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We analyze and discuss the applications of QCD sum rules to the derivation of bounds
on the matrix elements of four-quark operators appearing in the A4S = 1 sector of the weak
Hamiltonian. We present the application to the calculation of ¢’/e and K — 2r amplitudes.
We also analyze the dependence on the renormalization point # and the momentum continua-
tion in amplitudes.
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1. Introduction

The main subject of these lectures is the application of QCD sum rule techniques
to the derivation of bounds on the matiix elements of different weak transition operators.
Although the method used is rather general, we shall restrict our discussion mostly to kaon
physics; the applications to other fields will be briefly discussed.

The idea of using sum rules to obtain bounds on matrix elements stems from the fact
that the present techniques used in calculations, such as quark models, saturation by single
vacuum state, etc., suffer definitively from uncertainties. Therefore, although we believe
to have rather sufficient knowledge of the operators, our lack of knowledge of true hadronic
wave functions (confinement problem) limits our ability to give exact answers. On the
other hand, sum rule techniques enable one to relate the unknown matrix element .# to
another quantity ¢, usually a two-point function, which might be calculated more reliably
than ./ itself.

In weak transitions, we are mostly concerned with operators which are either bilinear
in quark fields (currents) or are a product of currents (four-quark operators). The former
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appear, for example, in semileptonic decays of mesons, such as K — nev, D - Key,
B — Dev, and the latter are responsible for K — 2n decays, K°—KD9 mixing, etc.

Besides deriving the bounds on the matrix elements relevant to &'/, K —» 2x, K®~K©
mixing, we analyze and discuss the dependence of the matrix elements on the renormaliza-
tion point u and the ambiguity in momentum continuation arising from the use of PCAC
and the soft-pion limit.

The plan of the paper is as follows. In Sec. 2 we confine ourselves to a brief review
of the QCD-corrected electroweak Hamiltonian for the 4S5 = 1 sector, but present
a detailed analysis of the problem of u dependence. In Sec. 3 we analyze the problem of
continuation of the PCAC amplitudes to the physical ones in the framework of chiral
perturbation theory. We also present the amplitudes for K — 2x decays in terms of electro-
weak theory. The QCD sum rule approach is developed in Sec. 4, where the bounds are
obtained in terms of the two-point function y(g?). Section 5 contains the calculation of
w(g?) and the results obtained. In Sec. 6 we discuss the reliability of the whole approach
and give comments on the prospects of future improvements.

2. Effective weak Hamiltonian and QCD corrections

The theory [, 2] underlying our discussion is the effective weak Hamiltonian obtained
in the standard SU(2) x U(1) model using the short-distance expansion for the product
of weak currents. The effective Hamiltonian is of the form [3-6]

6
HY™' = /2 Ggsin 0, cos 8, cos 05 Y ¢,0,, (2.1)

n=1

where O, are local four-quark operators and c, are Wilson cocfficients ‘“‘renormalized”
by QCD. The angles 8; are the generalized Cabibbo angles in the six-flavor model [1].
The local operators O, have the form

0, = (8uy,up) (U y"dy) —(Sry,dy) (fy*uy),

0, = Guy,uy) (fy*dy) +(Gry,dy) (@ u )+ 2060y,dy) (doy*dy) + 2(50y,d0) (3u7su),

03 = (3yy,dy) @y up) +Buy,uy) (@ry*de) +2(y,dy) (doy*dy) — 3G6urdy) Guy'sy),

0, = (31y,dy) (y*ur) — (Bry,dy) (oy"dy) +(Suy,un) (@uy'dy),

05 = (5.7,A%dy) [ry*A"ug +dgy*A%dg + 5g7"A%sg ],

06 = (Buy,dr) Liiry ur + dgy"dr +5e¥"sz]. (22)

The set of operators (2.2) has definite isospin properties. The operator O, is a pure 4] = 3/2
operator, whereas the other operators in (2.2) are 47 = 1/2. The first four operators are
present in the effective Hamiltonian before inclusion of QCD corrections; the operators
Os and O¢ (penguins) appear after inclusion of QCD corrections when flavor symmetry
is broken [4].
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The asymptotically free values of the coefficients ¢, are given by

F F_ 2 F_
2 s €3 =Ty, (4=

Wit

» Cs = Cg = 0. (23)

=1, =1

In the flavor-symmetry limit, the Hamiltonian may be written in a simple way as

HY=' = /2 Ggeqessy[c-0_+¢,0.], 2.4
where
0 = (Spy,uy) (iLy"dy) £ (Spy,dy) (@ uy), (2.5)
with
e =cl =1,
=5 =Y =3c=1 (2.6)

The relation (2.6) is also valid for the QCD-corrected Hamiltonian, provided flavor
symmetry is not broken. Flavour-symmetry breaking slightly changes ¢, and ¢, because
of the mixing of the A7 = 1/2 operators.

i dependence

The coefficients ¢; in (2.1) are calculated in perturbative QCD and summed up in the
leading log approximation using renormalization-group techniques. Generally, these
coefficients are functions which depend on my, the masses of heavy quarks m,, my, m,,
the QCD parameter Aqcp, and the renormalization point u. This u dependence of the Wilson
coefficients has to be cancelled by the y dependence of the operators O; when the latter
are taken between hadronic states. The explicit u dependence of the matrix elements of the
operators O; might be calculated only in QCD. However, the calculation of matrix ele-
ments in QCD is typically nonperturbative and at present one does not know how to solve
this problem. Therefore, one relies on some phenomenological QCD-like models, such
as the bag model, but the explicit x4 dependence is lost.

To be more explicit, let us assume that some operator O; is multiplicatively renormali-
zable. The u dependence of its Wilson coefficients ¢,(u) could be easily factorized as

ci(w) = cfa(u®)]", Q.7
where ¢; does not depénd on u, o, is given by

4r
a(1?) = ———<

# 9
9o (7)

N

(2.8)

and d; is proportional to the anomalous dimension of the operator O, Now it is clear
that the product

cl(m) <E10:41> () (2.9)
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is u independent since the operator O; does not mix with other operators. It follows that
the ¢ dependence of (f|0;}i> could also be factorized as

{1011y = [a(1®)]74<110,11), (2.10)

where (f||O;lji) is a u-independent quantity.

Now, the problem is as follows. In all phenomenological QCD-like models one cal-
culates the left-hand side of (2.10), i.e., {f|0;!i>, and not {f}j0;!li>, and it is not clear ar
which p the calculation is performed. This is known as the u-dependence problem. Our
discussion is quite general since the weak Hamiltonian could always be written as the sum
of multiplicatively renormalizable operators [7]:

s
HE™' = /2 Ggsyepcy :Z 0., Q.11)
=1

where ¢; and §; coukd be read off in Ref. [7].

The Buras-Stominski diagonal operator basis in (2.11) is particulaily useful if one
wants to calculate the u dependence in QCD explicitly, because it simply factorizes out
as in (2.10). On the other hand, Buras and Stominski have shown [7] that the relations
between the operators obtained in the valence-quark approximation are at variance with
the u dependence predicted by QCD. These relations could be in agreement for at most
one value of u.

3. Effective chiral Lagrangian, current algebra and quark models

A simple method used to relate different matrix elements of a given operator is chiral
perturbation theory [8]. This method involves the use of the pseudo-Goldstone boson
sector of the theory in the form of an effective Lagrangian.

The unitary chiral matrix field U is defined by

U = exp (? ¢) R 3.1

where @ is the octet matrix of pseudo-Goldstone fields:

- o -

n n + +
—— -_—= K
NN
0
& =n" —3—24-% K° (32)
n
- 0 L
& K vd
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and f = f, = 132 MeV. Then strong interactions are described by the effective chiral
Lagrangian density, correct to quadratic order in meson masses and momenta:

2
&L = % tr (0,Ud*UN)+v tr (MU +(MU)), (3.3

where M is the quark matrix, M = (m,, my, m), M;.; = 0, and

fimk fimd. fimio

v= 4my+my) 4(m;|-m,[) = d(m+my)’

(34

The Lagrangian (3.3) is consistent with SU(3). x SU(3)g, parity, chaige conjugation and
chiral symmetry breaking by the bare quark masses in strong interactions.

In the framework of the effective chiral Lagrangian field theory, the operators O,
which have definite transformation properties under chiral rotations in respect to SU(3),
x SU(3)g, have the following realization:

0; = a(8,Uc*UMh;, i=1,2,56 (3.5)

and
0, = a,T{(Uo,UN(UFUY;, n =34

13 _ 31 _ 13 _ 31 _ 1 23 _ 32 _ 33 _ 33 _ 3

Ty =T =Ty =T =3, T =T =1, Ty =T =-3 (0,),
13 _ 31 _ pl3 _ 31 1 23 _ 32 _ 1
Ty, =T, =T,y =T =3, T =T; = —3  (0y),

with the coefficients a; not fixed by the chiral symmetry requirements alone.
The corresponding amplitudes for K — 2n decays are given by!

2.2
(m* 7T 0}KS) = g, -f;i (k- p+ke - p+2(ky - k)],

22
(r*m%|03%K*) = ia, fia [4(ko - p)+3(ko * k1)~ (k4 - P)], (3.6)
where p is the kaon momentum and &, and k, are momenta of charged and neutral pions,
respectively. One notices that the amplitudes are guadratic in momenta. At physical values,

P2 = mE, k* = m?, the amplitudes are given by

(n*n7|0{*K]) = ia; ‘-‘-j:}/rz (mg—m}),

(n* 7’103 K ") = ia4\7-1;73 (mg—my). 3.7

The coefficients a; could be obtained by calculating the matrix elements in quark
models. However, thus far, in these models, it has been possible to calculate the matrix

! See Ref. [9].
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elements between single states. One is therefore forced to use PCAC and the soft-pion
limit (SPL) in order to reduce the K — 2n amplitude to K — = transitions. The problem
arises when one tries to recover the physical limit again, k? = m?.
Continuation problem

Using the SPL one easily obtains, for example,

1 3

00K =k — —= MY E, 3.8
(= 7 04K™) 7 73 (3.8)
where
4

ﬂ”é{fzw = (nT04 K™D = asjzf’?i (k- p) 3.9

and x is the continuation factor

mz—m?
K= KT (3.10)
k-p

Since, in the SPL, k = p, it is not clear what the value of & - p = p? is ! Of course, the (k - p)
dependence of the continuation factor x cancels the (£ - p) dependence of the matrix element
M2 .. However, the problem (similar to the u-dependence problem) is that, in quark
models, one calculates {(n+|0,|K*> which implicitly contains the unknown (k - p) de-
pendence, i.e., -one calculates

4
03/2]‘;2'(k D)

and not
4
a3/2f‘_2 .

This uncertainty, which is due to the (k - p) dependence, amounts roughly to a factor
of 2. In the following we consistently use (k - p) = mg, giving

x = 0.923. (3.11)

If there were no continuation, x would be equal to 1/2.
Translated into the language of quark operators, the amplitudes (3.7) would read,
using PCAC and the SPL,

3
V25

MK » n'n’) =« (\/Q_GF310103)C4<7W+104|K+>,

1
al?K° s n'rn) =« 7 (2 Ggsyeqe3) {c<m*|O_IK™>

+e,(nt 0K} +a™(K? » ot w7, (3.12)

1/2
where 0Y? = 0,—2 0,.
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The amplitude a”*"* comes from the penguin operator Os and is more complicated
because of the presence of the anomalous commutator term [10]:

1 -
a*"¥ (K’ » ntn7) = & JT(\/z Gesiec3) Re ¢

T

x {{n* 05K "> +<m T |0SIK )} (3.13)

The second term in (3.13) arises from the commutator of the normal-ordered operator Os
with an axial charge Q°

[Q% 051 = —[Q. 051+ 0idd|0): 5(1 +75)d:, (314

the last term ‘being equal to —20%. Its matrix element is given by

MO = (= OPK*S = (1— ;2) m’f‘fnd ’{i‘;"_-’% (3.15)
The experimental values for (3.12) are given by
a'*(K° » n*n7) = 27.06 x 107 ® GeV,
a¥}(K* - n*n%) = 1.83x107® GeV, (3.16)
which leads to the “AI = 1/2 rule”
a5~ m) o, (3.17)

a(K* » n*z%
Calculation of transition amplitudes

Apart from the question of the ambiguity in the continuation factor «, the amplitudes
in (3.12) are reduced to the calculation of the matrix elements of the four-quark operators.
This can, in principle, be calculated in quark models [11, 12]. However, the quark model
calculations of the transition amplitudes are expected to work within a factor of 2. The same
is true for the vacuum-saturation method [4].

The hope arises that lattice calculations could provide us with a more reliable estimate.
Recent estimates based on lattice QCD [13] seem to support the vacuum-saturation esti-
mate. However, the reported results are only tentative and still subject to large systematic
errors. A similar approach, still in progress, uses chiral perturbation theory and lattice
Monte Carlo techniques [14].

As explained in the Introduction, the main problem is our lack of knowledge of the
exact hadronic wave functions. Therefore, the idea of setting a rigorous bound on the matrix
elements instead of evaluating them seems to be very attractive. This idea was elaborated
in detail in Ref. [15] and applied to the study of the matrix elements of two-quark
operators appearing in the processes m+ — nletv,, K, — mev, D+ — KOe*v (Ref. [15])
and B+ - Do*v (Ref. [16]). The QCD sum rule techniques for the matrix elements of
the four-quark operators were developed and applied to K° —K© mixing in Ref. [17]. The
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application to the A4S = 1 sector of the weak Hamiltonian [18] consists in a straightfor-
ward generalization of the method of Ref. [17]. The method of QCD sum rules is based
on analyticity, unitarity and general features of QCD [1].

4. QCD sum rules

In the QCD sum rule approach, the bound is set on the matrix element by relating
it to the two-point function

w(g) = i | d*xe*0|T(0(x)0%(0)) |0, (4.1
‘which gives the bound of the form
IF(0) < (0%, 4.2)

where [F(0)[ym: = {M'{O|M) can be viewed as the value of a scalar form factor F(r)
at ¢ = 0 which is a real analytic function in the complex ¢ plane with a cut (myg+m,)?
<1< ow.

The absorptive part of p(g?) is given by

1 1 , R .
- Im y(t) = 7 0l0,iIy <I'l0fi0) (2m)*8(p—3 pr). (4.3)
r

The sum in (4.3) extends over all physical intermediate states I' that match the quantum
numbers of the operator O,. Each state gives a positive contribution and the particular
one, {IMM'), sets the lower bound.

The two-point function y(g?) obeys a dispersion relation defined up to an arbitrary
polynomial in g2 of fourth order at most (this is fixed by QCD). To get rid of this arbitrari-
ness, one usually takes the derivatives of y(g?); in our case, it amounts to taking the fifth
derivative of the function w(g?)

«©

°v(q®) 11
2 o . = —_—
FQO) = (6Q2)5 5! Jdt (t+Q2)6 - Im »(1)
05 1 o\ )\,
= 2—7‘:2'J‘dt ('tm (1— 7) . (1— ;‘) [F()I*, 4.4)
where Q% = —¢2, t, = (m+m')? and t; = (m—m')>2.

Let us assume that the function #(Q?) could be calculated in & reliable manner. If that
is true, then one is able to set an upper bound on F(0). This we prove by using the Peierls
inequality in (4.4):

F(0Y) = (exp | duuIn ) (exp | dyuIn IF()P, @5)
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where du(t) is a normalized measure

du(t)=i< ‘o )l a

T \t—tp t

such that | du(r) = 1. The quantity

to
L 0h = 15 (1=t /2 o 172 ,_h vz 6
Q(aQ)—znzn o : , ; (t+Q2)6 (4.6)

is positive definite for ¢ > ¢,.
Applying the Jensen inequality for analytic functions to (4.5) gives

F(Q%) = IFO)” expt’f du(t) In o(t, 0%, 4.7)

and from (4.7) one immediately obtains an upper bound [18]

2n

1/2
: 5) [1+(1+0Q%t)"?]°

IF(0)| < (1o F(Q*)'? <

X [L+(L—t/tg) 2]~ 12, (4.8)

Obviously, the function /(Q?) in (4.2) is now given explicitly by the right-hand side of
Eq. (4.8).

The result (4.8) can be easily generalized to the case when a larger number of two-
-particle channels |M;M;) are included. In that case, Eq. (4.8) becomes

1+ fo— i)'
§ Frnat O — '
i MM; 27‘[1:)5‘[14_ <é+Q2>1/2:|

fo

5 < F(@). (4.9)

If one can relate the matrix elements Fy,,,(0) by SU(Q2) or SU(3) symmetry, then
the desired matrix element in (4.9) simply factorizes out. Since the same channels also
appear in the calculation of #(Q?), they give the same factor, and the form (3.8) is recovered
again.

Improvement of the bound

The bound (3.8) may be substantially improved using the techniques of Refs. [15, 18]
and some reasonable phenomenological input. With some information about the slope
and the convexity of the normalized form factor F(¢)/F(0), one obtains the improved bound

FO) < (0% {1+[0)+1,(Q)+4 [02+ 20:4,(@)+ (@)} 12, (410)
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where ¢, and g, are the slope and the convexity of F(r), respectively,
d FQ1)
°dt F(0)
, d* F(t)
R
dt® F(0)

0 = —4

]
t=0

+4gy, (4.11)

t=0

and 4,(Q?), 4,(Q?) are given by
QY = 2+ [14+(1=ty/to) 3] — 12[ L+ (1 +Q%/te)' 217,
22(Q%) = 2@ +2(1 =1, /te) P[1+(1—1,/t0) *] 72
—24(1+Q2/t0)”2[1+(1+Q2/t0)1/2]‘2. (4.12)

The improvement in (4.10) requires certain assumptions about the analytic structure of
F(t). The form factor F(r) should be

(i) polynomially bounded — and this really happens in QCD,

(i) it should have no zeros in the complex plane. Unfortunately, we have no control
of the second requirement, although it is a usual ansatz in the calculation of form factors,

In the next section we proceed to the calculation of w(g?).

5. Calculation of the function F(Q?)

As we have proved in Sec. 4, we are able to derive the strict bound if we know the
function #(Q?). The problem would be solved if we knew how to calculate the two-point
function (g?) reliably.

The function y(g?) can be calculated almost exactly in QCD at high Q2. The
corresponding diagrams are shown in Fig. 1. Diagram la gives the asymptotic QCD value

{a} (b} {c)

{d} {e)
Fig. 1. QCD calculation of the two-point function w(g?): a) asymptotic value with chiral quarks, b) mass
corrections, ¢) perturbative gluon corrections, d) gluon condensate corrections, €) quark condensate cor-
rections
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in the chiral limit, diagram 1b is the mass correction to the chiral limit, and diagram lc
represents perturbative QCD corrections. The “monster” diagrams 1d and le are non-
perturbative contributions coming from gluon and quark condensates, respectively. Gener-

1
ally, the — Im p(Q?) will be of the form
T

2 —2d 2 =2
as(p )) ) +aas(Q ) +b mg

1 2y _ 2\4
— Im p(Q7) = A(Q7) (as(Qz) - 0

7

<o

0> and m, (0[3s|0) are gluon and quark condensates, respectively;

a ., >
— F*|0 _
i o m{0]5s]0)

e R A &

+ec (5.1)

o N
where <0 — Fy F*
T

A, a, b, c and ¢’ are constants, m, is a running s-quark mass and a,(x2) is the running cou-
pling constant at the renormalization point y. The exponent d is proportional to the
anomalous dimension of the operator O. As it is transparent from Eq. (5.1), one is able to
calculate the y dependence of the matrix element explicitly and factorize it out. Sirice the
Wilson coefficient in (2.7) has the u dependence of the form [a(u?)]%, one sees that
it cancels the p dependence of Eq. (5.1) (which corresponds to the square of the matrix
element), so that the final result would be u independent.

Obviously, the result (5.1) would be valid for Q? large enough, so that the corrections
to the asymptotic QCD value stay moderate (say, less than 20-309,). With lower value
of @2, the corrections grow and the neglected terms (higher-dimension condensates, etc.)
become important. The lowest value of Q2 where the expression (5.1) would still be valid
depends crucially on the coefficients, a, b, ¢ and ¢’. These coefficients are not small at all
and the lowest value of Q2 is of the order of a few GeV2.2

However, since the bound in Eq. (4.8) grows as (Q%)%'2, it is.not very restrictive for
large Q2. Thus, in calculating the bound, we make an ansatz for the spectral function

I

~—Im y(t) (see Fig. 2)

s
1
— Im y(r) = sum of low-energy hadronic contributions + QCD continuum. (5.2)
T

1
The last term in Eq. (5.2) is given by the asymptotic behavior of — Im u(¢), i.e., by (5.1).
. T
In calculating the first term in Eq. (5.2), we have used the following ansatz:

w(q?) = i § d*xe" 0TI (x)J™(0)) 05 <OIT(*(x)T*¥(0)) 0. (5-3)

2 For the operator O, the coefficients [19, 20] are A = [5(1672)*}, a = ——%—%, b= —-20,
= —5(1672)/4, ¢’ = 10(1672), d = — 2.
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U g, d
H
&
u
la)
K

W

Fig. 2. Calculation of y(g?) for the operator O, using the ansatz in (5.2): a) asymptotic QCD contributions
and b) leading hadronic contributions

This corresponds to summing a class of hadronic contributions which are leading in the
1/N, expansion plus some nonleading contributions, but not all the subleading ones. The
ansatz can be justified in the framework of the effective chiral theory where the nonfactori-
zable terms, not present in (5.3), are found to be negligible [20]. Unfortunately, the u de-
pendence can no longer be controlled in (5.3).

The ansatz (5.2) leads to the following form of y(q?):

~ 4

d*k - N
Wa) = —i J s T I =), (5.4)

where { is a numerical factor depending on the coefficients in the sum of diagrams in Fig. 3
(for example, in the case of O,, { = 3).
By making use of an invariant expansion of the two-point function

(k) = i | d*xe"*0IT(J(x)J¥(0)) 10}
= ( - "nvkz + kpckv)n l(kz) + kukvn()(kz) (5'5)
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K* K®
O O
-

K® K*

] +
+
rof—
° °
*
B
>
[T E

n Ll
{b)
K* K® K°® K®
1 Ll L1 « L
NOEESIEETSTRES
wo e 1 w
{c)
K* K®° *
1 1
L, « (Ve —
>3O oy S
- n° 8
{d)

Fig. 3. Hadronic contributions to the function y(¢?) for different operators: a) O4, b) O-, ) 0/2, d) Os

and using dimensional regularization, one finds [18] that

@ 1
ow, C ’ [ 1 "~ 1 - AU
FQYH = 367 J dtdt J dx Z - Im T (t)-; ImI15°(t")
0 0 1,j
(1-x)3x3

A 3
+(x+1' 1 —=x))2=2(tx +1'(1—x)) (t+1)x(1— x)]} , (5.6)

3 6
{1+ =5 [tx?+¢'(1—x)*]+ Y [A;x*(1~x)?

with
4 = Qx(1-x)+tx+t'(1-x),

Ay = 8tt'+(t+1')?,
Aoy = Ay = (1—1t')?,

Ago = (t+1)% 6.7
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A good estimate of the function #(Q?) can be obtained by inserting the spectral
functions of the lowest hadronic contributions, i.e., K and = poles for Im I1§" and Im 75,
respectively. In addition, there are (Kn);_,; and (nn);- , continuum contributions (domina-
ted by the K* and the ¢ meson) which can be described by the Breit-Wigner type of reso-
nance. '

We find numerically that these contributions as well as the asymptotic QCD contribu-
tion are strongly suppressed at low Q2.

The expression (5.6) differs for the penguin contributions dominated by the operator
Os [18]. There appear two-point functions IT(t) with scalar and pseudoscalar currents.
The expression (5.6) can be turned into the divergences of vector and axial vector currents
with quark masses in the denominator. For example,

2
Juiy

my,+my

1 2
— ImII (1) = < ) 8(t—m?).
n

It turns out that the low Q2 behavior for the penguin y(g?) is completely saturated by n and
K contributions at the point Q} where the bound is optimal. In addition, the asymptotic

part at QF is completely negligible. This enables us to factorize out the vacuum-saturation
result for the matrix element,

FNQY) = (M)VU(Q?, mE, m?), &™)
with
1
36 x°(1—-x)°
I 2, 2, 2 — d .
(@7, mic, m:) 16an F 01 —x) + mEx + mE(l—0) ]
0

In the next section we discuss the results.

Estimate of &'/e
We start from the lower bound on ¢’/ derived reeently by Gilman and Hagelin [22]

Im cs) (9 J3 <n0n034051K0>>

(5.8)

El
= 8.4(s5e58
I el (5262335")< 01 J\16 ~ 1.4Gev?

The first parenthesis on the r.h.s. is the lower bound on the product of Kobayashi-
-Maskawa parameters given as a function of the B-meson lifetime 75, the K°— K09 mixing
parameter B and the top-quark mass m, The bound increases with increasing 75, but
decreases with increasing B and m,.

The second parenthesis is the Wilson coefficient and the third parenthesis is the matrix
element of the operator Os which has the form (3.13).

By numerical evaluation of the integral 7 in (5.7) we find that

Ka105IK ™)) < 0.9.4, 5.9
with # given by (3.15).
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The bound (5.9) is independent of the values of quark masses, or any other input
parameter except m, and my. From (5.9) the following constraints are obtained:

0.1.4° < [Kn* 105+ 0K ™| < 4. ' (5.10)

The lower bound in (5.10) is obtained by subtracting two large numbers and is therefore
sensitive to the approximation used. However, both normal and anomalous matrix elements
are proportional to .#‘” and, consequently, the sensitive quark-mass dependence is factor-
ized out. This is not the case in quark model calculations. In addition, the N, déependence
is also factorized, at least in the asymptotic limit.

Numerically, we find that with B = 2/3, 15 = 0.9x 10~12sec, m, = 40 GeV and
Imes = 0.1,
N

> 8x 1074 (5.11)

&

This is an order of magnitude smaller than the Gilman-Hagelin result in Ref, [22].

This difference is due to the following:

(/) In their paper Gilman and Hagelin used the bag-model estimate ot (n*]0s/K+>
-of Ref. [11], but-neglected the anomalous term. Actually, in Ref. [11] the anomalous term
was estimated using the unusually large values of current quark masses obtained via bag-
-model calculation, and found to be rather small. We have used the running quark masses
at 1 GeV? obtained from the QCD-sum rules: m, = 160 MeV, m, = 11 MeV and
m, = 5 MeV. Our values of quark masses + anomalous term would reduce the Gilman-
-Hagelin estimate by a factor of ~ 2.6.

(ii) We have used the continuation factor x = 0.923, which was also used in the
PCAC estimate of the K°— K9 mixing parameter B, while Gilman and Wise used x = 1.71.
This gives an additional factor of 1.85, which together with (¥) gives a result smaller by
a factor of 4.8. ‘

Actually, with our values of quark masses and accounting for the anomalous commuta-
tor term, we have

(n'n®1405K®> = 0.4(n°n°405K >y, (5.12)

where

_ {03 Gev® for wx =0923

0,0 0
{(n'n l405|K7)| = {0,55 GeV® for «x=171.

(5.13)

bag

K — 2n decays

The improved bounds on the matrix elements of the operators O, and O- are numeri-
cally

KrF 104K < 1.1x107% GeV?, (5.149)

Kn*|O_IK*)| < 0.67x1072 GeV*?, (5.15)
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in (4.10)
' -3 [
Sup | F(G){(10° GeV’)
8_
a)
G._
‘._
b)
2_.
c)
1 A
-05 0 05
2 2
Q°(GeVY")

Fig. 5. Upper bounds for [F(0)| = {{=*|0-K*)]
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and the bound on the matrix element {n+|0%/?{K*> is smaller by a factor of 3, which follows
from the relation

1— -1
[KrTO_K*)! =3

1+N°_1 ({(r*OYAK ™)

taken in the large-N, limit.

Compared with quark model calculations, we find that our upper bounds are always
below the quark model results. The bounds derived show that quark model calculations
overestimate the matrix elements of the operators with left-left helicities. The bag-model
value is 1.7 x 103 GeV* for (5.14) and 0.84 x 10-2 GeV* for (5.15).

Having in mind that there is a large cancellation in the penguin contribution coming
from the anomalous term, we find it rather difficult to account for the 47 = 1/2 rule. From
our bounds it follows that O- and OY? can account for at most 209, of the experimental
amplitude. The rest should be ascribed to penguins.

Sup |F(5) ] (GeV")

0.3+~
a)l
02+
\ \\‘._._./'
\
ol \b)
K;>‘,,—4/ ==
i L !
-G5 0 10 20

a’(GeV?)
Jig. 6.- Upper bounds for |F(0)| = }<{n*|0s|K*D|

6. Discussion and prospects

The derivation of the bounds:on matrix elements relies on a few important assumptions.
As far as the rigorous bound.(depicted by curves a in Figs. 4, 5, and 6) are concerned, the
underlying assumptions are as follows:

(?) General assumptions: analyticity, unitarity and QCD.

(if) Factorization in the estimate #'°*(Q2). As we have discussed, the chiral perturba-
tion approach [20] signals this to be a good approximation.
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(iiif) Unfortunately, the rigorous bounds are not restrictive enough to be used. There-
fore,the phenomenological input is needed to improve the bound. This relies on the assump-
tion that F(¢) has no zeros in the complex ¢ plane. We have no control of this requirement.

(iv) In using the ansatz (5.3), we have lost the explicit 1 dependence of the matrix
elements. This dependence can be calculated only in QCD at higher Q?, as in Eq. (5.1),
but it does not lead to the phenomenologically usefu! bounds.

In addition, the theoretical calculation of the amplitudes is influenced by the ambi-
guity in the continuation factor.

All ambiguities discussed above can be avoided if one combines the effective-chiral-
-Lagrangian technique with the QCD-duality approach of Ref. [21]. The basic idea [20]
is to use the amplitudes (3.7) calculated in chiral perturbation theory and to determine
the unknown coefficients a; using QCD sum rules. The duality then means that the sum
rules

S0

F, = J dtt" % Im 3(f) (6.1)

0

calculated in the effective chiral theory and in QCD should match in some range of s,. The
ratio of sum rules
F,

M, = 6.2
! F_ (6.2)

can be used to determine such a range of s,, since the unknown coefficients a; cancel in the
ratio (6.2). Then the sum rule (6.1) may be used to determine ;. Once a; are known, Egs.
(3.7) immediately give the des'red amplitudes.

These ideas have been successfully applied to the parameter B in K°—K© mixixig,
giving B = 1/3 within an accuracy of 209; [20], and to the calculation of the K+ — ntn®
decay in the standard model [19] where the theoretical value agrees with the experimental
value within a few percent. In both approaches, the 1 dependence of the matrix elements
is completely controlled and in the latter there is no ambiguity in momentum continuation.

The same approach can also be applied to the calculation of ¢'/e and 47 = 1/2 K — 2n
amplitudes. The work along this line is in progress [23].
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