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We have made a semiclassical quantization of solitary wave solutions in the coupled
Lund-Regge model. The basic technique of calculation is that of functional integration.
The energy levels are deduced corresponding to the periodic boundary conditions. Due to the
differential geometric origin of the model, the quantum version may be thought of as a two-
-dimensional model of quantum gravity.

PACS numbers: 11.10.Lm

In recent times, many nonlinear systems in two dimensions have been seen to be
completely integrable by means of the inverse scattering technique [1]. Due to the manifesta-
tion of nonlinearity in many branches of natural science, the concept of soliton is finding
application in these areas aiso. But to explain many microscopic properties sometimes
we need the quantum version of such nonlinear systems [2]. Since the search for the canon-
ical variables is different for a nonlinear system, the most general approach is that of
functional or path integral initiated by Dashen and Neveu [3]. In this paper we consider
the quantization of the soliton like configurations in a coupled Lund-Regge system [4]
solvable by inverse scattering transform (IST).

Introduction

The equations under consideration were [4],
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These equations have been shown to be completely integrable with the help of IST. But
a more elegant and algebraic approach has been invented by Ueno [5] and Date [6],
which is called a direct method. The spirit of the method is the same as that of Krichever’s
{71 approach to the ecoidal waves. Since we shall be following this second line of thinking
in the construction of the exact solutions, we shall devote a few words to this technique.

Equation (1) is seen to be the compatibility condition between the following linear

equations:
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where k is the cigenvalue and
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The copstruction of a soliton solution proceeds through the explicit realization of the
eigenfunction Y in the form:
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where a;, ¢; are arbitrary complex constants. Further on it will be seen that c; are propor-
tional to the amplitudes of solitons. The above equations hold for allj = 1,2 ... N. Further-
more the constants «; are proportional to the speed of the solitons.
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For the two-soliton solution, the matrix Y is written in the form

1}:(1 0)+( Y11 y::)k—1+( Yio .V;o>k—2
0 1 —Y21 Yn —Y20 JYio
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and for the l-soliton case
& k+yio Y30 )
Y = . 8
('3’20 k+yio ®)
For the 2-soliton situation, one of the degeneracy conditions written in full is
af+o, ¥+t Yo Yiot+ Vo &0 1 _
2, % * —0 =0 9
—Y21%;1— Y20 ay v Fyie/\0 e —cy,
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The complementary condition is

(“Tz"f'“z.vu +Y10 }’§0+Y§1“T . )(eo‘t 0 . )(CT) =0 (10)
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Equations similar to (9) and (10) car be obtained for ¥ ?(a;) and Y2(a}) corresponding
i ] .
to 0, = ?<125+ _’7_); 0% = %(a’;&f + i*) Usually the degeneracy conditions lead
o, 24
to two sets of four coupled linear equations for y;; and y};, which can be solved by Cramer’s
rule. One such set is

with

(e +atyys1+ 100 —cy(¥312 +y30)e ' =0
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for the two-soliton sectors whose explicit solutions have ‘been presented in equation (12).
Then, the soliton solutions for the fields u and v are written as:

U’xo[z-%ymlz

CoOsS U = —ap— (11a)
Y1012 +1¥201?
and
io _: 2}’:0.)’20
€ SMmuU = — —5 5,
[¥10l” + ¥20i
v = —ilog(y20¥30) " (11b)

The number of solitons depends on the number of terms kept in the series for Yk, &, 7).

The semi-classical approach

In the semi-classical approach to quantization, it is customary to construct the fluctua-
tions about the classical solutions %, v ; and then to evaluate the functional integral of
e over these. For the construction of the fluctuations around the classical solutions,
we may set ¥ = u,+06, v = v,+v and lineatize around u_, and v,. Here, we follow a cele-
brated technique followed by almost all the authors for the evaluation of the fluctuations
around a soliton solution. Such a procedure tacitly exploits the complete integrability
of the system. The basic idea is simple. Since the N-soliton solution is obtained when N
pairs of parameters a, c; are taken, therefore we denote such a soliton solution as
€os u{a €y, 0yC,, ..., 0txcy) and ooy, 0,05, ..., dycy) Which satisfies the nonlinear equation
for all values of these parameters. Furthermore, the solution constructed in equations (10)
and (11, 12) with two such sets of parameters (x,, ¢;) and (a5, ¢;) reduces immediately
to one soliton solution as ¢, is set to zero.

So, if we can say that both cos u(x,c;, a5c;) and (e, ¢y, a,c;) are solutions for all
values of ¢,, then they are solutions for small values of ¢, also. But when we expand a general
solution around the one soliton solution cos u(x,, ¢;) and v(«,, ¢;) and want an explicit
realization of these fluctuations, then one possible way is to get a two-soliton solution and
expand in the parameters pertaining to the second one. Actually it can be demonstrated
that a fluctuation constructed in such a manner does solve the differential equation obtained
by linearization about the one-soliton solution. So that in fact we are using the idea that
a small deformation of any soliton solution is a solution of the fluctuation equation.
Further details of this method can be found in the works of Dashen, Hasslacher, Neveu,
Maillet and de Vega [8]. But here we may exploit the complete integrability of the system
(1) to construct a two-soliton solution and then expand in the second parameter up to
the first order to construct ¢ and v, instead of solving the linearized equations.

The elements y,¢, 70, 20, V30 Pertaining to the two soliton solution are:

Do . D D, . D3
= — ) W e—— = —; T 12
V1o D’ Yio D’ Yao D Y20 D (12)
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where
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where f, = €%, f, = €%, with similar expressions for D,,, D3, and D7,. Here the important
point is to note that (a;, 04, ¢;) and («, 6, ¢,) respectively refer to the two-soliton. It can
be shown that if ¢, = ¢3 = 0 the Y’s revert back to their corresponding values for the
1-soliton case. Expanding each of these determinants around ¢, = ¢y = 0 up to the first
order, we obtain the linearized forms of y;; which will yield via formulae (11a) and (11b)
the fluctuations around the classical solutions in the following form:

cos u & (cos u)s+Pc,+Qc; = (cos u)y,+a (14)
where (cos u),, represents the one-soliton solution for the u field and P, Q are given as

* * * %
_ 261(CX1 —'“1) (“2_“2) (al -—-0(2) ez(olt—ez)
2

P =
(oty — ) (o] —03)aay
0=— 2cl(‘xl —af) (“2—“;‘) (“1 _a:) ez(ez*—el) (15)
(oty —a) (0% — “:)%“Z
For the field v we obtain
v = v;,+Re,+ Sc (16)
v,, Tepresents the one-soliton solution corresponding to the field v.
R = —i al(aZ_a’;) (af _aZ) ez(gl_oz)
1050y — ay) (e = o3) ’
* %* *
S =i al(aZ_aZ) (al _al) _2(91*_02t). (17)

CTO‘;(CM —“T) (“T —t3)

Now, the spectrum of the system is obtained from the poles of the propagator [8].

0

1 . .
—E) = inT tr (™ HT)e'ET,
0

G(E)=tr (H
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In the semi-classical approximation tr (e~**") is given as a sum over the stationary phase
points which are periodic in time. The important saddle point configurations are the one-
~soliton solutions (cos #),, and v,,. The Lagrangian for the system is written as

I—cos u
= %Jdédn {ugu,,——2(1 +cos u)+ r— %U"}.

Ccos u

Introducing the fluctuations and retaining only up to quadratic terms, we can represent
tr (¢ *#7) as Gaussian integral over fluctuations and we get an expression of tr (e”*#T)
in the form:

tr (e—iHT) - Z ei!so(det Dh‘)—l/Z’ (18)

so being the value of the action for the one-soliton solution. The quadratic part is the
fluctuation o, v is written as:

D, = { {6D 6 +40D,0+vD,0}dédn, (19)
where D,, D,, D, are defined through
1

2uquy, 1

D, = 02— Ox— o
! 1—u? ~ (1—~uf)2 *ol-utt
+2 Ul u%r"—u%x fo“uft
(I—u}? ™" (A-ud®  (A+uy)’
Usx Uy n
D, = = 3}
27 (1+uy)? (1+u)® *
o l-uy 1wy, 2u,, 2u,,

D, (20)

T ldu, T w5 (u® Y (AFug)?

where the coefficients are to be determined by the one-soliton solutions u,, v,.
The actual evaluation of the determinant is done with the help of the stability angles

¢;and the periodicity condition. Now the periodicity condition for the fluctuations in a finite

length of dimension L is

(af —ay)L+20+25, = 2nn 1)
where
2i8, = log “1(“2"“? (oF ““:) . 1_
ayay —ap) (2, —az) ¢
and
(o, —ay)L 420426, = 2mn (22)
with

(2, -a3) |

2i6, = log —
z “2(‘11_0“1‘) ¢y
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where m and n are integers running over 0, 1, 2 ... etc. From the asymptotic expressions
of the fluctuations ¢ and v as t —» +oo we find that

Lot 2y (L 12
P e o e n E., = — — o
T\, o a T\ o o

where the index j stands for the j-th value of «,, a} to be determined from the equations
(21) and (22).

Now, by a suitable linear transformation it is possible to diagonalize the quadratic
form in Egs. (19, 20); so that the determinant factorizes and is equal to

N M
D=([1¢1]]e)
j=1 it

N M

or, logD = Y loge;+ Y loge; where the summations are to be performed over these
ji=1 i=1

values of a,, af determined in a set of discrete forms from equations (15) and (16). This
discretization of the energy values is actually the first step to quantization. But ip reality
the sum over (i, j) referred to above is a divergent one and needs a proper renormalization
by subtracting the vacuum energy. Such considerations and other details will be the subject
matter of another communication.
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