Vol. B17 (1986) ACTA PHYSICA POLONICA No 2

SYMMETRY BREAKING IN GRAVITY INDUCED
SUPERPOTENTIAL
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The portion of the Nanopoulos-Srednicki superpotential which yields desired symmetry
breaking is generalized to include terms proportional to Tr 4* and (Tr 4%)?. We show
that the usual symmetry breaking scheme stays unaltered by addition of such terms. In
particular we can generate a symmetry breaking SU(5) — SU(3) x SU(2) x U(1), if we intro-
duce realizable restrictions on parameters associated with the terms.

PACS numbers: 11.30.Pb

In a recent paper Choudhury [1] extended gravity induced superpotential introduced
by Nanopoulos and Srednicki [2] and checked the validity of the symmetry breaking
schemes SU(5) — SU(4) x U(1) and SU(5) — SURB) x SU2) x U(1). As was pointed out
there, the addition of a term of the form Tr A4*, where A is the adjoint 24-representation
of SU(5) used for the symmetry breaking purpose, does not automatically guarantee the
intended breaking and has to be checked individually. With a term proportional to Tr 4%,
assumed to be generated by the influence of gravity, this scheme works perfectly. But
unfortunately this is not the only term of fourth power in A% the potential can have. In
addition to Tr 4%, we can also introduce a term proportional to (Tr 42)2. In this short
note we want to show that even in this generalization, the symmetry schemes remain
intact.

The portion of the superpotential which is relevant to the symmetry breaking and
contains the most general superposition of terms upto the fourth power of the adjoint
24-representation of SU(5), A%, is given by the SU(5) invariant expression

v = (Ao Tr A2+@)A, Tr A3+(D)A, Tr A*+(2)A5(Tr 4%, ¢))

where the last term is the new additional one.
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As was indicated by Witten [3], the conditions which have to be satisfied to get the
vacuum expectation values of the fields by minimizing v with respect to them are

o) ov(P) 0 5
v = = N )
o 2%, @
and

K, = ®,T50" =0, 3)

where T2, are the generators of the gauge group.

The extremum of v obtained from Eq. (2), along with the restriction that A4%; must
be traceless, determines the condition when SU(5) is going to stay intact or is going to be
broken. Using Eq. (2) we get

(Ao+4s Tr AN AP, +1,(4%,47,— (36", Tr A7) 4P,
+2,(4%,4%,47,— (D, Tr A 4%, = 0. 4y

To check for conditions of retention or breaking of the symmetry, we only need to look
for diagonal solutions of 4?,. We assume

AP, = cp0”,. 5)
Eq. (4) then yields
{(AoAsky)cg+Ay(cae,—ky[S)+ Aa(cpes —ko/5)}6%, = 0, (6>
where
k, =TrA*> and k,=TrA4> 7

For o = B, the following condition must be satisfied:
(Ao+Ask )es+A,(ch—k[5)+A,(c; —k,[5) = 0. (8)

Eq. (7) is quite complicated to solve in general because of the dependence of k; and k,
on ¢.’s. But since we are only interested in finding out whether A?, possesses the forms
pertinent to the symmetry breaking, we will just check whether such solutions are realizable.
If weset ¢, = ¢, = ¢3 = ¢4 = ¢5 = ¢, we get k, = 5¢%, k, = 5¢, and the Eq. (8)

yields
(Ao+523¢%)c = 0, )

hence either ¢ = 0 or ¢ = +i \/Ao/(5,13). For both cases the symmetry stays intact.

If we look for the symmetry breaking case SU(5) — SU(4) x U(1), we have to set
€, = ¢, =3 =cy = cand cs = —4c in Eq. (8). In this case k, = 20¢? and k, = —60c>.
Eq. (8) changes into

Aoc—3A;e2+ (132, 4+204,)c® = 0. (10
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Since we are not looking for a solution ¢ = 0, we find

30+ V913 — A6(131, +204,) "
h 2(134,+204;) ’ (1)

If we set
912 —25(134,+204,) = 0, 12)

we get an unique c¢. Thus for a reasonable 4,’s, we can achieve such c¢. This indicates that
the symmetry breaking SU(5) — SU(4) x U(1) can be achieved with our extended super-
potential.

To look for the existence of the important symmetry breaking scheme SU(5) — SU(3)
xSU@R)x U(l), we set ¢; = ¢; = ¢3 = ¢ and ¢, = ¢5s = —(3/2)c in Eq. (8). In this case
k, = (15/2) ¢ and k, = —(15/4) c®. We obtain

AoC— (DA +(TAr/h+(EDAs3)c® = 0. (13)
Since we are not looking for the solution of the type ¢ = 0, we find

440 —22 ¢+ (TAy+3043)c% = 0, (14)

or

2, + V442 —1644(7A, +3043)
CcC =
2(Ti, +304;)

(15)

If we choose
443 —164¢(74,+3043) = 0 (16)

we get real ¢ = A,/(74,+304;) provided all A;’s are real. Therefore we see, we can achieve
a realizable symmetry breaking SU(5) — SU(3) x SU(2) x U(1) if we demand that the 4,’s
should satisfy the constraint Eq. (16).

We have thus shown that the additional term (Tr 42)* does not disturb the symmetry
breaking pattern. As we have mentioned earlier that the inclusion of this term makes
v of Eq. (1), the most general potential with terms proportional upto the fourth power of 4°,.

It would be quite interesting to study, whether potentials with arbitrary power n of
the adjoint representation 4#, could retain similar symmetry breaking schemes. Work is
already in progress along this line.
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