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Separable two-body interactions are used in considering the three-nucleon problem.
The nucleon-nucleon potentials are taken to include attraction and repulsion as well as tensor
forces. The separable approximation is used in order to investigate the effect of the tensor
forces. The separable expansion is introduced in the three-nucleon problem, by which the
Faddeev equations are reduced to a well-behaved set of coupled integral equations. Numerical
calculations are carried out for the obtained integral equations using potential functions
of the Yamaguchi, Gaussian, Takabin, Mongan and Reid forms. The present calculated
values of the binding energies of the *H and *He nuclei are in good agreement with the experi-
mental values. The effect of including the tensor forces in the nucleon-nucleon interactions
is found to improve the three-nucleon binding energy by about 4.490% to 8.3249,.

PACS numbers: 21.40.+d, 21.10.Dr, 21.10.-k, 27.20.+n

1. Introduction

Several authors introduced different solvable models for studying the three-nucleon
problem. Faddeev [1] had given one of these model approaches. Faddeev successfully
introduced an exact solution for the three-nucleon problem. The Faddeev equations are
reduced to a well-behaved set of coupled integral equations following the Lovelace [2]
formulation by using the separable two-body interactions.

The nucleon-nucleon interaction becomes strongly repulsive at short distances as it
has been realized from phase-shift analysis. Thus, the nucleon-nucleon interaction is repre-
sented by a short-range repulsive potential surrounded by a long-range attractive potential.
The few-particle problems have been studied by suggesting different forms for the two-
-body interactions with considerable success achieved in fitting the two-body data. The
tensor forces are important and should necessarily be included in the two-body interactions
to fit the two-body phase shift data. Mitra et al. [3-5] considered the effects of the short-
-range repulsion and of the tensor force in the three-nucleon system. Amado [6] and his
collaborators investigated the effect of the tensor force and short-range repulsion by using
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a small but non-zero value of the Amado wave-function renormalization parameter z. The
ground state of the three-body problem was treated by Phillips [7] by taking into account
the effect of the tensor force and the short-range repulsion and using a phenomenological
three-body force. The Faddeev-Lovelace approach had been extended by Fuda [8] to include
some of the effects of the tensor force in calculations on the three-nucleon ground state.
Osman [9] investigated the inclusion of the short-range repulsion in the three-nucleon
system which has been found to improve the three-nucleon binding energy. In studying
the few-particle problems, different forms of the two-body interactions have been suggested
[10-13] which include both attraction and repulsion. Osman [14-16] applied some of the
two-body interactions which include short-range repulsion and from these calculations
it has been found that the short-range repulsion is important and must be included in the
three-body calculations.

In the present work we are interested in studying the effect of the tensor forces in the
three-nucleon problem. We follow the Faddeev-Lovelace formalism in solving the three-
nucleon problem. The three-body Faddeev equations are reduced to a well-behaved set
of coupled integral equations using separable two-body interactions. The two-body interac-
tions used contain both attraction and repulsion parts. In the present work, we use potential
functions of the Yamaguchi [17], Gaussian [18], Tabakin [19], Mongan [20, 21] and also
of the Reid [22] forms for each of the attraction and repulsion parts of the two-body
interactions. The two-body potentials used here also include tensor forces. The separable
approximation is applied to the 7 matrices present in the three-body problem. The three-
-body problem is solved with the two-body interactions considering both the tensor forces
and the short-range repulsion by making use of a separable expansion. The Faddeev
equations are reduced to an infinite set of coupled one-dimensional integral equations by
using the separable approximation in the three-body problem. These equations may be
cut off for finite-range forces. The three-body Faddeev equations are reduced to a finite
well-behaved set of coupled one-dimensional integral equations by using the separable
approximation for the tensor forces.

In the present work, we study the three-nucleon nuclei *H and 3He. Each of these
nuclei is taken as a bound state of three nucleons. Five different types of interaction are
used for the different parts of the two-body interactions. Each of the two-body interactions
which we use includes short-range repulsion as well as tensor forces. The Faddeev equations
are solved with these two-body potentials by making use of the Lovelace formulations.
Direct numerical calculations are performed for the resulting integral equations. We
calculate the binding energies of the *H and *He nuclei. The numerical calculations of the
binding energies are carried out in three different cases to test the effects of both the short-
-range repulsion and the tensor forces. In the first case the two-body interactions are purely
attractive. In the second case the two-body interactions are taken as a short-range repulsive
potential surrounded by a long-range attractive potential. Then, in the third case the two-

“-body interactions are taken to include attraction and repulsion and also tensor forces.
-For each nucleus, the numerical calculations are carried out for the three different cases,
using five different forms of two-body interactions. Comparing the results calculated for
each nucleus for the same potentials with and without the repulsion part respectively, we
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get the effect of the short-range repulsion on the binding energy. Comparing the results
calculated for each nucleus for the same potential containing repulsion, respectively includ-
ing and not including tensor forces, we get the effect of tensor forces on the binding energy.

In Section 2, we introduce the expressions including the tensor forces in the three-
-body Faddeev equations by making use of the separable approximation. In Section 3,
numerical calculations and results are presented. Section 4 is devoted to discussion and
conclusions.

2. The tensor forces in the nucleon-nucleon interactions

Many models have been suggested for solving the three-body problem. One of these
models is the Faddeev approach, which introduces an exact solution for the three-body
problem. The Faddeev equations [1, 23] are a well-behaved set of three-body coupled inte-
gral equations, which involve the two-body T matrix rather than the potential. The T
matrix plays a central role in the Faddeev approach. So, in the three-body Faddeev:
equations the two-body T matrix plays the part of a potential in the two-body Lippmann-
-Schwinger equation. Using the same notations as introduced by Lovelace {2], the two-
-body T matrix is introduced as,

Ti(p,q;2) = PE R K, )

Vo @)+ - f Vi(p, DET (P, 43 2)

where V;; is the separable potential which must be strong enough to give a bound state
at an energy eigenvalue — ¢ and a bound state eigenfunction |¢ ). For concreteness, consider-
ing the triplet state of the two-nucleon system, there is one bound state which is the deuteron.
The T matrix can be defined in terms of the potential theory as

(z) = V+VG(D)V, (2)
where V is the two-body potential and
G(z) = z—H); 3)

G(2) is the resolvant for the two-body system, z is a complex variable and H is the Hamilto-
nian. Since #(z) is a solution of .the equation

t(z) = V+VGy(2)1(2), 4)
Go(2) = (z— Hy) 1, &)

where H, is the two-body kinetic energy operator.
Suppose |8) is the deuteron state vector and its energy eigenvalue is — ¢, and we have
a separable potential in the form [1]

Vii(p, @) = A (P)f(9)- (6
Then the approximate two- body T matrix in the triplet channel is
14 V
tsep(z) = —I'ﬁ'?ilﬁ* » (7)

D(z)
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where
1
D(z) = 3 +LBIVGo(2)V B ®
Picking A so that D(z) vanishes at z = —g¢,
Vi %

which is a separable expression and satisfies unitarity.

Lovelace showed that the existence of a virtual bound state in the singlet channel
justifies the use of separable 7" matrix. Putting the state vector |g,> = VI|B), we can write
the two-body 7 matrix in the form

1(2) = |g.>D3 ' (2) {gul + 180D (2) {&ssls (10
where
1
Dy(z) = i +<8alGo(2) &> (1
1
Dss(z) = /1_ +<gsslG0(Z) ‘gss>' (12)

The subscripts st and ss refer to the spin-triplet state and the spin-singlet state respectively.
The vector ig,,» is an L = 0 object, since in the singlet channel Lisa good quantum number.
The vector ig,,> is more complicated, since the deuteron wave function is a mixture of
L =0 and L = 2 components. The interaction between nucleons in triplet-triplet and
singlet-singlet states are very small and are neglected because of symmetry properties.

The nucleon-nucleon potentials used in the present work contain both attraction and
repulsion represented as

- D DY 2 Lr-L ’-
VNN(P,P)—;i E TN~ 2a(P)gar (D)

aMLL’
+ R, (Pha (PN Yo (P) Yo (P), (13)

where « denotes the quantum numbers JTS, and # = 1*/m {m is the nucleon mass). The
symbols g,;(p) and A, (p) refer to the attractive and repulsive parts of the potential, respec-
tively. The function Y:{(;) is a normalized eigenstate of total angular momentum J and its
z component M it is a combination of an orbital angular momentum state )’{“"(3) and

a total spin state 3. The deuteron wave function expressed in terms of the vector spherical
harmonics

Y5> = X 1Y) ISMy) (LSM M,IIM), (14

MM
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where [Y¥'> is an ordinary spherical harmonic, [SM,) is a two-body spin vector and
{LSM M,|JM) is the appropriate Clebsch-Gordan coefficient. The deuteron wave function
can be written in the form (assuming J, = M)

19> = 1> |Yo1,0 +1¢0 V311D 15)

We introduce the tensor operator S,» which has the form (in momentum representa-
tion)

8y, = 3@, - P)(3, P)-é, -5, (16)

&, and &, are the Pauli matrices and P a unit operator. Hence we have

$.LY1 0 = VBiYaiD. (17)
Then, by combining equation (17) with equation (15), we have
19> = (1/y/47) [16.> +16> (1S 12] 10)- (18)
Let us introduce the definitions
IC> = (=1/y/4n) (Ho+¢) |6, (19)
IT> = (—1//4m) (Ho+2) [, (20)

where |C) and [T are functions of the length of momentum vector in momentum represen-
tation and are chosen to give a reasonable deuteron wave function.
With these definitions, we arrive at the following form for |g,> when J, = M;

g MY = [IC>+IT> (1/y/8)812] x> @1
Using the orthonormality of the vector spherical harmonics we can show that
Dy(Z) = (1/)+{CIGo(Z) |C) +<TIG(Z) T ). (22)

The T matrix in the triplet channel is

1
ts‘(z) = - Z . lgsta M>Ds_tl(Z) <gst’ Mi. (23)

The final form of the T matrix is then given as

T(Z) = THZ)P; AT+ THZ)P(T), (24)
where
TYZ) = ~[ICy;>+(1//8) |1 Ti»S12]1P (s)D5 ' (2)

x [Cijl +(1/y/8)8 1 {11, (25
T{Z) = ~IS;>P{; (D5 '(2) Sy (26)
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and

Ay and A are the coupling constants with values which are chosen so that at the energy

Z = —¢, D(Z) and D,(Z) vanish. P**)(s), P*7(s), P**X(T) and P*™)(T) are the projection

operators for spin-triplet, spin-singlet, isospin-triplet and isospin-singlet states respectively.
1S> is a function of the length of momentum vector in the case of the spin-singlet state.

The wave function obtained in Faddeev scheme is the sum of the three components,

3
¥ = 3 1Yo (28)

which satisfy the coupled system of equations

Yo = Gu(EYT(E) [1¥5)> +1¥,0] (29)

where G,(E) is the free resolvent of three-body system, E is the energy of three-body system,
and T, is the transition operator of three-body system.
In particular, we can write

W = (123) [¥5), (30)
W2 = (132) |¥5). @31

Combining (30), (31) and (29), we have
Wiy = Go(EYTH(E) [(123)+(132)]1¥5). (32)

Our transition operator 75 is essentially a sum of projection operators, each of which
is written in terms of two-body vector. Since the two-body states are anti-symmetric under
exchange of particles 1 and 2, we have

TH(E)(12) = —T5(E), (33)
where we have used the fact that (12) is Hermitian. Thus, in our case equation (32) becomes
[¥3) = 2Go(E)T,(E) (123) | ¥5). (34)

It is known that the spin and isospin vectors which arise in the three-nucleon problem
are basis vectors for the irreducible representations of S;. Then, the Faddeev equations
can be reduced to three coupled one-dimensional integral equations when the two-body
transition operator is of the form given by equation (24). The transition operators T
which appear in the Faddeev equations [see Equations (29) and (34)] are closely related
to the two-body T matrix as

(P, G Ts(2) |1Ppy @iy = 3(a,—a5) <P T12(Z—2 g2) [P, (35)

where P is the relative momentum of particles 1 and 2, g is the momentum of particle 3 and
T,, is the transition operator for particles 1 and 2. Hence, T describes processes in
which particles 1 and 2 scatter, while patticle 3 goes straight through.
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For the interaction given by equation (24), T; becomes

T5(Z2) = TYZ)P{7(12)+ TX(Z)PH)(12), (36)
where
TVZ) = =[1C(12)y +|T(12)> (1/V/§)ASA‘1;,_]Pf,Jr )(12)151(2)

x [€C12)1+8,,(1//8) <T(12)]], 37
T*(Z) = —S(12)yP{(12)1(2) <5(12)), (38)
{alt(Z) 141> = (d—a)D3 (2~ 4P), (39)
(Qit2) 140> = 3G = qIDNZ—5 ad). (40)

This interaction conserves isospin but not the spin. There are two possible isospin states
for a given J,-component ;i3 ;0; 4, 1y and 'I; 4. p). These two isospin states are due
to the presence of the projection operators in cquation (36). Expanding |¥;) in terms of the
isospin vectors as

W3 = 19) 10 5 iy~ 167> 115 4, w), (41)

and substituting the expansion (41) in equation (34), we find
19> = 2Go(E)T'(E) [(123) 19> (—2)—(123) 14> (=3 /3], (42)
1¢'> = 2Go(E)T*(E) [(123) 1¢D> (=3 /3)~(123) |¢"> (D], (43)

where E is the three-body energy.
Consider the expansions of ¢ and '¢")> in terms of eigenfunctions of total angular
momentum using J— J coupling. This can be done by introducing the J— J coupling. Since,

Jip=Li;+S, (44)
Jy = Ly+S,, 45)
J =L+, (46)

As a result of the projection operator nature of T%(Z), we find that the expansion |¢)>
contains only those states for which J,, = 1, L;; = 0,2 and S,, = 1. There are five
different possible states. These states are analysed as

Ly, Si2 Jis L, S; Js State

0 1 1 0 3 4 12,
2 1 1 0 1 3 10
0 1 i 2 4 5 19,
-2 1 1 I 7 123

2
0 0 0 0 4 < 195>
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Using the properties of the tensor operator §,,, we can show that

120> = (11/8)81.12)), (47)
195> = (1//8)5 12125, (48)
812125 = 0; (49)
then, we can write
1$> = z L2 120 +1Z1> 1201, (50)
6> = 1Z3) 12:). (1)
With the different relations for the |£) given as
IZ,> = Go(E) IC(12)> [1:(3)), (52)
21> = Go(E) IT(12)) [1:(3)>. (53)
1£2) = Go(E) IC(12)> 1230, (54)
125> = Go(E) T(12)) 1%:(3))s (55)
230 = Go(E) IS(12)> 11:3)), (56)
1(3)> = —38ri,(E) <2,I[<C(12) +<{T(12)} (1//8)S 2]
[(123) 1$> (—3)—(123) (¢ (=3 /3], (57
3)> = =81t (E) (Q,] [C(12)| +<T(12)] (1//8)S ]
[(123) 19> (=) —(123) "> (=32 V)], (58)
X3(3)> = —8riy(E) <231 <S(12) {[(123) 16> (= /3)—(123) [$> (2)]- (59)

Combining equations (50) and (51) with equations (52-56) and using equations (47) and
(48), we can write

16> = Go(E) [IC(12)> +1T(12)) (1//8)812] [1x:(3)> 12, +1123)> 220], (60)
1¢> = G°(E) IS12)) [13(3)> 123)- (61)

These are the two space-spin parts of the component |¥;). If one expands the angular
momentum states in terms of the eigenstates of J3,, J,,,, J5 and J;,, the structure of |¢)
and |¢’> becomes obvious. For example |¢)> consists of a sum of terms corresponding to
the different values of J,,, and J,,. Each term is of the form of a deuteron wave function
(modified kinematically by the presence of the third particle) multiplied by a wave function
which depends only on the coordinates of particle 3. We simply work out a part of the
kernel which connects ;) to itself.
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The part of the kernel is given by

(@41 (A8)8::T(12)] (123)Go(E) IT(12))8,,(1/3/8) 12, 1113 (62)
where (123) operates to the right. Using equation (47), equation (62) can be given as
(Q1 {T(12)] (123)Go(E) |T(12)) 121> 12:(3)>. (63)

Expanding |Q}) in L-S representation for the quantum numbers involved and by consider-
ing that |Q}) contains only one state which has a total orbital angular momentum L of
2 and a total spin S of 3/2. The notation for the eigenstates of L2 and L, is [(L,,L;)LM).
Similarly for the spin states by expanding {Q}) in terms of these eigenstates, we have

121> = ¥ 1(2002m) (1) 3 1> <2 5 mu| 3 M. (64)

mop

Using the fact that L2, L, S? and S, commute with (123), and that the spin functions involved
form a symmetric representation of S;, we get by combining equation (64) and equation (63)

<(20)20i <T(12)] (123)Go(E) | T(12)) 1(20)20) [x4(3))- (65)

Since equation (65) is independent of L., it can be written in the form

2
571 ;2 (20)2m| {T(12)] (123)Go(E) (T(12)> 1(20)2m) |34(3)>- (66)

Equation (66) can be given in the momentum representation as

T(Py2)T(P23)
P, +32 P3—E

‘(4“)_2‘[1)2([)12 ’ pza) 1 (P,)dQ3dP,. (67)

We have used the addition theorem for spherical harmonics. ﬁi ; is the relative momentum
of particle i and j. We make the transformation of variables

f’xz = E‘*‘(%)éa [323 = —5—(%)7: (68)
In terms of k& and ¢, equation (67) becomes

@ =2 (T(k+3a)T(q+5kD],, ¢*k*sin®0
144 47{J I +q k+k’—E

Tl R+ aP
x x,(k)2nk?dk sin 0d6; (69)

0 is the angle between k and g. The other kernels are worked out in a similar fashion. The
final equations have the form
3

o 1 S
(q) = F, 5 @ By, 0
) =F .(q)Jdk PN SE Gif(g> k) (ks (70

j=1
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where

dk = 2 sin 0d0k>dk,
Fy(q) = F3(9) = 2D(E~%4")]7",
Fy(q) = [2D(E~-3aM]7";
G;; (,J = 1,3) are the kernels. The kernels satisfy the relation
Gii(@, k) = Gk, q)-
We need only to represent six bf the kernels as

G113, ) = Ck+1 DC@G++ Fy+2TE+3 PTG +3 k)

. q*k sin® 0
X 32 -~ 1 ’
lg+5 kPk+5q>

. . - - sin® 0
Gya(@ F) = C+3 DTGE+5F) [1_; % e ]

172

2 .. 2
- - - sin” 0
+2T(k+%q)C(Q+%:k)[ 122 —1]
I+2q
2 a2
g°sin” 0
/2Tk+ NT(q++ [ —3
(k+3 DT +1k) Grie
21,2
_a q*sin® 0 2 q°k?sin? 0 :l
k+% a1’ k+%q1* lg+5 kI*

Gi3(d, k) = 3C(k+1 DS@+3 b),

G223, F) = C(e++ DC@+3 By [1-3 cos” 0]

. sin® 0
+4/2 C(k+—§—q)T(q+%k)[%(3 cos20+1)—3(¢°+% kz) = —}
Sl l e 1] L 2 32125in20
+ZTR+5PCE+3R) | 5B oos? 0+ D) -3 (K +3 ¢°) =73

tk+34g
e 6
LT+ DTG +LF) [% sin? —32 (q*— 1% kz)lfj:‘ e

tn2 21,2 oin2
sin® q°k* sin® 6
—3 (K Q)—T— eas lz]’

(71

(72)

(73)

(74)

(75)

(76)
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- . , k?sin’ 6
Gy3(q, k) = 3S@+ 1 RTEk+3 )| 1-3 =75 |» (77)
k+% g
G33(4, k) = S(@+3 B)S(k+% 9. (78)

At low energies the nuclear potentials and the interactions between nucleons in the
triplet-triplet and singlet-singlet states are very small and may be neglected in comparison
with those in the triplet-singlet and in singlet-triplet states. In our present calculations,
we consider only the triplet-singlet and singlet-triplet states. The nucleon-nucleon interac-
tion used in our work is of the form given by expression (13). We use different forms of
parameters for the potential function of the Yamaguchi, Gaussian, Tabakin, Mongan
and also of the Reid forms. The different parameters for these potentials are determined
{27} by fitting the corresponding phase shifts. The effect of the Coulomb force in the case
of proton-proton interaction is taken into account by calculating the pure Coulomb T
matrix in a way described by Osman [29].

3. Numerical calculations and results

In the present work we use two-body interactions with potential functions of the
Yamaguchi, Gaustian, Tabakin, Mongan and also of the Reid potentials. Each of these
potentials includes both attraction and repuision and also tensor forces. By fitting the
different types of nucleon-nucleon interactions with the corresponding phase shifts, Osman
[27] obtained the different values of the potential parameters. In the process of fitting, we
use the phase-shifts presented in Refs. [30] [31] and [32] as stated in Ref. {27}

With these different two-body interactions, direct numerical calculations are carried
out for the resulting integral equations. The Schmidt-Hilbert [33] theory of integral equa-
tions is applied. Since we use short-range nuclear potentials, the elements of the two-body
T matrix rapidly decrease by increasing the number of partial wave expansions used. This
dependence of the T matrix elements on the number of partial wave expansions off-the-
-energy-shell is given by Kowalski [34]. Then, in the equations obtained the summation
over the number of partial wave expansions could be restricted to finite number of terms
and then, the sets of the integral equations become finite. The integral equations are con-
verted into matrix eigenvalue equation. In the present calculations, the cigenvalues are
given as a function of the energy Z. The three-body integral equations are solved numeri-
cally by using a 45-point Gaussian integration. Then, the three-body bound state energies
are those values of the energy Z for which a matrix eigenvalue takes the value one.

We lead in the present work with the *H and *He nuclei, which are treated as a three-
“body problem. Each of the *H and *He nuclei are considered as a three-nucleon bound
state. With the Faddeev-Lovelace formalism, the binding energies of these nuclei are numer-
ically calculated. The present equations give only the nuclear binding energies of these
nuclei. Osman [29] had calculated Coulomb energies which we added. to the calculated
nuclear energies in the case of proton-proton interaction in *He nucleus. By this addition
we get the actual three-body ground-state energics.'
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In the present work we calculate the binding energies for the *H and *He nuclei in
three different cases. In the first case, the two body interactions are purely attractive. In
the second case, the two-body interactions contain both attraction and repulsion. And
in the third case, the two-body interactions contain both attraction and repulsion and the
tensor foices also. All the results obtained for the theoretical calculations of the three-body
binding energies for the 3H and 3He nuclei, using the different two-body interactions in the
three different cases mentioned, are listed in Table I. The experimental values [35-37]

TABLE I
Calculated binding energies (MeV)

Potential Nucleon-nucleon force *H 3He
Yamaguchi Central (att.) 9.855 9.011
Gaussian Central (att.) 9.605 8.868

Central (att. + rep.) 8.754 8.088
(Central + Tensor)
(att. + rep.) 8.208 7.678
Tabakin Central (att.) 9.888 9.389
Central (att. + rep.) 8.916 8.405
(Central + Tensor)
‘ (att. + rep.) 8.524 7.991
Mongan Central (att.) 9.964 9.189
Central (att. + rep.) 8.936 8.196
(Central + Tensor)
(att. + rep.) 8.451 7.789
Reid Central (att.) 10.371 9.488
Central (att. + rep.) 9.207 8.573
(Central + Tensor)
(att. + rep.) 8.501 7.888
Experimental binding energy : 8.480 7.720

are also introduced in the same table. From the Table I, we can see that our theoretically
calculated values are in reasonable agreement with the experimental values taking into
account both the effect of short-range repulsion and the effect of the tensor forces. Also,
by comparing the values calculated for the same nucleus and the same two-body interaction,
for the case with and without repulsion forces respectively, we can get the effect of short-
-range repulsion on the binding energies. It can be easily done by comparing the results
obtained for the first case with those obtained for the second one. This comparison gives
the short-1ange repulsion effect. Comparing the values calculated for the same nucleus and
the same two-body interaction, for the case not including tensor forces, with those for the
case including tensor forces, we get the effect of tensor forces. So, the effect of including
tensor forces 1s obtained by comparing results obtained for the second case with those
obtained for the third case. The effects of including the short-range repulsion as well as
effects of including tensor forces are presented in Table II.
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TABLE 1T
The effect of including short-range repulsion (Rep.) and the effect of including tensor forces (Tensor)
' (Percent)
f H i 3He
Potential

Rep. Tensor ] Rep. ;_ Tensor
_ " - -
Yamaguchi — | — — . —
Gaussian . 9.259 6.430 9.176 5.221
Tabakin 10.335 4.490 11.055 : 5.057
Mongan 10.863 5.584 11.429 ; 5.102
Reid ! 11.893 j 7.986 E 10.129 : 8.324

4, Discussion and conclusions

We use the Faddeev-Lovelace formalism in the present three-body calculations. It is
known that the three-body Faddeev equations include the two-body T matrix with con-
nected variables of the momentum and the energy. At low energies, we obtain rapid con-
vergence for the series of the separable expansion. But if the absolute value of the energy
increases, the momentum also increases, and then more terms of the separable expansion
are needed to obtain a given accuracy. In our calculations, the three-body integral equations
ate solved numerically with a good accuracy since we obtain a good convergence by using
the present separabie expansion. From Table I, we can see the good agreement between
our theoretical values of the binding energies with the experimentally observed values.
We introduce the effects of both short-range repulsion and tensor forces in Table 1I. From
the results giver in Table II, we can articulate two conclusions. First, introducing short-
-range repulsion in the two-body interactions affects the three-body binding energies in
9.176%, to 11.8939 for the nuclei and two-body interactions considered. Second, the
inclusion of the tensor forces in the two-body interactions impioves the three-body binding
energies of the nuclei considered in our work in 4.4909, to 8.3249%.
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