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I discuss the generation of quanfum composite operators in two and higher dimensions.
In two dimensions the problem is discussed in detail, and the supergravity fields, trivial at the
beginning, acquire the status of independent fields, non trivial feawures being obtained as
a consequence. In higher dimensions we are led to non compact symmetry groups when
dealing with supergravity. The symmetry SU(p, q) is discussed; quantization presents several
problems. In one case, p = ¢, it is possible to obtain a prescription leading to finite results,
with a quantization procedure breaking the symmetry to SU(p) ® SU(g).

PACS numbers: 11.30.Pb

1. Introduction

Supergravity has been very much studied in the last few years, and it is believed to
accommodate in a natural way a quantum theory of gravitation {1] — albeit not renormali-
zable. In order to achieve renormalizability it will be possibly necessary to search for
extended objects, like superstrings [2]. However N = 8 supergravity is quantum mechan-
ically well defined (possibly finite up to 7 loops), being consequently worthwhile to be
studied as a relevant theory for a broad variety of physical processes. Nevertheless, it
is well known [3] that the SO(8) symmetry present in supergravity does not accommodate
the known spectrum, described at low energy by SU(3)®@SU2)@U(1). To further extend
the group SO(8), we must introduce undesirable higher spin fields, and enlarge the number
of gravitons. One possible solution to this problem is the preonic picture, namely, the
observed particles are bound states of fundamental preons [9]. In this case composite
fields acquire the status of independent fields, as in the case of 2 dimensional CPY ™!
models [4], where the gauge field is originally a composite operator, but in the end acquires
an independent dynamics.

In four dimensions this mechanism is spoiled by ultraviolet divergences, and new
counterterms should be added. Those counterterms are kinetic terms for the composite
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field. Consequently, the composite fields should have to be independent from the beginning,
i.e. elementary, in order to the theory be defined at all! However, there is some hope to
define these bound states in the case of supergravity, due to the non compact character
of the symmetry group [5].

In order to get some insight into the problem, two dimensional supergravity is con-
sidered as a toy model. Notice that classically this is a trivial theory. This part of the work
was done in collaboration with R. S. Jasinschi [6].

Afterwards a model with indefinite metric fields is considered, and the quantization
procedure discussed {7, 8, 111].

2. Generation of dynamics for non dynamical fields!

We consider now a real multiplet interacting with supergravity fields. Although these
are trivial in 2 dimensions, i.e. their kinetic part is either a total divergence (the Gauss-
-Bonnet theorem) or identically zero, we shall derive some interesting results in the quantum

theory.
We consider the following Lagrangian of an O(N) supersymmetric multiplet (¢;, v;)
interacting via o-model like interaction, and also with G, and e [6]

e f dzxe{ ™0, b0+ — POy

+Py"9"0,0:G,— % PGy G, +5 (Biy) } 2.1
i=1,..,N, ¢?=Y¢}=1, wvp; =0, e=detel.

The above Lagrangian has the following symmetries:
1) Local supersymmetry (¢ = &)

0¢; = ey, (2.2a)
oy; = —i[0,0:+ Gy e +3 ¢y, (2.2b)
deb = 2iGrye, {2.2¢c)
6G, = —D,e. 2.d)
2) (Super) Weyl symmetry
p—=> A" 1/21/) (2.33)
¢, — ¢ (2.3b)

! This part of the present work was done in collaboration with R. S. Jasinschi.
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G, - A'%G, (2.30)
e, - Aey, (2.3d)
G, — G,+7,L. (2.4)

The classical invariances (2.2, 3,4) are enough to eliminate completely the fields
e, and Gj,. The equations of motion give rise to a “string-like” picture.

However, quantum corrections generate a mass for the fields ¢; and y;, breaking
the Weyl symmetry. This implies that e; and G, can no longer be eliminated from the
theory! In fact, the quantum corrections with a finite mass for ¢; and y; generate non
trivial propagators for G, and e}, through the graphs shown in Fig. 1. All these properties
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Fig. 1. Graphs with external wavy lines (a and b) correspond to the gravitino 2 point function (2.8a), the
others (¢, d and €) contribute to the graviton 2 point function (2.8b)

can be verified using a path integration of the problem, introducing Lagrange multipliers,
and the Gross-Neveu trick to have a Lagrangian quadratic in the fields ¢; and y;, inte-
grating them afterwards. The path integral just before integrating these fields is

2(J,...) = N | 9¢D9pDeDPDcDcDG ,De exp | d’xe
_ i v
X {—% PApgd—73 PAryp+ m Pilc+y'G0,1:

1 . iJ/Na i
+ 5——\/—1_\7 & -Gy v'o,—cly;— T N +source terms} s 2.5)
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where

4y = ,,(e" e"“eav)— (2.6a)

\/f i
dg = y*0,+ —— B+ = G,y'Y*G,. 2.6b
F=7 oy G (2.6b)
Integration of ¢; and y; gives rise to an effective action for the other fields. Most
important is the fact that auxiliary fields f and « acquire a nonzero vacuum expectation
value, generating a mass for ¢; and y;. In terms of the cut-off A, the generated mass is
given by:

1 1. A?
—In —5. X))

2f 47 m
This is the most important feature of the model, since the graviton and gravitino
multipoint functions are only non zero due to the mass m. The Feynman rules can be read
straightforwardly from (2.5) and (2.6), and the graphs in Fig. 1 readily calculated from the
lowest order expansion of (2.5/6) in powers of 1/N for the gravitino two graviton/gravitino
two point functions.
The results are

—TE 2 '2__4 2
£, = o { [P T oL
4 \/p‘°‘—\/p2—4m2

2m* -4
+2nim { “_m* Vo e —dm? } PLIZQ , (2.8a)
\/p (p*—4m? \/p —\/p —4m?) P
e inm*nin’ \/ PP+ p?—am?

F 7 2.8b)
SR ) N (

We note that one propagator has a pole at zero momentum. In two dimensions,
massless gauge fields confine [9], and in the present case this possibly means that all degrees
of freedom are confined, and banished from the physical spectrum. Whether this is related
to the spontaneous compactification of Kaluza-Klein theories [10], or superstrings [2],
is an open question that should rather be answered in the context of O(D —1, 1) symmetry,

instead of O(N). Notice also in the above expressions, that they would be zero if the gen-
erated mass were zero.

3. Non compact symmetries and higher dimensions

Generalization of the methods shown in the last section for higher dimensions is
barred by difficulties. The determinant of the Laplacian, respectively Dirac operator is
ambiguous, since several new non trivial divergences occur. In the case of the CP¥ !
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model in 4 dimensions, a counterterm Lagrangian
&L = AFZ, 3.1

is required. This is a reminiscent from the non-renormalizability, since such a term did
not exist in the oirginal Lagrangian. If we simply sum it to the original Lagrangidn, this
means giving the gauge field 4, the status of an independent field from the beginning
spoiling its interpretation as a bound state of the partons, i.e. a generated gauge field.

Recently there has been some discussion whether the above illness of those nonlinear
theories could be cured in the case of fields with non compact symmetry [7, 8, 11] assigning
a suitable quantization condition for the negative metric field, in such a way that the coun-
terterm Lagrangian (3.1) has a finite coefficient, being not necessary to be taken into account.
Such procedure is achieved by performing path integration with negative metric fields being
treated as ghost fields; the determinant coming from Gaussian integration appears to the
positive (negative) instead of negative (positive) power for boson (fermion) fields. Namely,
if ¢4, ¥, are the usual boson, fermion fields, and ¢., .. the negative metric counterparts

§ D¢ exp(—¢.Ddy) = (det D)™ /2, (3.2a)
§ D¢ exp (+¢_Dp_) = (det D)* /2, (3.2b)
§ 2y, exp(—v.Dy,) = (det D)''?, (3.32)
[ Dy_exp(+yp_Dy_) = (det D)~ "% (3.3b)

This can be achieved assigning opposite iz prescription to the negative metric fields. It
can be argued that this is the way to have a well defined path integral in the Minkowski
space time.

If we trace this procedure back to the canonical quantization procedure, this means
that the role of creation and anihilation operators for the negative metric field is inter-
changed. Defining

3
¢_(x) = J ~_fi_—k_ [a-_(k)e * +aZ(k)e™] (3.4
N (2n)*20,
we define the vacuum by
at(k)|0)> = 0. (3.5)

The Fock space is generated by applying polynomials of a-(k) to the above vacuum.
With the above procedure we can calculate the Feynman propagator, obtaining

d*k i

iAF-(x) = (2”)4 kz_mz—is

eikx ( 3 6)
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instead of

idp,(x) = il LA (3.7
AT N om® k—mP+ie D

1t can be shown also that [7}:
1) The Hamiltonian is positive definite, in the sense that its eigenvalues are all non-nega-
tive.
2) The negative metric fields have indeed a negative norm,

If the fields are in a (fundamental) representation of, say SU(p, ¢), then we can cal-
culate the corresponding charges, and verify that some of them do not annihilate the
vacuum, and that the actual symmetry is SU(p)®SU(g) instead.

4. Discussion

The preceding discussion shows that two possible ways of quantizing the negative
metric fields exist. In one of them we have to deal with negative metric fields. On the
other the non compact symmetry is broken to the maximal compact subgroup. In our
opinion there is no way to distinguish both theories, and both can be equally used to de-
scribe the theory.

The first case has been used to quantize the 2 dimensional O(n, 1) nonlinear ¢ model
[12]. Choosing the sign of the coupling constant it is possible to generate a mass to the
fundamental fields [12]; the quantum non local charge can be defined [13], and is anomaly
free [14]. Since the fields are massive, asymptotic states are well defined objects, and the
in and out non local charges are defined, and equal. Their equality implies that the quantum
S matrix is well defined [15]. It was also discussed recently. The negative metric fields
must -be somehow interpreted in order that the theory has a meaning.

In 2 dimensions the above sign of the coupling constant is possibly the only physically
relevant region for this problem, since infrared divergences prevent us to have a well
defined theory out of massless boson fields. However, in higher dimensions the situation
allows more freedom, and we can choose one of the quantization procedures without
further problems.

The best property of the symmetry (8) breaking quantization prescription is the possi-
bility that divergences can be cancelled in the case, where the number of positive and nega-
tive metric fields is the same as in Grassmanian models SU(p, p)/S(U(p)®U(p)).

In that case, with a Lagrangian density

= tr {D,ZD,Z+o(ZZ 1)},
DZ=0,Z—ZA,

we can integrate the Z fields obtaining an effective action for the 4, and « fields, which.
is finite, provided [8]:

1) we use the symmetry breaking quantlzatlon procedure, and

2) we assign different bare masses to the positive and negative metric fields.
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In a low energy approximation the effective action for the 4, field, after integration
over 2Z’s, reads [8]:
1

2
L=t

Lo
where e = — In —5—, finite!
T mo
As an output one obtains a gauge theory in the low energy approximation.
If we insist in the symmetric phase, we have to deal with a non-renormalizable theory.
In particular one needs a counterterm of the form £, = C(A)F,fv in order to cancel the
divergences. This spoils the physical picture of having a generated gauge boson A4, since

now we have to include a free Lagrangian for it.

I wish to thank Dr. M.C.B. Abdalla for discussions on non compact symmetries,
and Dr. R. S. Jasinschi for the collaboration in part 2 of this work. Financial support
was given by Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP).

Editorial note. This article was prooftead by the editors only, not by the author.
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