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A detailed classification of complex bivectors in space-time is given. The classification
is achieved in several ways, with emphasis being laid on the algebraic (Segré type) structure
and the geometrical interpretation in complex projective 3-space.
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1. Introduction

This paper is intended as a contribution to the recent work on complex general relativ-
ity theory and presents a detailed discussion of the algebraic classification of complex
second order skew-symmetric tensors (bivectors). Some of the results given here have
been quoted, without proof, in a recent paper [1]. The approach will be largely geometrical
and is centred round the concept of the fundamental metric quadric. A brief introduction
to this quadric and its properties is given in Section 2. Throughout this paper, A will
denote a real space-time manifold and g the Lorentz metric on M whose components in
some coordinate system are denoted by g,,. There will be no loss of generality in taking
M to be a real manifold, since the algebraic work of this paper involves the complexified
tangent space to M at some point a. However, care must be taken with certain “real”
aspects of the classification (to be clarified later) which are preserved under (real) transfor-
mations of the (real) tangent space to M at a but not, in general, under general transforma-
tions of the complexified tangent space. The usual notation will be followed : square brackets
around indices denote skew-symmetrisation, spinor notation will be taken directly from
[2], a star on a bivector denotes the usual duality operator and a complex bivector F will

% *
be called self-dual (anti self-dual) if F = —IiF (F = iF).

It is convenient here to recall a well-known result for later use. If a e M, let T (M)
denote the (real) tangent space to M at a. A real 2-space at a will always mean a two-
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dimensional subspace of T,(M) and such a 2-space is called a real timelike (respectively,
null or spacelike) 2-space if the number of distinct null directions it contains is two (respec-
tively, one or zero).

2. Quadric surfaces and PC?

Let a € M and choose a coordinate domain containing a. Construct the complexified
tangent space to M at a and consider those non-zero members of it, with components x°,
which satisfy the equation

gapx°x® = 0. (2.1

The x° may now be considered as the homogeneous coordinates of a point in projective
complex three-dimensional space PC?® and then (2.1) defines a quadric surface # < PC3.
(A general discussion of quadric surfaces in PC?® can be found in Semple and Kneebone
[3].) The quadric & will be referred to as the fundamental quadric. 1t is a proper quadric
because g, is a non-singular matrix and comprises all complex null directions at a. As
a consequence, the points of £ can be labelled by pairs ot (projective) 1-spinors [4] and
this feature will be returned to in Section 3(b). Many of the algebraic concepts related to the
complexified tangent space to M at a can be described rather easily in terms of # and
it is for this reason that it is introduced here.

A complex two-dimensional subspace of C* (a complex 2-space) is represented by
a line in PC3 and if p and g are distinct members of PC? lying on this line (or complex
vectors spanning the complex 2-space) then the line (or the associated complex 2-space)
will be denoted by pg. Any such line eitheér intersects £ in two points (possibly coincident)
or else lies entirely in #. A line lying entirely in 4 is called a generator of # and there are
exactly two families of generators lying in # each of which is called a regulus of 7. Any
two members of the same regulus are disjoint whereas two generators from different reguli
intersect in a unique point. There is exactly one generator from each regulus through each
point of #. The subset of Z consisting of complex null directions at @ which are complex
muitiples ot real null directions at a is a real quadric called the reality section by Penrose
{4] and is denoted by £. The reality section is determined through the initial choice of chart
domain about 4 in the real manifold M and is, of course, invariant under coordinate
transformations in (the real manifold) M. Each generator of # is homeomorphic to PC*
(=~ $?) and # has the (compact) topological structure PC! x PC! (~ S? x 8?). The reality
section # has the topological structure PC' (the *‘celestial sphere”) as expected.

A complex 2-space represented by a generator of # will be called a (complex) totally
null 2-space. Each three-dimensional subspace of C* is represented by a plane in PC3
and intersects 4 in a (plane) conic, a degenerate case occurring when the plane is tangent
to # at some point m. In this case the plane intersects & in the two generators passing
through m. If m has homogeneous coordinates m®, the members of the tangent plane to
# at m comprise all those points of PC® whose homogeneous coordinates x* satisfy
gam’x’ = 0. Asa consequence, the two generators through m € # comprise those complex
null directions at a orthogonal to m. It easily follows that any generator of # intersects #
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in exactly one point and so any complex totally null 2-space contains exactly one real
(necessarily null) direction and any two independent members of it are complex null ortho-
gonal directions. If /e # and if L and L denote the two generators of 4 through / then the
members of L are the conjugates of those in L. The generators L and L will be referred to as
conjugate generators.

A line in PC?® which does not lie in # is either tangent to # (in which case
the corresponding complex 2-space is called a (complex) null 2-space) or else intersects
2 in two distinct points (in which case the corresponding complex 2-space is called
a (complex) non-null 2-space). Each member of a complex null 2-space represented by
a line tangent to # at m (and hence lying in the tangent plane to # at m) is orthogonal to
the complex null direction m and, consequently, each real null 2-space containing the real
null direction / is a subset of a complex null 2-space tangent to & at the point / € #. A real
timelike 2-space containing real null directions / and # is a subset of a complex non-null
2-space whose representative line intersects # in the two distinct points of # determined
by / and n. A real spacelike 2-space spanned by real orthogonal unit spacelike vectors x and
y at ais a subset of a complex non-null 2-space whose intersections with # are the conjugate
complex null directions spanned by x+iy. Any complex 2-space other than the ones
consideted here cannot contain a real 2-space and so contains at most one real direction.

The orthogonal complement of a complex non-null 2-space is itself a complex non-
-null 2-space whilst the orthogonal complemeﬂt of a complex null 2-space tangent to # at
m is itself a complex null 2-space tangent to # at m. The orthogonal complement of a com-
plex totally null 2-space is the same 2-space, from which one has the useful result that
if pg is a complex totally null 2-space and if m is a complex vector orthogonal to p and ¢
then m € pq.

The above paragraph shows that each point m € #\# uniquely determines a real space-
like 2-space at a spanned by the real and imaginary parts of m (and independent of the
representative chosen for m). The correspondence is 2:1 since a 1eal spacelike 2-space
at a only determines m to within conjugation. In particular, if L is any generator of # and
L ~n # = {I} then the above paragraph shows that each member of L\{/} uniquely deter-
mines a real spacelike 2-space at a orthogonal to /. Distinct members of L\{/}, corresponding
to complex null directions m and m', determine distinct real spacelike 2-spaces according
to the formal change m —» m’ = m+al (o« € C). These 2-spaces are interpreted as the wave-
-surfaces to I at a — the instantaneous wave surfaces of observers with all possible 4-veloci-
ties at a. Similar comments apply to the set L\{/} since this set generates the same 2-spaces
but with different parity. Each of the sets L\{/} and L\{/} is diffeomorphic to C (x R?)
and the isomorphism between the proper null notation subgroup of the Lorentz
group about / and the Euclidean translation group is now clearly displayed. Now
choose any m e L\{/} and the corresponding m e L\{l}. The second generators through
m and 7 meet on & and thus determine another real null direction » distinct from /. With
an abuse of notation, it one thinks of /, m, i and »n as vectors at a spanning the associated
members of # and restricted by [n* = m,m® = 1, one determines a complex null tetrad
I, m, m, n up to the changes / > /' = Al (AeR, A #0), no>n" =A"'nand m->m
= ¢"m (0 e R) together with the interchange m <> . The full group of null rotations about
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Diagram 1. The quadric %, indicating # and examples of generators and 2-spaces

! is then recovered by insisting that the changes be future — and parity - preserving
so that 4 > 0 and the interchange m <> m is forbidden.

Some of the more important features of the quadric & are represented in diagram 1. It
is remarked also that the geometry of quadric surfaces has been used to discuss the classifica-
tion of symmetric tensors in space-time [4-6].

3. The classification of complex bivectors

In this section, the algebraic structure of a non-zero complex bivector F at ae M,
whose components in some coordinate system of M about a are represented by F,, (= —F,),
will be considered. The algebraic structure will be described in two ways: (i) by considering
the associated linear map from the complexified tangent space to M at a to itself represented
by the complex matrix F°, (= g"F,,) and then studying the eigenvector-eigenvalue problem

FoR = Ak (3.1)

for the eigenvector-eigenvalue pairs (k, 1) where ke C* (k # 0) and i€ C, giving the
result in terms of the well-known Segré notation and convenient canonical forms (if) by
considering the spinor equivalent of F and performing a spinor classification. A few brief
comments will also be made concerning the invariant 2-space structure of F and the con-
cepts of self- and anti self-duality. For completeness, the case when F is a real bivector
will be included specifically. The algebraic results will be given a convenient geometrical
interpretation by using the quadric surface # introduced in Section 2.
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(a) The eigenvector-eigenvalue structure— Segré types

The following simple comments follow directly from the skew-symmetry of F:

() if (k, 1) is an eigenvector-eigenvalue pair satisfying (3.1) then either 1 = 0 or
k is null,

(@) if (k;, A;) and (k,, 1,) are eigenvector-eigenvalue pairs satisfying (3.1) then either
k, and k, are orthogomal or A,+1, = 0,

(iif) the sum of the eigenvalues of F (counted properly) is zero,

(iv) the rank of the matrix F? is 2 or 4.

If F has rank 2 it can be written as F,, = 2u,t,; and the associated complex vectors
u and v span a two-dimensional subspace of the complexified tangent space at a called the
(complex) blade of F. Such bivectors are called simple, otherwise non-simple. The possible
Segré types for a general 4 x 4 complex matrix are, in the usual notation, {4}, {3, 1}, {2, 2},
{2,1, 1} and {1, 1, 1, 1} and their degeneracies and their canonical Jordan matrices are,
respectively,

x 1 00\ /x 1 00\, /a1 00\ /a1 00 /z0600
0« 1 0} [0 a1 0} [0« 00| [0 «00|][0p 00
00 « 1|°l0 0 « 0of°lo 0 g 1]’lo o p o]0 o0 5y 0
000 o \000PB V0008 00043 0005 @32

where «, 8, v, § € C are the associated eigenvalues. Eigenvalue degeneracies will, as usual,
be indicated by enclosing the appropriate digits in the Segré symbol inside round brackets.
It is then an immediate consequence of (iif) and (iv) above that type {4} is impossible for
F. The Segré type {3, 1} with non-zero eigenvalues for F is also impossible for, in this case,
the appropriate matrix in (3.2) shows that independent complex vectors p, g, r, s exist
satisfying

Fap® = ap, (3.3)
Fud® = 24,4 P, (3.4)
Fout® = ar,+4, (3.5)
Fos® = —3uas,. (3.6)

Now « # 0 and, as a consequence of results (i) and (ii) above, p and s are null (and orthogo-
nal). Then a contraction of (3.3) with ¢* and (3.4) with p“ shows that p and g are orthogonal
whilst a contraction of (3.4) with ¢° shows that ¢ is null. Hence pq is totally null. Finally,
a contraction of (3.3) with r® and (3.5) with p® shows that p* = 0 whilst a contraction
of (3.4) with r“ and (3.5) with ¢ shows that ¢°r, = 0. It follows that r € pq, contradicting
the fact that p, ¢ and r are independent.

Consider next the case of Segré type {(3, )} with all eigenvalues zero. The bivector
F is then simple and (3.3) to (3.6) hold with « = 0. Contractions similar to those of the
previous paragraph then give p,p° = p.q° = 5,4° = r,g° = s,p" = 0. It then follows that
pq is-not totally null for if it is (and hence ¢ is null) the previous results show that s € pg



144

and one has a contradiction as before. As a result, r,p” (= —q,4%) # 0. Similarly, ps is not
totally nuil and so s is not null. This case is then possible and F has a canonical form

Fap = 2piaqe), 3.7

where p,p” = p,g° = 0 and p is normalised so that g,4° = —r,p" = 1. There is a uniquely
determined complex null eigendirection represented by p and ¢ is determined to within
an additive multiple of p. The totality of eigendirections of F lies in the null 2-space through
p orthogonal to pg. A bivector of this type will be called null because its blade pg is a com-
plex null 2-space.

For the Segré type {2.2} with eigenvalues s O the rank is 4 and one can choose
independent vectors p, ¢, r, s such that

Fup” = ap, (3.8)
Faq" = ad,+p, (3.9)
Fob® = —ar, (3.10)
Fos® = —as,+71,. (3.11)

Similar contractions to those above give p,p° = p.g° = q.q4° = r;r" = r,;s° = 5,5°=0
and so pg and rs are totally null. Equations (3.9) and (3.10) also show that p,r* = 0. The
independence of p, ¢ and r then shows that r,g° # 0. Now the equations (3.8) to (3.11)
are unchanged if s is replaced by s° = s+ Ar (4 e C) and, since r,q° # 0, A may be chosen
such that g,5’* = 0. Equations (3.9) and (3.11) contracted with s* and g¢° respectively then
show that p,s” = — g, which, since non-zero, may be set equal to unity by an appropriate
scaling. A canonical form for F is then (with the prime on s omitted)

Foup = 200pp,Sy— 200G "5y — 2 Ppal sy (3.12)

In this canonical form pgq, gs, sr and rp are totally null complex 2-spaces and are easily
represented on the quadric 4. The null directions represented by p and r are the only
eigendirections of F whilst thete is an obvious freedom in the choice of ¢ and s. The above
set-up including the canonical form (3.12), is preserved by the changes ¢ — ¢’ = g+ up,
s 5 =s+ur (e Q).

If F has Segré type {(2, 2)} with zero eigenvalues, then (3.8) to (3.11) hold with « = 0.
One then finds p,p” = p,g° = rr* = r,s° = r,p° =0 and s,p° = —¢q,r" # 0. With an
appropriate scaling, so that ¢,r* = 1, one finds a canonical form

Fab = 2p[arb]. (3-13)

Such a bivector is simple and called zotally null because its blade pr is a totally null complex
2-space. It has infinitely many null eigendirections (exactly one of which is real) comprising
all members of the generator represented by pr and there arc no other eigendirections.
Thus in the canonical form (3.13), p and r may be replaced according to p — p’ = up+vr,
r—r' = gp+or where yo—vg = 1.
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Next consider the case when F has Segré type {2, 1, 1} or one of its degeneracies. It
follows from the rank condition (iz) at the beginning of this section that all the eigenvalues
must be non-zero and so one can choose independent vectors p, g, r, s such that

I:abpb = AP, (3‘14)
Fabqb = 0“]a+Pu (3'15)
For® = Br, (3.16)
F 8" = 75, (3.17)

where 2, B,y # 0 and 2a+f+7 = 0. It immediately follows that pg is totally null and
that r and s are null. But it also follows that (8 +7)r,s* = 0 and so r,s° = 0 and rs is totally
null. Next, one easily shows that (x+p)p,r® = (a+ B)q,r"+p.,r* =0 and (x+7y)p,s°
= (a+7y)gs"+p,s° = 0 ane so, irrespective of the values of (x+pf) and (x+7y),
par” = p,s® = 0. This means that p e rs and contradicts the independence of p, r and s.
Thus the Segré type {2, 1, I} for F is impossible.
Finally, consider the case when F has Segré type {1, 1, 1, 1} or one of its degeneracies,
(so that F is diagonable over C) and suppose first that F has rank 4. Then one can choose
four independent eigenvectors p, g, r, s with respective non-zero eigenvalues «, 8, y, 9,
whose sum is zero. It follows that p, ¢, r, s are all null and that (a+ B)p.g° = (a+y)ps”
= (@+0)ps" = (B+7)qar" = (B+0)gs" = (y+0)r,s" = 0. As a result, (x+p), (x+7)
and (a+3) cannot all be non-zero because then p,q° = p,r* = p,s" = 0 and so pq, pr
and ps wouid all be totally null, giving the usual contradiction. So suppose, say, that
2+f =0. Then y+4J = 0 also and the eigenvalues can be written as (o, —a, y, —7).
By switching y and -7, if necessary, one can always arrange that x+7y # 0 and then
P’ = g,5° = 0. Thus pr and gs are totally null. If a—y # 0 also (the non-degenerate
case) then p,s° = g,r" = 0 and so ps and gr are also totally null, showing that ps, sq, gr
and rp represent generators of # with the null eigendirections p, ¢, r, s uniquely determined
and comprising the totality of eigendirections of F. After scaling so that p,g° and r;s*
(which are necessarily non-zero) are unity, one achieves a canonical form for this case
(Scgré type {1,1,1,1})
Fap = 20pqpy+ 271 aSp)- (3.18)

If a—7y = 0, one has the Segré type {(1, 1) (I, 1)} and the usual argument shows that pr
and g¢s are totally null and that these two complex 2-spaces comprise the (infinite) totality
of all the (necessarily null) eigendirections of F. Appropriate vectors may be chosen from
these 2-spaces so that (3.18) holds with & = y. If F is simple of rank 2, then the eigenvalues
may be taken as (¢, —a, 0, 0). One then finds uniquely determined eigendirections p and ¢
with eigenvalues « and —« such that p,p° = ¢.,q4° = 0, p,g° # 0 and a non-null complex
2-space orthogonal to (the non-null complex 2-space) pg which comprise the remainder
of the eigendirections of F all with eigenvalue zero. This latter 2-space contains a unique
pair of null eigendirections r and s and then (suitably labelied) ps, sq, gr and rp represent
generators of #. The Segré type is {1, 1(1, 1)} and (3.18) holds with y = 0.
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(b) Spinor representation

A non-zero complex bivector F determines and is detetmined by two symmetric
2-spinors ¢ 45 and p 5. The spinors ¢ 45 and vy, are, in general, independent but important
special cases occur when F is real (in which case {y; is conjugate to ¢ ,5) and when F is self-
-dual or anti self-dual (in which case one or the other of the spinors ¢ 45 and v, is zero).
The representation of F in terms of these spinors is_just the unique splitting of F into its
self-dual and anti self-dual parts (see Section 3(t)). Now a non-zero symmetric 2-spinor
¢ 45 uniquely determines a pair of principal 1-spinor directions and is classified as non-null
or null according as these principal directions are distinct or coincident. This classification
can also be achieved by considering the complex 2 x 2 matrix ¢y = e%pcp. 1t is easily
shown that such a matrix must be either of Segré type [I, 1} with equal and opposite
eigenvalues, or {2} with eigenvalue zero. These characterise, respectively, the non-null
and null cases. In the non-null case ¢ 5 may be written in terms of its principal l-spinor
directions {eigenspinors), represented by &, and #,, as ¢ 45 o¢ {415, In the null case, with
principal 1-spinor (eigenspinor) represented by &, ¢p ¢ E485.

A complex null direction repiesented, say, by k determines and is determined by a pair
of 1-spinor directions represented, say, by £, and 5. In this sense, one may regard the 2-spi-
nor £ ,n; as the spinor equivalent of k%, It is then easily shown that £ is a complex null
eigenvector of F if and only if £, and #, are, respectively, eigenspinors of ¢, and y,p,
G apc? oc &4, wagn® o 4. A real null eigenvector of F then occurs if and only if a certain

TABLE 1

The description of a complex bivector of given Segré type in terms of its spinor decomposition (complex
null eigenvector structure) and invariant 2-space structure. The notation is the same as in the text

Invariant 2-spaces
P 4B Y4B Fap
totally null null non-null
54ép 0 {2, 2} pr and any genera- | Ixforany /e pr none
tor of the other and any x with
: regulus xql® =0, x,x% %0
&ans) ' 0 AH{a, ua, n; " the two “eigen- none i any non-null line
. vector generators” [ intersecting both
i and any member “eigenvector gener-
’ of other regulus ators”
E4és 7418 {3, 1)} the two generators | px for any x with | none
through p Pax® =0, xpx* # 0
£ HMalts {2,2} pq, pr, rs none none
£ {1,1,1,1} ps, 5q, gr, rp none pg, rs
418 s a0y | psosgoan px(qy) for any 4, rs
; x(y) with xap® =0
‘ xgx% # 0 (yop® =0,
yay® # 0)
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1-spinor is simultaneously an eigenspinor of ¢,z and y,5. If F is self-dual so that, say,
yqp = 0, and if £, is an eigenspinor of ¢ 5 then &, i3 corresponds to a complex eigen-
vector of F for all non-zero choices of #,. Similar comments apply in the anti self-dual
case. The classification of F can be put together by considering the separate algebraic types
of ¢4 and y,p and comparing with the Segré type of F. This is recorded in Table I, and
is essentially the classification of F according to its null eigenvector structure.

{¢) Invariant 2-spaces

Let F be the linear map from the complexified tangent space to M at a to itself associa-
ted with the bivector F as mentioned in Section 3(a). A subspace V of this complexified
tangent space is called a (complex) invariant 2-space of F if F(V) = V. An algebraic classifi-
cation of complex bivectors can be achieved by considering the number and nature (totally
null, null and non-null) of the associated invariant 2-spaces. In fact, if pq is an invariant
2-space of F at a, one has in an obvious notation

Fabpb = apa+ﬁqa’ Fabqb = ypa+5qn (319)

where «a, B, y, 0, € C. By choosing appropriate spanning vectors in an invariant 2-space
of a given type and extending to a convenient basis of C* one can then expand F,, in terms
of skew products of basis members. The equations (3.19) can then be used to show that [7]

(v} every totally null invariant 2-space of F contains at least one null eigendirec-
tion of F,

(vi) every null invariant 2-space of F contains exactly one null eigendirection of F and
if a null invariant 2-space is admitted, F is necessarily simple,

(vii) every non-null invariant 2-space contains exactly two null eigendirections of
Fand if a non-null invariant 2-space is admitted, F has four independent null eigendirections
and is thus one of the diagonable Segré types {1, 1, 1, 1}, {(1, ) (1, D} or {1, 1(1, D},

(viii) in. every case the orthogonal complement of an invariant 2-space of F is also
an invariant 2-space of F.

As a consequence of those observations, the distinct algebraic types so far encountered
can be distinguished according to invariant 2-space structure. The details are listed in
Table L.

(d) Geometrical interpretation

In performing the algebraic classification of complex bivectors, the geometry of the
quadric # has been used extensively. In fact, one can very quickly summarise the situation
in terms of the elementary geometrical structure of %. A complex bivector of type {(3, 1)}
is characterised by a tangent line to # (its blade). The orthogonal 2-space to this blade,
also a tangent line, represents all the eigendirections of the bivector. A bivector of type
{(2, 2)} is characterised by a generator of # which is simultaneously its blade and all its
eigendirections. A bivector of type {2, 2} is characterised by a unique pair of points on
% which lie on the same generator and are the only eigendirections in this case. A bivector
of type {1, 1, 1, 1} is characterised by four distinct points p, r, ¢, s on & such that pr, rg,
gs and sp are generators. These points represent the only eigendirections in this case.
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A bivector of type {(1, 1) (1, 1)} is characterised by two distinct generators from the same
regulus on % and they comprise the totality of eigendirections for this type, each generator
giving the eigendirections resulting from one of the two distinct eigenvalues. Finally, the
type {1, 1, (I, 1)} is characterised by two points on # not on the same generator, and which
correspond to the eigendirections resulting from the two distinct non-zero eigenvalues.
The orthogonal complement of the 2-space spanned by these points constitutes the remain-
ing eigendirections all with zero eigenvalue and two of which are nuil.

(e) Real bivectors

For completeness, the case when F is a non-zero real bivector at a will be considered
briefly. In fact, the standard classification of real bivectors is not given in terms of Segré
type and so the present section will tie up the usual scheme with that given here. In the
conventional approach, a real bivector F at « is called aull if there exists a (real) vector

*
k such that F,,k® = F,,k* = 0. Thus F is simple and the direction spanned by k is easily
*
shown to be null and uniquely determined by F. Clearly Fis null if and only if Fis and F and

;’ then have orthogonal (real) null blades. Otherwise, a real bivector is called non-null.
If Fis non-null and simple it is called spacelike or timelike according as its blade is spacelike
or timelike. Any non-null real bivector uniquely determines a (real) spacelike-timelike
pair of orthogonal 2-spaces at a.

Suppose then that F is a real bivector at ¢ and construct a real null tetrad at a. One
can then express F in terms of skew products of these tetrad members and easily find the
following results concerning the real invariant 2-space structure of F

(ix) if V is a real invariant 2-space of F then so is its orthogonal complement V*;
if V is spacelike (and then V* is timelike) V* coatains two independent real null eigen-
directions of F and V contains two independent complex conjugate eigendirections of F
with conjugate complex eigenvalues,

(x) if F admits a complex null eigenvector & which is not a complex multiple of a real
vector then the real and imaginary parts of k span a spacelike invariant 2-space of F (inde-
pendent of the iepresentative chosen for k).

It easily follows from (ix) and (x) that any real bivector which admits a complex
null eigendirection in the sense of (x) above must admit four independent complex null
eigendirections, two of which are real, and hence must be diagonable over C or R with
two real eigenvalues « and f and two conjugate complex eigenvalues y+id. Since inde-
pendent real null directions are never orthogonal, the results (ii) and (iii) earlier show that
that § = —u and y = 0. It follows that the Segré types {(2,2)} and {2, 2} cannot now
occur. Constructing Segré types over R and using the symbol z to denote a complex (non-
-real) eigenvalue in those cases which are not diagonable over R, one finds that the possible
types for a real bivector are {(3, 1)} (the real null case), {1, I(I, 1)} (the real, non-null,
timelike case), {(1, 1)z, z} (the real, non-null, spacelike case) and {1, I, z, z} (the non-null,
non-simple case) where, in the first three cases, the repeated eigenvalue is zero. The geomet-
rical interpretation is readily given as before, full details being essentially contained in
Table 1.
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(f) Duality

*
A self-dual complex bivector F (# 0) may be written in the form F = A +iA4 where

the (complex) bivector A is determined up to an additive multiple of a (complex) anti
self-dual bivector. The bivector 4 may be chosen real and is then uniquely determined.
Similar comments with obvious modifications hold when F is anti self-dual. If F is self-
-dual and expressed as above with 4 a real bivector of Segré type {(3, 1)} (a real null
bivector) then F is simple and of Segré type {(2, 2)} whereas if A4 is real and of any other
Segré type, F is not simple and of Segré type {(1, 1) (I, D}. In the former case F determines
a single generator of # whereas in the latter case F determines a pair of generators from
the same regulus. Again, similar comments apply if F is anti self-dual. If F is self-dual,
then F is anti self-dual (and vice versa) and the generators determined by F and F belong
to different reguli.

For completeness it may be added here that any simple complex bivector has a simple
dual and their blades are orthogonal complements and that any complex bivector can be
written as the sum of two simple bivectors. This latter result follows from equations (3.7),
(3.12), (3.13) and (3.18). Also, any complex bivector F may be decomposed uniquely into
its self-dual and anti self-dual parts (see Section 3(b)). If F = G+ H is such a decomposi-
tion then G and H are complex bivectors with Segré type {(2, 2)} or {(1, 1) (I, 1)}. The
relationship between the Segré type of F and those of G and H can easily be inferred from
the work in Section 3(b) and Table 1. Since a complex bivector and its dual have essen-
tially the same such decomposition (apart from multiplicative factors) and since such
a decomposition determines the complex null directions of F (see Section 3(b)), it follows
that a complex bivector and its dual will have identical null eigendirections.

Finally, it is pointed out that the classification of complex bivectors given here is dual
&
inrariant in the sense that F and F will always have the same Segré type. This follows in

a straightforward way from the work in Section 3(a). However, from the point of view
of the real numbers, the same is not true for real bivectors (see Section 3(¢)). Here the classi-
fication distinguishes between real and complex eigenvalues and a dual pair of simple
real non-null bivectors, one timelike and one spacelike, will have different Segré types.

The author acknowledges useful discussions with Drs W. J. Cormack, R. F. Crade,
C. B. G. McIntosh and M. Hickman.
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