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metric (symmetric) amplitude at arbitrary energies are obtained. Diverse versions of Po-
meranchuk theorem and their generalizations at finite eneirgies follow from these relations.
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1. Introduction

It is generally known that analyticity and crossing-symmetry of scattering amplitudes
lead to the existence of nontrivial connection between their real and imaginary parts.
The most famous result of such a type is the Pomeranchuk theorem. After the classical
paper [1], a lot of works were devoted to the various generalizations of the Pomeranchuk
theorem. Relations between total (differential) cross sections of particle and antiparticle
for various regimes of amplitude’s behaviour were established in [2-14]. A review of Pome-
ranchuk type results can be found in [15]. However, most of the papers in this field have
dealt only with the asymptotic case E — oo (F is the energy in laboratory system).

Generalizations of Pomeranchuk theorem to the finite energies have been obtained
in the papers [16, 17). In the present paper which is the development and the extension
of the previous ones we want to stress that the Pomeranchuk theorem is only particular
case of more general relations that connect the behaviours of real and imaginary parts
of scattering amplitude. These finite energy relations exist both for antisymmetric and
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symmetric amplitudes. They are valid for arbitrary behaviour of real and imaginary parts
of amplitude with respect to the growth of energy, and do not require any additional
assumptions about lack of oscillations. The possibility of considering not only asymptotic
but finite energies as well is connected with the rigorous estimations of integrals of imaginary
or real part of amplitude over the region of super-high energies. These estimations show
for example, that the bound on the difference of total cross sections in some interval
(E, vE) is determined by the behaviour of Re f,(E) at the energies that are not very far
from E(vE). The exact sense of the last statement will become clear from expressions (4)—(8)
(see below).

As was already mentioned, the existence of the connection between imaginary and real
parts of scattering amplitude is based to a great extent on the analytical properties of ampli-
tude in the complex E-plane. Therefore, we will suppose below, that f(E) is analytic for
Im E > 0. Such analyticity is proved for the broad class of processes (nn, nK, =N, KK,
nA and so on). The possibilities of considering the processes for which analyticity in the
whole upper half-plane is not proved will be discussed in the concluding part of the paper.

2. Generalization of the classical Pomeranchuk theorem

To begin with, let us derive the integral relation between imaginary and real parts
of antisymmetric amplitude f,(E). This relation will serve as a basis for the bound on the
difference of cross sections.

Let us consider

f J(EHAE'
: \/’Elz_i \/EIZ—-EZ \/E)‘i'_szz ?

where C is the contour consisting of the real axis and the half circle of the infinite radius
in the upper half-plane (we have chosen the system of units in which m? = 1). With the
help of the Cauchy theorem and crossing-symmetry condition f,(— E' +i0) = —f¥(E'+i0)
we get the following relation:

vE
J Im f,(E")dE’
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(1) is valid for arbitrary values of E > 1 and v > 1. This equality is a generalization of the
expression found by Wit [18]. We should like to emphasize, that the choice of relation (1)
as basic is not important. The crucial point for derivation of finite energy Pomeranchuk
type theorem is the possibility of rigorous estimate of the high energy part of the dispersion
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integral [19]. So the specific form of the integral relation connecting real and imaginary
part of the scattering amplitude is not essential for us.

Now we must set the bound on the Re f,(E) (in some papers the initial bound is imposed
on | f(E)| or even on |f.(E)|, but the condition for Re f,(E) is the weakest of all possible
ones). For the wvalidity of the Pomeranchuk theorem for E — oo, the condition
Re f(E)/EInE — 0 is necessary [19]. But from the Froissart bound [20] it follows that
[f(E)] < CE(In E)*. To consider the generalizations of different variants of the Pomeran-
chuk theorem in one and the same manner, we will proceed from the following condition
of sufficiently general form being fulfilled in some interval £, < E' < E,:

e, VEP—1(InEY" < Refi(E') < e, VE?—1(InEY?,  y,, <2 Q)

(c1, €2, 71, 72 can be negative as well as positive; if y, , < 0 then we will have as a result,
that A6(E) = o.(E)~0c(E) decreases more rapidly than Re f(E)/E).
With the help of the mean value theorem we have the obvious equality:

vE e
Im f,(E')dE’ Aa(E)F n \/’1 1
JVeriVET g Jvp ot E \2'V V)

where F (% , k) is the full elliptic integral of the first type (f,(E) is assumed to be normalized

in such a way that Ao(E) = Imfn(E)/\/Ez— ).

Now we must estimate the integrals of Re f,(E’) in the right-hand side of (1). To avoid
the necessity of writing out the unwieldy expressions, we will cite the estimations of these
integrals (and, correspondingly, the final inequalities) only for the case E, > vE> E> E,,
omitting the terms of the order of 1/In E, 1/v3, E,/E, E/E,. More precise expressions that
take such corrections into account are given in [20] and on the whole have the same struc-
ture.

Using the condition (2), we have:

E
c " Re f,(E")dE’
" mE < | — 2ECY < 22 mEy,
2vE J \/EIZ_I\/EZ_EIZ \/szz—E'z 2vE
E;
Ex
" Re fi(E')dE’
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For the estimation of the integral over the super-high energy region,

o

T(Ez) = J'

E;

Re f,(E")dE'
JE?—1 \/Erz_EzJElz_szz’
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let us use the result of [17], in which it is shown that, for nr-scattering,

Re f,(E')dE’ <1n2 (a%E,) ~  60n** 2
,  dp = —————dy,;
(E')° E, ’ 7 ©

Ez

. is the t-channel D-wave scattering length. Relations of the same type are also valid for
the amplitudes of other processes with similar analytical properties, if only one replaces
@, by the corresponding quantity characterizing the process under consideration (for
example, see [21, 22] on the analogs of &, for mN-scattering).

So, for E, » E we have:

~ T o~ ~ 2E ~
H(E Dt < ﬁR(Ez); R(E,) = 7E, In® (a3E,). “4)
We are still to consider
Ey
Re f(E"YdE’ id ,
I{E,) = = = —— R(E,). 5
(E1) f\/E,z_I JEI_FE?JVE—_E? 2VE (E) )

1

We shall assume that we have the information about Re f,(E’) at “low energies”. i.e.
R(E)) is known from experimental data. Certainly, the absolute bound of the same type
as (4) can be obtained for the integral over “low energies” as well.
T 1
Now, substituting (3)-(5)in (1) and taking into account that F (7 , \/ |- __2.> = In 4v
v
for v> 1, we shall get the searched bound:

7
2In4v

[e,(In E)”' —c,(In E)*+ R(E,)— R(E,)] < 4o(E) < ~—Z—

x [ca(In E)**—c,(In E)"* +R(E,)+ R(E,)]. (6)
Particularly, if v is sufficiently big (v ~ E, « is some constant), then (6) transforms into

R(E)—R(E,)

T
— In EY' '—¢ (ln EY* 1!
2 l:cl( n E) cy(In E) + InE

— n
]< Ao(E) <:2;

X [cz(ln Ey* '—c,(In By "' + RED+ R(EZ)] . )]

InE

Thus, 46(E) = 0if only Re f(E)/EIn E - 0. We see that if Re f,(E’) change substantially
with the passage from E’ < E to E’ > vE (i.e. 7; # 7,), then the effect of suppression of
Ao with respect to Re f,(E)/E is revealed only for rather big intervals of energies. Yet, if
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Re f,(E) does not oscillate violently (for example, if

IninE Ref(E+nE) E InlnE
< . < 14—
inE (E+nE)  Ref(E) InE

b4

where 7 < ¢’ In? E; ¢, ¢’ are constants), then the bounds of the type of double inequality
(7) are valid for the fixed values of v.

Let us note also that, in accordance with (4), the contribution of R(E,) in the inequali-
ties (6), (7) is unessential regardless of the behaviour of Re f(E’) for E’ > vE if only
E, > vE(In E)* ™72, Analogously, the contribution of £’ < E/(In E)* 7' is unessential as
well. Thus, the behaviour of Aa(E’) in the interval (E, vE) is essentially influenced only
by the behaviour of Re f,(E’) in the interval

E

(wln—E')E:;‘ < E' < VE(In E)-Z—yz. (8)

It is also interesting to note the following consequence of the relation (1):
if Re f(E')/E’ increases monotonously, then 4o(E) < 0; and if Re f,(E')/E’ monotonously
decreases, then Ac(E) > 0.

So we see that for any y, and y, the nontrivial bounds on 4¢(E’) exist in the interval
(E, vE) with arbitrary value of E (as was alrcady mentioned above, the rejection of the
condition £ > | only makes the expressions somewhat more complicated, but does not
change them principally [20]). These bounds are the best of those that can be obtained only
from analyticity in E and crossing-symmetry (the inequalities (6), (7) transform into equali-
ties with the saturation of the condition (2) for Re f,(E")).

It should be stressed that the obtained double inequalities include both the classical
Pomeranchuk theorem and its various generalizations as particular cases for E — oo.
For instance, if the condition (2) is replaced by [Re £(E')| < ¢cE'(InE’) for E' — oo,
then (7) transforms into

|40(E)| < —2”—0- (In Eyr 1.
o

In particular, if 6.(E") — ¢, 0.(E') > ¢. and Re f(E')}E'InE’ — 0 for E' — 0, then
Cy = (-,

3. Finite energy analogs of the inverse Pomeranchuk theorem

In this section we will consider the finite energy analog of the inverse Pomeranchuk
theorem, that is we will obtain the bound on Re f,(E) with the given restriction of the growth
of 46(E’), i.e. Im f,(E").

The base for the deriving of the searched bound is the analog of the relation (1) that
can be obtained by consideration of the integral

J’ JAENAE’
(E')Z\/E'Z—EZ\/E'z—szz‘

C
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The Cauchy theorem and the crossing-symmetry condition lead to the necessary equality:

vE

f Re f,(E')dE’

. (E')Z \/Efz_i‘é \/sz'z':—ETz
E o

~ f Im /,(E')dE’ J Im f,(E')E' LO
J(EVVE-E?VE-E? ) (EVVE?-EVE?-vE? DE

The last term in (9) appears because the integrated expression has a pole at E’ = 0. It is clear
that the contribution of the pole term in (9) is unessential for sufficiently large values of E.
Let us assume that the following condition is fulfilled in the interval £, < E' <E,:

c(ln E')’t < 4o(E') < cy(In E')™, (10)

Then the estimations of integrals on the right-hand side of the relation (2) give us (for the
sake of simplicity we assume again E, > vE> E > E,; more precise estimations for
arbitrary values of parameters can be found in [20]):

E;
LB < ImJEME 2 ngy,
viE? (E')Z JE?—E? \/E'z—szz viE
vE
E
2E Im f,(E")dE’ c 2E
—cl—l In —(n E)y"* < | — SE) < -2~2- In -— (In E)™.
vE E, (E')2 N/Ez_Eaz \/szz_Elz vE E,

E,

For the rough estimation of the integral over the region of super-high energies (precise
estimation is not necessary because the contribution of asymptotic energies in (9) is strongly
supressed) it is sufficient to make use of the Froissart bound which is valid at finite energies

E
as well as at asymptotic ones [22, 23], i.e. [do(E’)| < nIn? - For the definition of E,
0

in the finite energy bounds on total cross sections of some processes see for example [21-23].
Using the Froissart bound, we will have the following estimation:

Im f,(E’)dE’ 1 .
<_‘EA(E2)5
; (E')2 \/Efz__Ez\/Elz_szz vE
~ wE? [ /e E,\
A(E,)) = —5 |1 . 11
(E2) 2E§(n E) (n

As regards the integral over the region of low energies (from the threshold to the E,),
we will assume that its value is known from the available data on the total cross sections
(of course, the estimations of the type (4) or (11) can be obtained for this integral as well).
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Uniting the integral over the “low energies” with the pole term in (9) which has the
similar dependence of E for E> 1, let us denote:

Ey

Im f,(E')dE’ a0 1
- 7 = —3 A(Ey). 12)
(E')2 \/EZ—E'Z \/szz_Elz 2vE vE
1
Writing out the left-hand side of (9) as
vE
J’ Re f(E")dE’ _mRe SAE)
(EVVE?-E* JVE*—E?  2E'E ’
E

we obtain that the searched bound on Re £,(E) has the following form (if Ac(E’) satisfies the
condition (10)):

2E

: [ (In E)"' —c, In 3— (In E)"*— A(E,)— A(EZ):] < Re f(E)

2E[ec, ) 2E -
< — —v—(ln Ey*—c¢,In £ (In EY"—A(E)+A(E) . (13)
n 1

Let us note that if v is sufficiently large ((v >

2| (n Eyr> 7" 1) , then the upper

bound on Re f,(E) is determined in fact only by the’ values of ¢;,y; —i.e. by the lower
bound on 4g. And the lower bound on Re j;(E) is determined by the upper bound on A¢

(by the values of c,, y,), if only v> (ln Ey Tt

1
Considering the contributions of dlfferent terms in (13), it is also clearly seen that the

term A(E;) is practically of no importance if £, > ./vE(ln E)*~"/2, and the term A(E;)
is negligible with respect to the others for E; < |/ E. It means in practice that the behaviour
of Re f,(E’) in the interval (E, vE) is influenced only by the behaviour of 46/E’) in the interval

VE < E' < JVE(ln E)' "2, (14)

4. Inegualities for real and imaginary parts of symmetric amplitude

Up to this point we considered only the antisymmetric amplitude. But it is quite clear
that the bounds on the symmetric amplitude (which satisfies the crossing-symmetry condi-
tion f,(—E’+10) = f*(E’' +i0)) can be obtained by the same method. Not dwelling on the
intermediate calculations that are absolutely analogous to those previously carried out,
let us give the final bounds for the case E, » vE>» E > E, (detailed proofs and corrections
of the order of 1/InE, 1/v?, E,/E, EJE, are given in [20]).

If the condition

¢ (INEY* < 6(E') = 6,(E+0_(E') < cy(in E')"
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is fulfilled for E, < E' < E,, then

nE [ei(In E)"*—c,y(In E)*+ A(E,)— A,(E,)] < Re fi(E)
2In4y
< nE [co(In EY*—c,(In E)"*+ A(E 1)+ES(E2)]. (15)
21In4y

If for E, < E' < E,:
¢:E'(In E')"* < Re f(E") < ¢,E'(In E')",

then

2 2E €y ~ —
—|aln - (InE)"——(n Ey*—Ry(E{)—R((E,) | < o(E)

2 2E ¢ -
< — [cz iIn — (In E)”*— —(In E)"—RS(E1)+RS(E2):| . (16)
n E, v

The quantities 4(E,), A(E,) and R(E,), R(E. ,) are defined and estimated in the same way
as A(E,), A(E,) and R(E,), R(E,) (see expressions (11), (12) and (4), (5)), but for the sym-
metric amplitude only. As in the case of the bounds on f,(E), the contribution of A(E;)
and A(E,) in (15) is unessential if E; and E, are outside the interval (8), and the contribu-
tion of R(E,) and R(E,) in the double inequality (16) is negligible if only E, and E, are
outside the interval (14).

Let us also note that one must always remember that ¢ (E") > 0. So, if the left-hand
side in (16) becomes negative (for example, if ¢; < 0, ¢, > 0), then actually there is only
upper bound on o(E), and the lower bound must be replaced by zero.

5. Conclusion

The obtained inequalities show that nontrivial bounds connecting the behaviours
of real and imaginary parts of both antisymmetric and symmetric amplitudes exist for the
broad class of scattering processes, amplitudes of which are analytic in energy in the upper
half-plane. Furthermore, the inequality that restricts the growth of Re f,(E) has the form
analogous with the bound on Im f£,(E); and the bound on Im f(E) has the structure similar
with the bound on Re £,(E). Let us also stress that all obtained bounds are the optimal
ones, i.e. they cannot be improved essentially without use of some additional information
besides the analyticity in E and the crossing-symmetry (the only improvement that can be
done without additional assumptions is the calculations of the corrections of the order of
1/In'E, 1/v*, E,/E, E/E, ; such corrections are given in {20}, and they do not change the general
structure of the final inequalities).

In conclusion, let us give the brief discussion of the possibility to use the method
of this paper for the processes for which analyticity of scattering amplitudes in the whole
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upper E-half-plane is not proved (for example one of such processes is the nucleon-nucleon
scattering).

It has been shown in {24] that the amplitude of the arbitrary process of scattering of
particles with nonzero masses is analytic in energy in the whole upper half-plane with the
only possible exception of a certain domain D of finite extension in the vicinity of the co-
ordinate origin. The amplitude is analytic also in a certain vicinity of each physical point.

Thus, if we substitute the interval (—1, 1) of the contour C by the contour C’ that goes
in the upper half-plane around the domain of nonanalyticity D, then the relations of the
type (1), (9) will remain practically unchanged. The only change of the integral relations
will be addition of one more term, that corresponds to the integration over C’. For example,
the additional term for the relation (1) will be as follows:

G )

Unfortunately, one cannot say anything about concrete extension of the domain
D and, consequently, about the length of the contour C’. They are finite — that is all that
is known. Therefore, it is difficult to determine the value of the terms of the type (17) and
their contributions to the final inequalities. But the contribution of the terms corresponding
to the integration over the contour C’ decreases proportionally to E-? for sufficiently large
values of E. So, the contributions of such terms can be neglected at sufficiently high energies,
and the bounds (6), (7), (13), (15), (16) remain valid.
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