vistButuy, = U, (3.9
so that the field equations (3.3) to (3.6) reduce to the following forms
(1—1?) vy +Byy+iyy) = 3ui+2(vy + By +uy)uuy, (3.10)
(A —u?uy, = ui+2puu,, (3.11)
(1—u®)Byy = ui+2Buu,, (3.12)
(1 —u®)vy, = u?+2v,uu,. (3.13)

Evidently, equation (3.10) is a consequence of the remaining three field equations. Further,
the latter set of equations are structurally identical. When u; # 0, equation (3.13) can be
written, in view of (3.7), as

uy

[(1 —u?) —"L] = u,. (3.14)
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Equation (3.14) yields on integration

u+k,

= (1_—-‘u‘—2) Uy, (315)

Yy

where k, is an arbitrary constant. Equation (3.15), in turn, yields

2 _ (1+u)k1—1

A=wf i oo

where the second integration constant is absorbed, without loss of generality, by a scale
transformation of the ‘¢’ coordinate. Similar procedure to integrate (3.11) and (3.12) yields
respectively

(L +u)!
= A wft (3.17)
and
1 k3—1
) (3.18)

= s

where k, and k; are arbitrary constants. Here also the remaining integration constants
are absorbed by suitable scale transformations of # and ¢ coordinates. Equations (3.2),
(3.8), (3.9) along with (3.16) to (3.18) yield

14u)e3
o ()

= o (3.19)
where
k4 == k] +k2+k3, (3.20)
and
k1k2+k2k3+k3k4 = 3. (3.21)

The wave equation (3.7) readily gives
U= nx+n,, (3.22)

with n, and n, as constants of integration. Then (3.16) to (3.22) constitutes the complete
solutions of the field equations.

In the special case when k, = k3 = k (say), a transformation of coordinates accord-
ing as

1 [@k) " (n,x+7iy)' " —1 (3.23)
= - —n 3 .
n | @oYMnx+a) 1

reduces the above solution to the following form:

Yy (2K (n X +7)—1
@k E+7z)+17

(3.24)
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29 22 [2k("1f+ﬁz)]&k2~ﬂ
e’ = ¢t =

= s , (3.25)
o — 2P — Zf%f;)ﬁi) (3.26)

which can be readily recognized as the plane symmetric solutions given by Vaidya and
Som [4].

4. Non-existence of the conformally flat spherically symmetric solutions

We consider the spherically symmetric line element in the following form
ds* = e'dt*~e*dr? —r’d0*—r* sin® 0497, (4.1)

where v and A are functions of the radial coordinate r alone. The field equations (2.4)
and the wave equation (2.5) for this metric are

v

(1-u*){e™? ~—+i _ L = e *3u'?—2uu’’ + Juu’) (4.2)
r r? P2l T '

IR DY LA AR OV el | IROY SRESE 43
24 T d Ty )T A (4-3)

I 1
(=G =7) - ] = v @)
(Vl—'/‘-’)ul 2 ’ ' g
_._2___+-—u +u'’ =0, (4.3)
r

where a prime indicates differentiation with respect to r. In view of the wave equation (4.5),
the operation: Equation (4.2) + 2x Equation (4.3) + Equation (4.4) yields

5 - — =0. (4.6)

If the spacetime described by the metric (4.1) is conformally flat, the Weyl tensor C,,;
vanishes, which in turn gives:

V” v12 V’A-.I (V'—i,)
4

4

1 et
—~+< <o 4.7
4 2r r? + r? @.7)

Combining (4.6) and (4.7) one obtains
v o= A, 4.8
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so that by a simple scale transformation of time coordinate ’t’ one can set, without loss
of generality,

v=A 4.9)
In view of (4.9), equation (4.5) integrates to give
u=ajr+b, (4.10)

where a, b are constants of integration. Adding (4.2) and (4.4) and using (4.9) and (4.10),
one obtains
L (1-5%

T G@r e o

Now it is not difficult to see that the solutions (4.10) and (4.11) can satisfy the field equation
(4.3) if and only if @ = 0, which in turn implies that u is constant everywhere. It is proved,
therefore, that non trivial conformally flat static solution does not exist in the spherically
symmetric case. The solution mentioned to be conformally flat by Freyland [3] in his
paper is obtained, in fact, for a chosen constant magnitude for u (viz. u = 1) and thus does
not yield a nontrivial field solution.

5. Static spherically symmetric solution for a charged particle

Let us take the line element in the isotropic form
ds® = e"dt* —*(dr® +r?d0® +r? sin® 0dd?), [€R))

where v and y are functions of the radial coordinate ’r* alone. The coupled Einstein-Maxwell
field equations will be given by (2.16). In the covariant form, it will become

(1—u*)R,, = g uu*—4u,u,+2uu,,~% T,,. (5.2)

Here also R,, will be equivalent to G,, as T,, for an electromagnetic field is traceless.
The only non-vanishing components of the electromagnetic field tensor for a radial electric
field is given by Fy; = —F,4 = ¢’, where ¢ is the electric potential and a prime indicates
differentiation with respect to r. The field equations will become

2 ;

v v
f(%u'v'+-}v"+ 'Z + __) - u12+uulvl+e—v¢12’ (53)
r

vl' tt Ivl
f(_Z— + % +5v2+ —u;- - l—%—) = —3u 4 2uu’ —uu'y +e ¢k, (5.9

re 12 o ’ ’
v v —v gt
d (u? L R T) = w e ¢
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The three equations are not independent as they should satisfy R = 0. The wave equation
for the scalar field will be

‘4 2u’
(_liw.__} u’+ -

+u' = 0. 5.6
5 — tu (5.6

The electric field will satisfy Maxwell’s equation
[rPe*™2¢"] = 0. X))}
Equations (5.6) and (5.7) readily integrate to
PRIy = 4, (5.8)
rle Vg = g, (5.9)

respectively, where 4 and g are constants of integration. This g is related to the total
charge of the source.

Now multiplying equation (5.3) with r2¢* "2 and using (5.8) and (5.9), one can obtain
after integration

ef = ¢*+ad+b, (5.10)
where a and b are constants of integration. Then we add (5.3) with (5.5) and multiply the

result by r2e* "2 this can be integrated, using the wave equation and Maxwell’s equation
to yield

r2e "2 f — it n, (5.11)
m and n being arbitrary constants. From (5.9), (5.10) and (5.11), one finds that

o ¢I  (mr24n)y-1
(¢2_*+a¢+b) =q . (5.12)

From equations (5.8), (5.9), (5.10) and (5.12) one obtains

!

Lo A(mr* +n)~!
S

or,
S
2f J1=f
as f = (1—-u?). Equations (5.12) and (5.13) can be integrated to yield solutions for ¢ and

[ respectively, and with ¢ and f being known, v and p can be obtained from (5.10) and (5.11).
These solutions appear to be identical with those previously obtained by the authors

—A(mr* +n)"1, (5.13)

3 .
[7] in Nordtvedt’s theory for a particular choice of w, namely & = ?(Y—w-—) , where p is
' ¥
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the scalar field. This is to be expected as we shall see now. Writing the action integral for

1/2
the conformally invariant scalar field (1.1) in terms of f where f = (1 —u?) and u = (—-6~> 0,

we obtain
'Rl —
I=3%||fR+3 =+ —gd'x. 5.14
3 J‘[f 2 =) \/ g ( )
Now interpreting /" as the scalar field y in Nordtvedt’s theory along with a function
3
w(y) = v , we obtain for the above action integral
21—y
I = HwRJr *Spw) y %J J—gdx (5.15)

which is the usual Nordtvedt action integral [6] except for the factor 1/2.

The spherically symmetric solutions in isotropic form for an uncharged particle as
well as the solutions for plane symmetry can also be obtained in the same manner and can
be shown to correspond to those previously obtained by the authors [7, 10] in Nordtvedt

3y
21-vy)
absence of electromagnetic field are given by Freyland [1].

Unlike the uncharged case, one can have a conformally flat solution for a charged
particle in the presence of conformally invariant scalar field. If > > 4b, m < 0 and n > 0,
we get from (5.12) the following solution

theory for a particular choice of w = -

. Spherically symmetric solutions in the

b—a?/4\1/2
Jn+=mr Fn‘”)
5 12 \/n—— /—mr a
(}5 = (a /4_b) o b_;,i/‘;“f!_z - 'E ’ (516)
. /n+\ —nr T)
\/n—— ——m F
where a, is a constant of integration. With n = ¢%, g?~4b = —4m and a, = 1, one obtains
a
¢ = - (1 + -——>, .17
r 2
, q
P ==. (5.18)
r
(5.9) and (5.18) yield
e¥"#/2 = 1 (constant),

which is sufficient to ensure that the Weyl tensor vanishes [11]. Thus the metric correspond-
ing to this particular solution of ¢ will be conformally flat.
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Very recently Accioly, Vaidya and Som [12] considered static spherically symmetric
spacetime with a conformally invariant scalar field. They obtained the solution for the
metric in terms of the scalar field which in turn had been solved explicitly. The solution
for the electric potential, however, had not been given by them.

One of the authors (N.B.) acknowledges the financial support by the C.S.L.R. (India).
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