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Static cylindrically symmertric spacetime with an electromagnetic field is discussed in
Nordtvedt’s generalized scalar tensor theory of gravitation where the parameter @ is a function
of the scalar field. Complete solutions are obtained in Dicke’s revised units where the cylindri-
cally symmetric line element can be written in Weyl’s canonical form.
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1. Introduction

In Nordtvedt’s [1] modification of Brans-Dicke theory [2], the parameter w is taken
to be a function of the scalar field v instead of being a constant. The physical implications
of this generalization had been discussed by many authors (c.g. Nordtvedt [1], Barker
{3]. In this modified theory, a fairly large number of static and non-static solutions are
obtained (Banerjee and Duttachoudhury [4], Banerjee and Santos [5], Barker [3], Rao
and Reddy [6], Van den Bergh [7, 8], Banerjee, Duttachoudhury and Banerjee [9], [10]).
Very recently Duttachoudhury and Banerjee [11] discussed a static axially symmetric
space time in Nordtvedt’s theory and obtained vacuum solutions in prolate and oblate
spheroidal coordinates. Static cylindrically symmetric vacuum solutions had also been
given by them. In this context, we discuss in this paper the coupled Einstein-Maxwell-
-Nordtvedt field equations and obtain the solutions for a charge distribution giving rise
to a cylindrically symmetric electrostatic potential. In Brans-Dicke theory, static cylindri-
cally symmetric vacuum solutions for the uncharged case had been studied earlier by Ba-
nerjee and Bhattacharya [12].

The field equations are written in Dicke’s revised units [13] where the rest masses of
elementary particles vary and the so-called constant of gravitation G remains fixed. The
transformed equations can be obtained by a conformal transformation given by

gnv = wguv
(131)
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where variables with a bar are in the original atomic units of Brans and Dicke where particle
masses are fixed and G varies. Variables without bar are in the revised units and y is the
scalar field. In the revised units, the test particles do not satisfy geodesic equations of mo-
tion and hence this version is physically less interesting. But the field equations look much
simpler and for static axially symmetric vacuum case one can use Weyl’s canonical form
of the metric in view of the fact that R34+ RJ = 0 in the revised units. Moreover, once
the solutions are known, one can obtain the solutions in the atomic units via the relation
8w = YGuv-

In Section 2, the field equations are written in the new units. In Section 3, the equations
are completely solved for static cylindrical symmetry and their propertics are discussed.

2. Field equations

In Dicke’s revised units, the field equations for Nordtvedt’s general scalar tensor
theory are

Gaﬂ = Raﬁ _% go:ﬂR

(2w +3)
= —kTyp= ——— (Y9~ 8s¥u¥"); 2.1)
87[G0 81;)
where k = — s Ya= Fr and T,; represents the energy momentum tensor for matter
¢ X

or any other field e.g., the electromagnetic field. Equation (2.1) can also be written as

(Cw+3)

Ry = —k(T,3—5 8,4T)— B

YaYp- 22)

The wave equation for the scalar field is given by

Ol (In ) = (In p)* o @3)
ny) = (In p)y* 6 = —o - = =-1. )
The general static cylindrically symmetric line element is

ds? = e**dt* —e*(dg* + dz*) - p*e*'dd?, 2.4

where «, , y are functions of the radial coordinate ¢ alone.

We shall consider only a cylindrically symmetric electrostatic field along with the
scalar field y. The only nonvanishing components of the Maxwell tensor F,, will be
F,o = —F,;, = ¢’ where ¢ is the electric potential and a prime denotes differentiation
with respect to ¢. The energy momentum tensor for an electromagnetic field is

L o a
Tpv = - 4?{ [FuaFv_% g,quaﬁF ﬂ]‘ (2'5)
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From (2.5), one obtains

i
T33 — _T(;) —_ gllgootplz,

8n

T3+ Ty = 0. (2.6)

Again, for an electromagnetic field, the trace T of T, is always zero. So, in view of the
fact that the scalar field y is a function of ¢ alone in the static cylindrically symmetric
case, equation (2.2) and (2.6) together yield

RI+Ry =0, Q.7
which enables one to write the line element (2.4) in Weyl’s canonical form,
ds* = e**dt? —e* "I (d* +dz*)— ge” P dd*. (2.8)

Here A and v are functions of ¢ alone.
Ricci tensors are calculated from this metric and their suitable combinations (Synge
[14]) yield the following explicit field equations,

/1”+;L’/Q — e—2£¢!2’ (2.9)
Vi = 0" ?+ 1 Qo+3)u'?—e 2, (2.10)
V4 = — Qo+ e 93, (2.11)

where u = In y.
The wave equation becomes

wop W 2.12)
0 Qw+3)
The Maxwell equation,
F*, =0,
yields explicitly
¢"'—=22"¢"+¢’'Jo = 0. (2.13)

We have five unknowns — 4, v, ¢, u and w. The number of independent equations
is only four — (2.9) to (2.11) and (2.13). With T = 0 for the electromagnetic field, the wave
equation is a consequence of the field equations in view of the Bianchi identity. For the
complete set of solutions, one has to assume the explicit functional relationship between
o and ¢. In the present paper, some choices of «(¢) will be taken up as examples. |
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3. Static cylindrically symmetric solutions

Equation (2.13) can be written as

e 1
fT b — =2
¢ e
which can be integrated to the form
0’ = ge** (3.1)
where g is a constant of integration. Multiplying Eq. (2.9) by ¢ and using (3.1) one obtains
(@) = (a¢)
which integrates to the form
o' = qdp+4, (3.2
A, being a constant of integration. Using (3.1) and (3.2), one obtains
') = (¢ +a/2)d, (3.3)
where g = 24,/q. From this, one obtains after integration
et = g2 +ap+b, (3.4)

where b is another constant of integration. From (3.2) and (3.4), one can write

¢’ _
@ raprn) - U G

which can be integrated for the solution of the electric potential ¢.
Now we divide the equation (2.10) by ¢ and add the result to (2.11) to obtain

(ev) =0,
which integrates to the form

v = In C,0%, (3.6)
where C, and C, are arbitrary constants. From this we obtain

e? = C3p*“. 3.7

So the metric can be obtained explicitly once the solution for ¢ is at hand. Equation (3.5)
can be integrated in three different cases to give the solution for ¢.
Case I: a? > 4b,

i_ Vai=ab
Ja>=ab [ 1+(0/00)" ] a 3.8)

B [1—(9/90)"”m S
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Case II: a? = 4b,

b = [ain (eof0)] '~ . (39)
Case III: a* < 4b
4b—a’ Jab—a?
& _Y : ? tan{q - ? ln(g/go)}—-%. (3.10)

Here g, is a constant of integration. With these solutions for ¢, one can obtain e?’l and
e*’ from equations (3.4) and (3.7).

For the complete solution of the problem, the solutions for the scalar field should
also be specified. The wave equation (2.12) can be written as

20+3)
Qo+3y

1
W 9 2Qw+3)

El

which yields after integration

Qo+3)" = = (3.11)
0

where m is a constant of integration. This equation can be integrated if the exact functional
form of w(¢) is known. We shall take up a few choices as examples.
(1) Brans-Dicke theory [2]: w = wg, 3 constaat.

Y= e’ = AlQm/‘/Z_on?’. (3.12)
(2) Barker theory [3]: Cu+3) = l/(y—1) = 1/("-1).
p = " = sec’ [In (4,0™%)]. (3.13)

(3) Schwinger theory [7]: 2w+3 = lay = 1/xe".

p = e = (In 4;0tm'%) 72 (3.149)
() Curvatur ling [7}: 20+3 3
urvature coupling [7}: 2w = = —.
(I-y) (1-€9
44,0™
p=e = — (3.15)
(1+440™

Here 4,, A,, A, and A4, are constants of integration.
With the solutions for ¢ at hand, one can transform the metric into the atomic units
of Brans and Dicke via the transformation equation

_ 1
gyv = '1;)" guw
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where variables with a bar are in the atomic units whereas those without a bar are in the
revised atomic units.

It should be noted that solutions of the scalar field given in the equations (3.12) to
(3.15) are the same as those given in the uncharged case by Duttachoudhury and Banerjee
[11]. This is to be expected as the scalar field depends on the trace of the energy momentum
tensor and T,, for the electromagnetic field is traceless.

Equations (3.4) and (3.7) show that the metric components exhibit singularity when
(¢?+ag+b) = 0 or w. As for the electric potential, we see that for the first two cases, i.e.
for a* > 4b and a? = 4b, ¢ » oo when ¢ = go. So ¢ = g, defines the cylindrical
surface which is the boundary of the charge distribution. In the third case, 0 = g, yields
¢ = —aj2. In this case ¢ — 0 at the cylindrical surface defined by

(Cn+Dn
0 = Qp€Xp| — ?‘7:.:2 s
gN4b—a

where n is an integer.

In the revised units, the solutions for the metric does not depend on the choice of the
functional form of o, as we have seen that equations (3.4), (3.7) to (3.10) are obtained
without assuming any functional form of w. But in the atomic units, the solutions will
depend on the particular choice of . One can find out g,, in atomic units via the relation

1
J,» = — 8, and the solution for y is obtained by integrating the equation (3.11) which
y

demands the explicit functional form of w.

In absence of the scalar field, i.e., for u = 0, the solutions should reduce to the general
relativity solutions given by Bonnor [I5]. Using the solutions obtained in this paper in
equation (2.10), one obtains a relation like

m?* = 4C, +q(4b—a?). (3.16)

If # = 0, we get from (3.11) that m = 0. So in the absence of the scalar field, we must
have
_ g(a®—4b)

C, ,

With this choice of C; the solutions given in the cases a®> = 4b and a*> < 4b are seen to be
the same as those given by Bonnor which confirms the validity of the solutions obtained
in this paper. The solution for the case a* > 4b, however, has not been given by Bonnor.
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