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Quantum gluon corrections to the static properties of hadrons are calculated within
the framework of quark bag model using noncovariant perturbation theory. As an example
baryon magnetic moments are considered. Comparison of quantum and classical approaches
is given.
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Introduction

It is well known at present that static properties of hadrons measured experimentally
differ from predictions of additive quark model. These deviations appear in the phenomeno-
logical constituent quark model as well as in the bag model. Thus, for instance, the value
of g, for transition n — p predicted by the bag model is equal to 1.09 while experimentally
ga ~ 1.25; the difference between experimental values of magnetic moments and additive
quark model predictions is of the order of 0.2-0.3 n.m., that is 10-207;, even if anomalous
magnetic moments of quarks p,, Ug, 1, are considered as free phenomenological parameters.
This difference is probably due to:1) quark interactions described in ag;-approximation,
where o, — constant of strong interaction; 2) presence of m-meson clouds.

It is certainly interesting to find out whether it is possible to explain this difference
within the framework of the models [1, 2] mentioned above. This question was discussed
in many papers [1-8]. The problem of baryon magnetic moments was considered also
within the framework of sum rules and other models [9, 10].

In this paper we shall describe calculations of a,-corrections in the bag model. The
results obtained by different authors are contradictory. We will give here the complete
calculation of the corrections to baryon magnetic moments using quantized gluon field.

* Presented at the XXV Cracow School of Theoretical Physics, Zakopane, June 2-14, 1985.
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1. Gluon corrections to magnetic moments of hadrons. Classical method

In this chapter we consider first calculation of magnetic moments treating gluon field
classically as it was done in Ref. [6]. For simplicity anomalous magnetic moments and
masses of quarks are assumed to be zero. This approximation does not change the essence
of the problem and allows one to make description more transparent. We will use the MIT
bag model, however, the results, as will be evident further, have general validity. The method
of calculation which we call classical is the following ore: consider solution of Dirac
equation for a quark in a homogeneous magnetic field

(p—edyy =0, @

satisfying confining boundary condition
iny = y. @
InEq. (1) 4 = —;— Hx7, A, = 0 and H is a small external field. Let us write the solution
in the form y = y,+dy, where y, — solution of free Dirac equation with the boundary
condition (2), corresponding to the ground ls,,, state of quark, and dy — the correction
to the wave function linear in H. Note, that dy also satisfies boundary condition (2).
Next, consider the solution for the gluon field F},, created by color current of quarks
Jji = vy,A%. It can be found by solving Maxwell equations with the confining condition

nF =0

ut opy

at the boundary [2, 11].
In these solutions we also keep terms linear in H. Once F, is known we can find the
energy of the gluon field

a2 __ o2
W=J(£——————) 2(B) av, )

which gives the gluon correction to the mass of a hadron in the presence of magnetic field H.
E°and B®in Eq. (3) are gluoelectric and gluomagnetic fields, respectively. The derivative
— 0W)|oH taken in the limit H — 0 defines the QCD correction of the order of o, = g*/4n
to the magnetic moment of a hadron. It has the form [6]

op = —2a,A Y 10400, A = 0.0406. C)
i*k

Indices i and k correspond to different quarks, Q; — quark charge, 4 — numerical coeffi-
cient depending on quark wave function; o, and A% are understood as matrix elements of
corresponding operators. Let us note that the operator structure of the correction o is
essentially different from that of the “basic” magnetic moment

I-z = qui Qi;i

made of Dirac magnetic moments of quarks.
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In Ref. [6] the Dirac equation has been solved explicitly. Here we will use perturba-
tion theory which allows us to obtain the corrections to the energy linear in H. As is known,
oy is orthogonal to the wave function of the ground state ,. Now let us take into account
that solutions of Dirac equation with positive and negative frequencies satisfying boundary
condition (2) form a complete set of functions.

To find the expansion of dy it is not necessary to know dy explicitly; to do that we
may use the Dirac equation written in the form

. € 4 )
(Eoyo—iVy)oy = — 5 [H x rlywo—0Eyoyo- S

Here E, — the energy of ls,,, state of quark. The structure of the solution up to terms
linear in H could be easily found by multiplying the equation (5) by v, and integrating
over bag volume; here ¢, — solution of Dirac equation for H = 0, o denotes the set of
corresponding quantum numbers. The integral of left hand side of the equation is equal to
Eo [ wlopdV —i [ $,VyopdV. (6)
The integral with V could be rewritten as
—i [ V(@yop)dV +i [ (Vp)ioydV. )
The first integral in expression (7) is reduced to the surface integral
| nip,yoyds

which vanishes because y, and dy satisfy boundary condition (2). The second integral
in expression (7) can be transformed using the Dirac equation and expressed in the form

_Eaj '»”I‘WdV‘
After integration of r.h.s. of Eq. (5) multiplied by y, we obtain the following equation
e o+ (= -
(Eo—Ea)_[ pioydy = ~ > H.[rxwavwodV—éijIwodK (8)
When a = 1s,,, we get the well known result for the linear in H correction for quark

energy

5E = _ﬂoﬁ

where i, — Dirac magnetic moment of quark:

- € |4 _ i
Ho = EJ"XWOY‘PodI'-
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For a # 1s;,, Eq. (8) is reduced to the cquation

e -
—H

—_ 2 ) B
f 'P:‘S'Pdv = E —E J\ rXx ‘T’a?'l’odV, (9)
0 @

which allows one to find expansion for dyp. It is rather obvious that this expansion includes
wave functions corresponding to ns,,, (excluding » = 1) and nd;,, states. The integrals
in r.h.s. of Eq. (9) represent coefficients of expansion of dv. It is seen that expansion of dyp
includes also solutions with negative enecigies. In that case E, = — |E,[.

2. Corrections to magnetic moments in perturbation theory

Let us calculate the correction to magnetic moment of a hadron, taking into account
discrete structure of energy levels for quarks and gluons. It means that we will deal with
states of quarks (antiquarks) and gluons with definite energy and quantum numbers JF.
We will calculate the energy shift in the external magnetic field due to one gluon exchange
within the framework of noncovariant perturbation theory. Thus, the interaction with
external field H as well as emission and absorptior of gluons will be considered as small
perturbations. The correction to the energy which we are interested in is given by formulae
of third oider perturbation theory:

AE_Z Z Jonaehio N (10)
(En—Eo) (Ey—Eo) (En—Eo)’

n

One of the ¥ should be understood as operator of electromagnetic interaction (u), two
others — chromodynamical interaction (v). Index “0” refers to the ground (unperturbed)
state of hadron. The sign prime in Eq. (10) as usually means the abscnce of terms with
m, n = 0. The correction given by Eq. (10) could be described in the language of diagrams
shown in Fig. 1. The diagrams not rendered there can be obtained from diagrams of Fig. 1
by permutation of quark lines. Their contribution will be taken into account by summation
over different quarks. The contribution of each diagram depends on the relative position
of vertices for emission of gluons and photons. As an example we will consider baryons.
It is assumed that initial and final quarks are in the ground ls,,, state.

The diagrams, corresponding to production of qg-pairs (Fig. 2) are equivalent to
diagrams b, e (Fig. 1), in which — E, is substituted for quark energy, where E is the energy
of antiquark.

The presence of the second term in Eq. (10) means that the contribution of diagram
a (Fig. 1) cancels the contribution of similar diagram b (Fig. 1) if the intermediate state
of quark in both diagrams coincides with the ground ls,,, state.

The same reason leads to cancellation of contributions of diagrams g-i (Fig. 1).

Hence we see that only excited states of intermediate quarks as well as all possible
states with negative energies should be taken into account in the diagiams corresponding
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Fig. 2

to gluon exchange between different quarks. Disconnected graphs shown in Fig. 1, g-i, do
not contribute. Note that formally the contribution of a single disconnected diagram is
analogous to the contribution of the diagram a (Fig. 1).

All the conclusions made so far do not depend on the concrete type of interaction
V, and to some extent simplify forthcoming calculations. As it was said initial and final
quarks are in the ground state, therefore gluons in diagrams a-f (Fig. 1) should have
J¥ = 1* and any radial quantum number. It is easy to see that quarks in intermediate
states in diagrams a-f (Fig. 1) can occupy ns,,, (excluding n = 1) or nd;;, (n = 1,2...)
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states, where n — the radial quantum number. When calculating contribution of negative
energy states we have to sum over all possible states allowed by selection rules.

With this observation taken into account the contribution of diagrams describing
gluon exchange between different quarks is given by the first term in Eq. (10). Energies
of quarks, antiquarks and gluons will be denoted as E, E and o, respectively. Indices
n and m will refer now to the states of sepatate quarks, index “0” will correspond to the
ground state. Thus, for example, v7, means matrix element of gluon emission by quark
“a” with simultaneous transition of the quark from state with the energy E, to the state
with the energy E,. Matiix elements of electromagnetic interaction will be denoted as

4 . We will assume also the summation over radial excitations of gluons as well as summa-
tion over color and spin variables of gluons.

Below we write down contributions from diagrams of Fig. 1.

a) E § ' UaOngou;.o
— (w+Em_E0) (Em—'EO)
d) UooUOm mo
w(E,,—Ey)
b) " Vbwtnotho
(w+E,,—Egw
a#b m
¢) “0m mOUOO
(En Eo)w
f) ' quUgOUranO
Zb Z (En—Eo) (0 +E,—Eg)
o) Uoo“0m "o
w(w +E,—Ey)

Here v}, = v, — matrix element of gluon emission without change of quantum numbers
of quark state. Formulae defining contribution of diagrams with antiquarks can be obtained
by substitution E,, & — Eyy Upy = D> U > e Matrix elements u and & are defined
by integrals of the product of wave functions which are solutions of Dirac equation with
negative energy, corresponding to antiquarks.

Total contribution of all diagrams considered is equal to

=22
a¥b m
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~ ~ 1 Up
+ 2V ptioo + Umbmp) —=——— — .
E E D (1)
a¥*bd m

This expression could be rewritten as

- vbév:
AE = -2 o (12)

a#b
v, means the matrix element
ov, = [ P, vy dV + | P00y, dV (13)
in which
' ugm 1;8,,, -
—oy, = — i+ e 7, 14
Y Z Em—Eow ; —En—Eq ¥ (14)
m m

Sy, defines first order correction to the wave function. p*’ and y{™ are solutions of Dirac
equation with positive and negative energies, respectively. It is easy to see that dy coincides
with the linear in H correction to the wave function found in the previous section.

Let us show now that correction for the energy (11) is equal to the correction which
has been calculated classically. It is sufficient to notice that gluon correction to the hadron
mass (including terms which do not depend on H) can be calculated in the following way

.
: l?aU
AE, = — g '}jb_‘ (15)
atb

It is known [2] that the correction found from Eq. (15) coincides with the correction defined
as the energy of the gluon field created by quarks (see Eq. (3)). Substituting v,, calculated
with the wave function yp = y,+3dy, into Eq. (15), we obtain in the approximation linear

in dp
z : o0+ z i 0%
AE, = — - -2 e o (16)

a#b a#b

The second term in this formula gives the shift of gluon correction to the mass caused
by presence of magnetic field; it coincides with the correction AE given by Eq. (12). Note
that in these formulae we took into account only the terms nondiagonal in quarks. In the
next section we will 1eturn to this formula adding terms diagonal in quarks.

The correction to the energy calculated according to Eqgs. (11)-(14) can be represented
in terms of diagrams of the type shown. in Fig. 3. Thick line in this diagram corresponds
to solution of Dirac equation y,+dy with account of terms linear in H; the other lines
correspond to dyp = 0.
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:

Fig. 3

Our consideration allows us to conclude that classical correction to the magnetic moment
corresponds to diagrams of one-gluon exchange, shown in Fig. 1, a-f. Only excited states
of quaiks have to be taken into account as well as all allowed states of antiquark in the
quark propagator.

Up to now we discussed corrections to the magnetic moment connected with one-
-gluon exchange between different quarks. This correction (see Eq. (4)) depends on quantum
numbers, in particular on spin of hadron. Let us consider now contributions of diagrams
k-p (Fig. 1). It is obvious from the beginning that these diagiams lead to renormalization
of absolute values of magnetic moments of separate quaiks

l—Iq = CA‘IO
where 1, — Dirac magnetic moment of a quark. Note that the total contribution of graphs
n, o, p (Fig. 1) vanishes. Therefore corrections to magnetic moments of hadrons consisting
of identical quarks do not depend neither on their quantum numbers nor on number of
quarks, in a sense that taking into account these corrections results in multiplication of
u® by the same factor C, where ;i{>> — magnetic moment of the hadron, calculated ip the

absence of chromodynamical interaction.
Finally the magnetic moment of hadron in a~-approximation is equal to

bp = Cu® 30,4 Y 00, A = 0.0406, an

i#k

where C = 14+ 0(a,); numerical value of A4 corresponds to massless quarks.

3. Comparison with other calculations

Here we will give comparison of the results obtained in previous sections with the
analogous results of some other papers. We guess that this will clarify the question of
validity of approximations used by different authors.

In Ref. [3] corrections to proton and neutron magnetic moment were calculated
nsing a wave function which includes correction of first order of g-constant of chromodynam-
ical interaction. Let us remind briefly the main points of this calculation. One-gluon
exchange is considered as a two-step process: transition from the state 3q into the state
3qG, and backwards. It means that the wave function including terms proportional to
g repiesents superposition of states {3q> and |3qG). The wave function of the state |3qG)
antisymmetrical over quark permutations could be obtained by action of operator yy,A°yG;
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on the state {3q) [3]. Taking into account only ground states ot quarks and gluons it was
obtained [3] that

v? vV
th) = (1— ~——;> 13q>— — 13qG), (18)
w w

3
where ¥V = Y ¢, is the matrix element of the transition 3q — 3qG. The normalization is

a=1

(h'h) = 1. The magnetic moment defined as matrix element (h;;%h) of the operator

3 e - .
Bo= -2—fr><(ww)dV
1s equal to
- y? v?

Here u' = (3qG§ﬁA|3qG>. As it was shown in Ref. [3] for nucleon g’ = 2 i, therefore

2
- . |
Hy = H—3 —5 M. (20)
w
The last formula can be rewritten as
2
- - ve
My = p~%—5 (1)
w

where v is the matrix element of emission of gluon by a single quark. It means that taking

into account the correction due to transitions 3q — 3qG 1esults in multiplication of u by
v? .

the factor 1— % —,-» which does not depend on quantum numbers of hadron. This result
w

could be foreseen. According to previous sections, taking into account only ground states
of quarks and gluons leads to cancellation of their contributions. Nonzero contributions
arise only from graphs k-m (Fig. 1), giving rise to corrections to the magnetic moment
of separate quarks. It is obvious that this correction is proportional to the magnetic mo-
ment of hadron calculated in the zero approximation.

Note, that renormalization of quark magnetic moments is not determired completely
by contributions of ground states of quarks and gluons only. However, this is not essential
for us now. The correction due to the difference of 4’ and g could have been taken into
account using Eq. (16) from the previous section. Let us rewrite it in the form

v? z :vévf
AE, = — —- =2 a4 . 22
£ Ag 4e (22)

a*b
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2
vﬂ . -
Here we added terms diagonal in quarks, -;- ik Ae means difference of energies of states
£

3qG and 3q. In the absence of magnetic field 4¢ = w, where w — the energy of valence
gluon. The presence of magnetic field contributes to 4e, this additional shift being due to
the difference of total magnetic moments of quarks in states 3qG (equal to 2 z) and 3q
(equal to p). Hence

Taking into account that ov is also proportional to H we obtain in the approximation

linear in H
S 0,00,
AEg = — +5 -5 u -2 . (23)

The derivative of the second term in this formula with respect to the field H taken with
minus sign coincides with the correction to the magnetic moment given by Eq. (20). Let
us point out once more that this correction corresponds to the contribution of ground
states of quarks and gluons in diagram n (Fig. 1). Contributions of quark excitations
{particularly orbital excitations), in general lead to a 2 . Egs. (22), (23) do not include
all terms diagonal in quarks, describing contributions of these excitations.

In Ref. [4] the corrections to magnetic moments of nucleons arising from diagrams
b, e (Fig. 1) were calculated. Only ground states of quarks were taken into account. How-
ever, as we already know, similar contributions come from diagrams a, ¢, d, f, g-i (Fig. 1).
The last diagrams, as it was shown, cancel contributions of diagrams b, ¢ (Fig. 1). Therefore
results of Ref, [4] are erroneous, both as to the magnitude as well as to the sign of the correc-
tion. The proper sign of QCD-correction can be established rather easily in the non-
relativistic limit from the Breit potential. It is sufficient to substitute as usually p — p—ed
and to find the average of operator

Us.

S

st = -

The sign of correction as well as its magnitude is unambiguously fixed by the form of Uy
(see Ref. [13] for the magnetic moment of hydrogen and Ref. [8] where baiyon magnetic
moments in the potential model are considered).

In the nonrelativistic limit the QCD-correction is proportioral to (¢/c)*. Terms of the
order of (v/c)*", n > 2 do not change the sign of the correction (see Eq. (4)), so we may
hope that the main effects are taken into account in the (v/c)*-approximation.

Corrections to magnetic moments due to gluon exchange between different quarks
were calculated also in Ref. [5]; propagators were assumed to be equal to propagators of
free particles. This method of calculation assumes that the standard covariant perturbation
theory is applicable. This is not obvious as far as quarks and gluons are not free. The intro-
duction of additional parameters (effective masses of quarks and gluons) cutting off contri-
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butions of large distances does not solve all the problems connected with the formulation
of Feynman rules for interactions of quarks and gluons inside hadrons. We do not see
the possibility of straightforward comparison of results of Ref. [5] with ours.

3. Conclusions

The main result of our paper is the equivalence of two approaches. The first, classical,
is based on classical solutions of Dirac equation for quarks, and Maxwell equations for
gluons. The second, quantum-mechanical one, is based on equations of noncovariant
perturbation theory; the discrete character of quark and gluon spectra is taken into account
from the beginning. The quantum approach allows inteipretation in terms of diagrams.
Equivalence of two approaches is valid of course for the corrections due to one-gluon
exchange between different quarks (Fig. 1, a-1). For this type of diagrams classical approach
reduces the problem of summation over quantum numbers k, m in Eq. (10) to the solution
of certain differential equations. The complete calculation of contributions of diagrams
a-i (Fig. 1) was fulfilled classically in Ref. [6]. Corrections to magnetic moments of separate
quarks (Fig. 1, k-p) can be calculated correctly only within the framework of quantum
approach. With all corrections taken into account the magnetic moment has the form

ﬁh = Z Ciﬁi_% % ; Aiki?)~:Qigk,

where zi; — Dirac magnetic moment of i-th quark. Q, and &, should be understood as
matrix elements of corresponding operators. This formula is valid for hadrons consisting
of quarks 1n ls,,,-state. For quarks with equal masses 4, = A, C; = C. In that case
taking into account the renormalization of quark magnetic moments does not change
ratios of magnetic moments of different hadions and thus does not change predictions
of additive quark model. The second term, corresponding to diagrams a-i (Fig. 1) differs
essentially from the ““basic” magnetic moment and changes predictions of additive model.
For massless quatks the bag model gives 4 = 0.0406. -

It is important to emphasize that the correction to the magnetic moment calculated
from diagiams of one-gluon exchange is defined by contribution of excited states of inter-
mediate quark as well as by contribution fitom qg-pairs. Both contributions are presumably
present in calculations based on the Breit potential. Total contributions of diagrams in-
cluding disconnected graphs vanish if only Is, ,-states of quarks are taken into account.
When considering correspondence between classical and quantum approaches we demon-
strated one more approach (equivalent to two othets) which could be called intermediate.
In this approach classical solution of Dirac equation in magnetic field y+dy was used
while chromodynamical interaction was treated by considering transitions 3q — 3qG,
where G — quantum of gluon field.

We do not give here quantitative comparison with experimental data because quantum
corrections calculated in acapproximation coincide with classical corrections, and the
complete calculation of magnetic moments requires taking into account the n-meson
contributions; this was done in Ref. [14].
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Let us note, that our main results are rather general and do not depend on the explicit
form of interactions u and v. In particular, these results can be used for calculation of
quadrupole moments of particles from decouplet [15], for calculation of corrections to mean
square radius of charge distribution [16], corrections to axial constants of f-decay [3, 17]
and so on. In each case one of the above mentioned approaches could be adequate. There
are examples when only one of the approaches can be applied. These are corrections to
amplitudes of decays ¢ —» ny, 4 — py, etc. Classical approach is not valid in these cases,
because the spin of the hadron does change, and multipole expansion is rather bad.
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