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The equations of motion of a non-abelian monopole are derived from an action prin-
ciple using the definition of its charge as a constraint. These equations are the analogues
of the Lorentz and Maxwell equations for a point charge in an electromagnetic field. Their
derivation makes use exclusively of the intrinsic topology and dispenses with the introduction
of an interaction term in the action. The resu‘lting equations bear a formal resemblance to
the Wong equations governing the motion-of a classical point source in a Yang-Mills field.

PACS numbers: 14.80.Hv

1. Introduction

In these lectures we wish to study the principles governing the motion of charged parti-
cles in a gauge field. The most well known example is that of a point (electric) charge in an
electromagnetic field, which is governed by the Maxwell and Lorentz equations. These
equations can be obtained from an action principle in two ways, as follows. The usual
procedure is to write an action consisting of three terms:

o = A5+sly + sty 1.1)

where 27§ is the action of the free electromagnetic field, &3 that of the free particle, and |
is the interaction term. The correct equations of motion are obtained if the interaction term
corresponds to minimal coupling. The alternative is to use what can be termed a topological
action principle, which we shall now investigate.

* Invited lecture given by second author at the XXIV Cracow School of Theoretical Physics, Zako-
pane, Poland, June 6-19, 1984,
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It is generally accepted that the magnetic monopole is topologiéal in origin, 1e. it
exists as a result of some topological property of the field. Conversely, the existence of
such a particle imposes topological constraints on the possible field configurations. Hence
in an action principle, we expect the variation of both particle and field variables to be
no longer free but constrained. In other words, even if we start with the free action:

Ay = A5+ AY (1.2)

this topological constraint relating particle variables to field variables will induce inter-
actions between them. Indeed we find that the resulting Euler-Lagrange equations are the
dual transforms of the Maxwell and Lorentz equations for an electric charge, which, by
the dual invariance of Maxwell’s theory, are exactly the equations governing the motion
of a magnetic charge in an electromagnetic field. Now by the same dual invariance, electric
charges can be considered as “electric monopoles” and the above topological action prin-
ciple applies equally to give the expected Maxwell and Lorentz equations. In a sense this
derivation is more intrinsic than the normal approach in that the topological constraint
is nothing but the definition of the charge, and no-extraneous interaction term need to be
introduced. Moreover, the induced coupling turns out to be necessarily minimal,

Our aim in these lectures is to generalize these procedures to non-abelian gauge
fields. There duality is no longer valid in general. The (electric) sources and (magnetic)
monopoles in the theory carry different charges and hence their dynamics are presumably
different. The dynamics of the sources are readily given by the usual action principle via
the introduction of an interaction term representing minimal coupling. The monopoles
in the theory are, however, not so well studied. Their interaction with the gauge field is
relatively unknown. However, we know how to define the non-abelian magnetic charge,
which is topological in origin. Hence our topological action principle should in principle
give all their dynamics in such a way that the monopole-field coupling will come out as
a consequence rather than as an initial input.

The idea to derive the dynamics of a monopole through the definition of its charge
is inspired by a beautiful paper [1] by Wu and Yang on the classical monopole-charge-
-field system. However, they are able to make use of the dual invariance in electrodynamics
to avoid the difficulty of patching. Here we wish to study non-abelian monopoles, and in
non-abelian theory. exact duality no longer holds. To implement such a programme we
find it necessary to introduce field variables in terms of loops, rather than just points,
in spacetime. The requisite analytic machinery for dealing with loop variables is described
in the lecture by CHM (in the same volume) [2]. Using this, we are able to derive from the
topological action principle a set of equations which are analogous to the Maxwell and
Lorentz equations of classical electrodynamxcs We find a somewhat unexpected Jformal
resemblance of these equations to the Wong equatlons for a classical pomt source of
a Yang-Mills field [3]. This suggests the emergence of a conserved “isospin” vector relating
to the monopole and tempts us to speculate on the possibility that particles such as quarks,
which are usually interpreted as sources, might in fact be monopoles in non-abelian
theories.
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2. The magnetic monopole: a dual topolagical treatment

We wish to spend some time studying the familiar abelian case, from, several different
angles, so that we learn exactly what to expect, and more importantly, what not to expect,
when we come to make the generalization to the non-abelian case.

2.1. The usual action principle

Let us start with something very simple. Consider the interaction of an electric charge
with the electromagnetic field. From the usual action

d~=:§yo+d[, (21)
where the free action
1 :
Ay = — — | d*3f,,()f(x)—m | dx, (2.2)
16m
and the interaction term
dY*(z)
oy = —e|a Y(1) e dr, (2.3)

one obtains via the free variations with respect to a,(x) and Y*(r), the-usual Maxwell and
Lorentz equations:

8,f"(x) = —4ne J dx in@ 84 (x—~Y(1)) (Mel) (2.4)
2
mE D o vy 0, (Le) 2.5)
Here the normal symbols are used:

m = mass of particle
e = electric charge

Y*(z) = worldline of particle

a,,(x) = Maxwell potential

fi(x) = d,a,(x)—8,a,(x) = Maxwell field. 2.6

To (Mel) should be added the condition for the existence of the potential, which is equiv-
alent to

2,5 " (x) = 0, (Me2) (2.7)

where the star denotes the dual (see the next sub-section).
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All the above is invariant under the interchange of “electric” and “‘magnetic” (i.e. the
duality operation), so that we readily obtain the corresponding equations of motion for
a magnetic char@e in an electromagnetic field:

1Y"

0" (x) = —4ng f dr d-:l) 5(x = Y(2)), (Mgl) (2.8)
3,/*"(x) = 0, (Mg2) (2.9)
d*Y*(x) . dY,(t)

M ——— = —g*f"(Y(1)) ——, (Lg) (2.10)
art dr

where M and g replace m and e.

However, magnetic monopoles are known to be topological in origin (see sub-section
2.3), so that the constrained variation procedure as outlined in Section 1 applies. We shall
see that this procedure gives exactly the same equations (Mg) and (Lg). Notice also that
because of electric-magnetic duality, the constrained variation applies equally well to elec-
tric charges, which can be considered as electric monopoles of the dual field *f,.(x).

2.2. Duality

Duality plays an important role in abelian theory, and the lack of duality plays perhaps
an even more important role in non-abelian theory. Let us now make a few general remarks
about duality.

For any rank two tensor (in dimension four) one can define its dual, which is again
a rank two tensor. Thus

*fuv(x) = ’;‘ auveafw(x)s (21 1)

where &,,,, s the totally skew symmetric tensor with ey,,3 = —1, is the dual of the Max-
well field f,,(x). This definition is quite general and applies to the non-abelian case as well.

A rank two tensor F,(x) is defined to be a gauge field [5] if there exists a vector 4,(x),
called the potential, such that F,(x) is its covariant curl, i.e.

Fo(x) = 8,A4,(x)—3,A,(x)+ ie[A,(x), A,(x)], (2.12)

where the last term is the commutator. In abelian theory (denoted by lower case f, (x)
and a,(x)), the so-called Poincaré lemma is valid, which says that the existence of a poten-
tial q,(x) locally is equivalent to

S fM(x) = 0. 2.7)

This explains why, mathematically, that in Maxwell’s theory, where f,,(x) is a gauge
field everywhere, no point magnetic charges exist, and conversely, why if a magnetic mono-
pole exists, that f,,(x) cannot be a gauge field everywhere [3].

Since **f = fand f,, /" = *f,,*/", the action o is invariant under duality provided
we also make the interchange (i, ) < (M, g). Hence one obtains equations (Mg) and (Lg)
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from (Me) dnd (Le) as stated in the last subsection. Notice also that the dual of (2.7) is
8,f/*"(x) = 0, which is the source-free condition. By the Poincaré lemma again, this means
that *f,,(x) is then a gauge field, i.e. there exists a potential a,(x) for which *f, (x) is the curl.

The Poincaré lemma enables one to go freely, when the appropriate conditions are
satisfied, from electric to magnetic and vice versa. This is an extremely useful device in
many cases. The Poincaré lemma, however, does not apply in the non-abelian case. This
means that although one can form the dual *F, (x), this dual, even in the source-free case,
is not guaranteed to be a gauge field. Moreover, even if we can write down the equations
of motion of non-abelian (electric) charges, we have no way to obtain from them directly
the equations of motion for non-abelian (magnetic) monopoles, as we could in the abelian
case (Section 2.1).

2.3. Topology of the magnetic monopole

In order to avoid confusion, we shall refer to the Dirac magnetic monopole as the
magnetic monopole, and to any non-abelian generalizations with gauge group G as a G-mo-
nopole, or simply as a monopole. \ ‘

Suppose we have a magnetic monopole. Then by the Poincaré lemma we know that we
cannot find a well-defined singularity-free potential g,(x) in any region surrounding the
magnetic monopole. This can also be seen in an elementary way using Stokes’ theorem,
because otherwise the magnetic flux would vanish. Hence if we insist on describing the
physics in terms of a potential a,(x), we have either to introduce a string of singularities
[6], or to use patching [7]. We shall use the latter.

At each time ¢ consider a sphere surrounding the monopole, and divide it into the
northern and southern hemispheres overlapping along the equator:

./V:0<9<—_n2—+5, 0<¢<2n
y’:—;-—5<9<n, 0< ¢ <2m, (2.13)

n
forallt,r > 0,and 0 < § < IR Then patching of g,(x) means that we have two functions

a)(x) and @) (x), defined respectively in .4° and in &, satisfying along the overlap the
“patching condition”,

al(x) = af(x)— i;S(x)(')“S"(x), (2.14)

where S(x) is the “patching function”. There are two things we want. Firstly, we want the
total flux out of the sphere to be 4ng, i.e.

§§ fuvt §f fuv = 4mg, (2.15)
Ve K
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which by Stokes’ theorem is equivalent to:
§ (a;/ (x)—a(x))dx" = 4ng. (T) (2.16)

Secondly, the function S(x), which maps the equator into the electromagnetic group U(1),
must be single-valued. S(x) is in fact a map from a circle to a circle, so that for it to be
well-defined it must have an integral winding number, i.e. as x goes once round the equator
S(x) must come back to its original value. This is best illustrated by an example. Consider
the field due to a static monopole. In polar coordinates, we have

a =a' = a;,""" =0
+_ &
a, = ——-{1—cosf) (2.17)
rsin. 0
af =a7 =af =0
af = — —5_ (1+cos 0).

F sin
Solving (2.14), we have in the overlap
S = oi0ee, (2.18)
from which we deduce that S is single-valued if and only if
2eg = integer n. (2.19)

This is precisely Dirac’s quantization condition. The integer » here is the winding number
of S(x) mentioned above. If g, is the smallest magnetic charge, then

2ego = 1, (2.20)

and the integer n can also be interpreted as the magnetic charge of the pole in units of g,
in which case the RHS of (2.15) and (2.16) can be replaced by 4nng,:!

The equation (2.16) is a condition imposed' on the field configuration by the presence
of a magnetic monopole, and is therefoie the topological constraint (T) we are looking for.
Wu and Yang [1] have shown that (T) is in fact equivalent to (Mgl). Hence in a constrained
variation, one can use either (T) or (Mgl) as the topological constraint.

2.4. Constrained variation

As outlined in Section I, our topological action principle now requites us to vary the
free action

Ay = — j A0S (x) =M f dr (2.21)
l6rx

' A third meaning of n will be given in Section 3. For the sake of completeness we mention that
n is also the Chern class of a certain fibre bundle describing the magnetic monopole, but we shall not go
into this any further.
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under the topological constraint (T) or (Mgl). From what we did in Section 2.1, the varia-
tion is apparently to be done against variations of the variables a,(x) and Y*(z). But here
a,(x) is a patched quantity, and the patching condition (2.14) depends on Y*(r) in a compli-
cated manner, as the division into the two hemispheres depends on where the monopole is.
This loaks rather hopeless at first sight.

This difficulty can actually be by-passed as follows. Let us recall that in free Maxwell
theory one can equally obtain the equations of motion from the tree action | f, (x)f*"(x)d*x
by the variation of f,,(x) under the constraint J,*/*"(x) = 0 instead of the free variation
of a,(x). Furthermore this constraint is equivalent to the statement that Ju(x) is a gauge
field (see Section 2.2).

Now (Mgl) implies 8,*/*"(x) = 0 outside the worldline ¥ *(z), and hence by the above
argument the variation could actually be done against the variables f,,(x) rather than
a,(x). The variation against f,,(x) is straightforward because it is not patched (in fact
gauge invariant) and hence independent of the other variables Y*(x).

Using the method of Lagrange multiplicrs, we form now the auxiliary action

oy = ol f d‘xﬂu(x){" 7 (x) + dng f ar T gt Y(r»} @.22)

Variation against f,,(x) gives:

F(x) = —4n{s (0,4 ,x)— 0plo( X))}, (2.23)
and variation against Y #(z) gives:
2 .
MY _ ang(o 1, (Y(@) 0 7o, (2.24)

Equation (2.23) implies that:

i
%) = 5 (0A(x) = 5,A(x)), (2.25)

which is equivalent to saying that *f,(x) is gauge field everywhere, with the Lagrange
multipliers fulfilling the role of the gauge potential. Equation (2.25) enables us to eliminate
Au(x) from our Euler-Lagrange equations (2.23) and (2.24), to obtain (Mg2) and (Lg):

0,/"(x) =0 (2.9)

d*y* g
M = g 0, (2.10)

These together with the constraint (Mgl) are exactly the same equations of motion as
obtained in Section 2.1, and describe completely the interaction of a point magnetic mono-
pole with its electromagnetic field. We have thus shown that in the case of a magnetic
monopole, the constrained variation principle we propose is exactly equivalent to the usual
action principle with minimal coupling, and we have truly obtained the dynamics of the
system from purely topological considerations.
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Now because of electric-magnetic duality, we can treat electrons as electric monopoles
of the dual field *f,,(x), which is now given in terms of a potential @,(x)

(X)) = 0,8,(x)—0,d.(x), (2.11)

except at the (electric) monopole position, where d,(x) is not defined. The above procedwre
goes through exactly, and the constrained variation will give us back (Me2) and (Le)
together with (Mel) as the constraint.

Before we go on to our main objective — non-abelian theory -— let us emphasize
again the intrinsic character of this method:
(i) no interaction &, is introduced,
(i) the constraint is the definition of the charge, and
(iii) the induced coupling is automatically and necessarily minimal.

3. The non-abelian monopole charge
3.1. Definition

The magnetic charge in electromagnetio theory is both quantized and conserved. Indeed
these two properties are usually considered to be the defining properties of the physical
attribute “charge”. If we want to generalize the magnetic charge to a non-abelian gauge
theory, these two are then the properties we must endeavour to ensure. It turns out that the
appropriate generalization has, besides these two properties, rather unfamiliar character-
istics, which we shall now_show.

The two equivalent definitions of (abelian) magnetic charge discussed in Section 2.3
cannot be used directly for the non-abelian case. We know of no straightforward and
usable non-abelian analogue of Stokes’ theorem. Equations (2.15) and (2.16) are no longer
equivalent. Also when the gauge group G is not U(1), the patching function S(x) will no
fonger map a circle to a circle, and the concept of winding number is less direct. However,
there is yet a third (equivalent) definition for the magnetic charge which can be directly
generalized, and after we have understood this new non-abelian definition, we shall also
have realized how the two old definitions could have been generalized, though less straight-
forwardly. Consider then a closed loop? C parametrized by the function £#(s), s = 0 — 2m.
For technical reasons, we shall always consider based parametrized loops, i.e. functions
from the closed interval [0, 27] to spacetime, passing through a fixed point P,. The phase
factor or Wilson loop corresponding to C is defined by:

2x

d "
#(C) = exp ie J dsa,((s)) édis). (3.1)

0

This is an element of U(1). Consider now a family of loops C, which sweeps out a closed
surface (Fig. 1). As ¢ varies from 0 to 2m, $(C,) traces out a closed curve I' in U(1), starting

2 For a more detailed description of loops, please refer to the lecture [2] given by the first author.
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and ending in the identity (Fig. 2). I is called the total circuit, and it has a winding mumber n.
We see that [7]

2nn = total change in phase of ¢(C,) as t = 0 - 2n. 3.2)

Fig. 1. A closed surface swept out by a family of loops

Fig. 2. A curve of winding number 2 in the group U(1)

Now by Stokes’ theorem again, for any curve

e $a,x)dx" =e [| f(x)de", (3.3)
Ce

surface

from which we deduce that:

total change in phase = (4n) leg. 3.4
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Hence
winding number n = 2eg, 3.5
as before.

Quite generally in any manifold one can consider classes of closed curves I' equivalent
under continuous deformation, called (the first) homotopy classes. In particular we can
consider classes of curves in any group G. These classes are obviously invariant under
continuous changes, i.e. are topological invariants. Furthermore, they are always discrete.

Now for a non-abelian theory, if we replace (3.1) by

2n

@(C) = P exp ie j dsA,(&(s))

0

dg(s)
ds ’

(3.6)

where P, denotes path-ordering with respect to the loop parameter s, then for a family C,
as before, the total circuit is again a closed curve in the group manifold G. We now define-
[8, 7, 9] the non-abelian monopole charge as the homotopy class of the total circuit I,
Although this may come as a surprise, on closer examination we see that the homotopy
class is a topological invariant (hence is conserved), and is discrete (hence is quantized).
Therefore it satisfies both criteria for the definition of a charge we set out at the beginning.
Moreover, it reduces directly to the magnetic charge in the abelian case.?

Although it may not be apparent, these abstractl}} defined homotopy classes form
an abelian group. Therefore, these classes can be added and have inverses. Thus it makes
sense to consider systems of more than one monopole and also anti-monopoles, properties
that any non-abelian generalization shodld ensure. Here the homotopy class containing the
zero curve (i.e. just the identity in G) corresponds to the vacuum (i.e. no monopole).

The monopole charge defined above is rather abstract, and not easy to use. We shall
give a more usable formula in Section 5, which will also serve as the topological constraint
in our action principle, just as in the abelian case. Before doing so, we shall familiarize
ourselves with the concept by looking at some specific examples. We shall consider only
those cases that are of current interest in gauge theory.

3.2. Examples

1) The group SU(2) is topologically the same as the three-spheré S*. All closed curves
can be slipped off the sphere. Hence there is no monopole charge corresponding to SU(2).
This is true of all the SU(N) groups, as well as the exceptional group Eg.

2) SO(3) is obtained from SU(2) by “forgetting the sign”, or topologically, by identify-
ing pairs of antipodal points on S3. There are two classes of curves, those that can be slipped
off and those that cannot (Fig. 3). We can, if we like, denote these two classes by a sign,
just as in parity. The minus-charge is the simplest example of a non-abelian monopole
charge. Two generalizations then obtain.

3 The non-abelian monopole charge we consider are primitive concepts in the gauge theory and
have intrinsically non-abelian properties. It is therefore distinct from the soliton-monopoles considered
by ’t Hooft and Polyakov.
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a) All SO(N) charges are similar, either plus or minus.

b) Just as SO(3) ~ SU(2)/Z,, we can consider all SU(N)/Zy, which has charges that be-

have like integers module N. In particular, SU(3)/Z, has charges that compose like triality. -
We notice in the first two examples, that although SU(2) and SO(3) have the same

Lie algebra, they have very different monopole charges. This shows that the global proper-

ties of the group are of paramount importance here.

ﬂ Gi\ / - \
. . \ / \

charge =+ charge = —
Fig. 3. Two classes of curves in SO(3) representing + and — charges

3) The electroweak group U(2) is locally isomorphic to the direct product SU(2) x U(1),
and can be obtained from the latter by pairwise antipodal identification, as illustrated
in Fig. 4, drawn with the usual periodic boundaries. The antipodal identification means
that the part of the diagonal in the unshaded half is already a closed curve. The monopole

Fig. 4. Parametrization of U(2)

charge of such a theory can be described by two (related) classes, from the U(1) and SU(2)
parts respectively [10]. The case is similar for a theory combining electromagnetism with
chromodynamics, which has group U(3) (see Section 7).

4. Loop space variables

_ Our aim is to obtain equations of motion for a non-abelian monopole using a topolog-
ical action principle. The difficulty attendant upon patching the gauge potential A4,(x),
mentioned at the beginning of Section 2.4 for the abelian theory, hits us in full force here. As
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in abelian theory, the solution lies in choosing a new, but equivalent, set of variables. We
find that we need to go to the space of loops and formulate the problem there, as we shall
now explain.

First we shall introduce the notations and list the main results [11]. The details are
given in the lecture [2] by the first author, where references to other related work are also
listed.

A loop always means a based parametrized loop, i.e. a map &(x) from the interval
[0, 27] to spacetime X passing through a fixed point P, such that £(0) = ¢(2n) = P,. Let
Q' X denote the space of loops in X. One can also consider the space of loops in Q1Y i.e.
Q?X, points of which represent closed surfaces in X.

Consider a gauge theory with gauge group G. Let 4,(x) be the gauge potential. Then
the phase factor ¢(C) is a map from Q' X to G. Let x be a point on the loop C corresponding

d
to the parameter s. One can then define the loop derivative (—S—é—‘;(——) of any quantity defined
. s ‘
in QX (e.g. ¥(C)) by considering a delta-function type variation of £*(s) at the point s.
The logarithmic derivative of @(C):

F(Cls) = kS (0

?(C) 4.1
o&%(s)

is Lie algebra-valued, defines a parallel displacement in Q'X, and is hence very similar
to the gauge potential in X. One can also form the corresponding “field”

F(Cis)—

G,(Css,8') = < F(Cls')+ie[F (Cls), F(C|s)]. ~ (4.2)

d
38(s") ( P 384(s)
One can check immediately that G,,(C; s, s’) vanishes identically except at the monopole
position £¥(s) = £*(s") = Y*(r) for some 1. Similarly, we can define the “phase factor”
corresponding to F,(Cls):

2 2n
56“(5)
O(2) = P,exp ie dsth"(C,I ) 4.3)
TABLE I
Spacetime variables and loop variables
Spacetime X Loop space 21X
Potential Au(x) Fy(Cl|s)
Field Fu(x) Gu(Cs 5, 57)
Phase factor d(C) C/0%)

where {C;} is a family of curves parametrizing the surface X (a point in Q°X). Table I
gives a summary.
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As it may not be apparent from the above summary, loop space calculus is both com-
plicated and delicate. One main reason is that loop space is infinite dimensional. The other
is that for technical reasons we work with parametrized loops rather than actual geometric
loops. The motivations for going into all these loop space gymnastics must be very strong.
Indeed they are — or so we believe: Our task is twofold. We want to write down a topolog-
ical constraint, and we want to find suitable variables in which to do so. We shall deal
with the first question in the next section.

In abelian theory we knew already that a,(x) is a patched quantity in the presence
of a monopole and we showed how by a judicious choice of variables (f,,(x) instead of
a,(x)) we were able to do the variation without undue difficulty. In non-abelian theory
F,,(x) is not suitable for two reasons. Firstly, it is also patched. 4,(x) and F,,(x) transform
as follows:

AZ(x) = S()AT ()8 (x)~ %S(x)aﬂS‘l(x) (4.4)

FZ(x) = SG)FE(0)S™(x). (4.5)

Secondly, even in classical theory F,(x) does not describe the theory completely, in the
sense that two gauge inequivalent potentials may give rise to the same field.

From the definition of the non-abelian monopole charge one is naturally led to loop
space variables. As G,,(C; s, s") vanishes identically except at the monopole’ position, the
choice narrows down to ¢(C) and F,(Cls). Both are patch-independent, which is important
from our point of view. Both are vastly degenerate and have to be severely constrained.
Our choice of F,(Cls) is justified by the following theorem.

Theorem. The variables F,(Cls) satisfy

(T): ©(2) = monopole charge enclosed by X (4.6)
d&t -

®):  F(Cl9)—=0 (4.7
ds

(0):  FuCils) = F(Cals) if &1(5) = &3(s), 8 <5, (4.8)

if and only if there exists, except on the monopole worldline, a gauge potential 4,(x)
(unique up to gauge equivalence) such that F,(Cs) is defined by 4,(x) through (4.1) and (3.6).

The theorem can be considered as the non-abelian analogue of theé Poincaré lemma
(Section 2.2) generalized to include monopoles, and establishes the entire equivalence
between F,(C|s) under conditions (T), (S), (O) and the gauge potential 4,(x) up to gauge
transformations.

5. The topological constraint

It was promised at the end of Section 3.1 that a more computable form of the mono-
pole charge be given. We now show how this can be obtained in terms of the variables
F,(Cls) introduced above. Consider again the abelian case. The total circuit (Fig. 2) can
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be explicitly exhibited by drawing it out in the covering space of-the circle which is the
real line (Fig. 5a). The magnetic charge is nothing but the length of the total circuit measur-
ed out in R. Now SO(3) is the simplest case with a nontrivial non-abelian monopole
charge, hence let us first concentrate on this case. So to “measure” the SO(3) monopole
charge we consider the total circuit lifted to the covering group. SU(2) (Fig. 5b), which

.

~
AN

\\ 3
-— -
/\ 2
R =X
) 1 SU,
—
\
@ n
1
a b

Fig. 5. Covering groups of (a) U(1) and (b) SO(3)

will be a path starting at 7 and ending at — 7 for a monopole charge —. But the end-point
is the same as the “phase factor” @(2) for the “potential” F,(C|s) in loop space. Hence
we can now write the topological constraint (T) or (Mgl) as follows, where all group ele-
ments now belong to SU(2);

2n 2

O(Z) = P, exp ie J dt J dsF (C,ls) & (s)

ot

Q.

(5.1)

_ I if ¥ does not enclose a monopole
~ | =1 if X encloses a monopole.

This constraint holds in the infinite-dimensional loop space 21X, which is difficult to visual-
ize. Surprisingly enough, however, the two cases in (5.1) can be quite adequately illustrated
in a simple two-dimensional model. Recall that 4,(x) gives the change in phase from a point
x to x+dx", and F,(C|s) gives the change in phase from the loop C to C+4C. Our example



291

deals with the change in direction. It can in fact be thought.-of as an extremely simple
model of two-dimensional general relativity. Fig. 6a shows a flat strip of paper made into
a cylinder. The cylinder is flat, the curvature (corresponding to our field G, (C; s, 5'))
is zero, and the holonomy (corresponding to our phase factor @(X)) of the curve shownis 1.
This illustrates the case of no monopole. In contrast, Fig. 6b shows a flat semicircle with

a

Fig. 6. (a) Globally flat space, curvature = 0, holonomy = 1; (b) Locally flat space, curvature = 0, holo-
nomy = —1

its centre removed folded into a right cone without vertex. The cone is locally flat, its
curvature is zero, but the holonomy of the curve shown is. — 1 (the arrows are rotated by m).
This curve encircles the vertex which represents the monopole. Had we taken a curve
on the cone which does not encircle the vertex, we would have found its holonomy to
be 1, just as in the case of (5.1). '

The case for other groups is similar. One can always write down the holonomy @(%)
in terms of elements of the universal covering group of the given group. Some further
examples are discussed in-Section 7.

6. The action principle*

This section contains our main results, the derivation of which is neither short nor
easy. We refer the reader to [4] for details. Here we shall only outline the steps, and for
clarity work exclusively with SO(3)-monopoles.

*"Some of the results of this section were obtained after the lectures were given, but are included here
for completeness.
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First we have to re-write the free field action

F_ _ ﬂl_ 4 . L7
5 = o f d*x Tr (F . (X)F*(x)) (6.1)

in terms of our chosen loop variables F,(Cls). By direct cdmputation, this is found to be

i:p d -1
- é“] , (6.2)

2n
A = —(47t1—\7)_'j56‘ J. ds Tr [ F (Cis)F*(Cis)] [' —
ds ds
0

where N is a normalization factor given by

2x

N = [ ds| [Fd*(s), (6.3)
0 s'#s

and where the integration over all loops is a functional integration because the loops have
been purposely defined as functions.

The topological action principle for non-abelian monopoles can now be formulated:
the free action

2x
. . dg* dg,\ "'
oo = —(4nN) 6C | ds Tr [(F (Cis)F*(Cls)] (—:1; I -M ldt (6.4)
4]

is to be varied with respect to its variables F,(Cls) and Y*(1) under the constraints:

I if Z does not enclose M
(1: 62) = {—I if 2 encloses M (65)
dE¥ s
(S): F,,(c;s)f5 ©_y (6.6)
ds
(0):  F(Cls) = F(Cyls) if &(s") = E}(s") for s' < s. (6.7)

This should be carefully compared with the action principle we considered before. Table I1
gives a summary. Notice that the constraint (T) is topological in all four cases. The relation
between the two (T) constraints of the non-abelian theory exactly parallel the relation
between those of the abelian theory. The constraint (S) in loop space formulation corre-
sponds to the skew-symmetry of F,, in spacetime formulation. The constraint (O) for the
non-abelian theories obtains as a result of path-ordering and hence-has no counterpart
in abelian theory (cf. theorem of Section 4).

We shall now concentrate on action principle IV. The constrained vaiiation of the
action with respect to the field variables F,(Cis) leading to the Yang-Mills equations is
already done in our other lecture [2]. Here we shall concern ourselves with the variation
of the monopole worldline.
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TABLE 11
Summary of the action principles
Abelian theory Non-abelian theory
® aitn
1 _ 2R
Ao =~ T | F L) oF = —(@4aN)y* foC oj ds
dgr’ dE, It
Tr [F(Ci)FAC! ——
i rIEACIDFH S)][ ds ds]
Pure gauge Constraints i ]
theor . . Constraints
Y (1) 3" (x) =0 oz) =
(S) /*¥ skew-symmetric (M eE) =1
d&¥(s)
(S) F, u(CIS) = 0

ds

(0) Fy(Cils) = Fyl(Cals)
if E(s") = EYS) for &' < s.

{an )
Constraints Constraints
Monopole‘ kv dYF, e =1 if 2’ does not enclose M
theory 4 M 5500 = —4."!:gjdr dr (M &) —1if X encloses M
t .
§*(x— Y(T) S) FuCls) ds¥(s) ~0
! ds

(S) f*¥ skew-symmetric

‘ (O) Fu(Cyls) = F(C2ls)
i if £3(s") = &)(s") for &’ < 5.

Consider a variation 4Y(z) at a given point along the monopole worldline. Denoting
the right-hand side of the constraint (T) in (6.5) as {5, we see that if the monopole does
not cross the surface represented by X, then

{5140 =0, (6.8)
and if the monopole crosses the surface (Fig. 7a),
;1AL = ink, (6.9)
where the quantity ® satisfies only the group relation:
exp ink = —1. (6.10)

To understand the significance of x, we observe that the same change in phase can be
obtained by moving the surface an amount —AY(z) while keeping the monopole worldline
fixed (Fig. 7b). The change in phase in this case can be achieved by composing infinitesimal
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variations in loop space, and arises from having a non-vanishing loop space curvature
G,.(C; s, 5") due to the monopole. Hence we can write

w—1 . ’ - . o 66:(5’) "
(3 ALy = e | dudsds O5(1,00G,(Cs 5, 5)O5(1, 0) = =~ AY!(0), (6.11)

which equals inx by (6.9). This together with an algebraic form of (T) derived in Ref. [2],
which is (6.17) further on, constrains the two variations 4F,(C's) and 4Y(z) according to

(6.5), as. is required.
VoaY .
VA
e :
¢

Fig. 7. Equivalent variatiohs are obtained by varying (a) the monopole worldline and (b) the surface X

To obtain the Euler-Lagrange equations,” we introduce the algebra-valued Lagrange

muitipliers A(C's) and A; respectively for (S) and (T). To account for (O) we introduce the
truncated J-function

H(C'=C)ls = ﬂ (s~ (6.12)

and define a normalization factor

o(s) = | T] d*&'(s"). (6.13)

s’ >5
We now 1equire that the first variation of the action

0¢i(s)

ot

Ad = Asly+ie f o J dtds Tr [A;05 (1, 0)AF (C,ls)O (1, 0)

—in {82 [ dtdsdr Tr [A;07 (1. OR(C,1)O (1, 0)]

gy ) G YD) s () YY)
ot os dt

> A5
+ ’ 8C J ds Tr [A(C[s)AF (Cis)] —%:1) (6.14)
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should vanish for all variations 4F,(Cis) and 4Y*(7). From this we obtain the Euler-
-Lagrange equations:

v, -1
(2nN)" 'FYCls)o(s )[dg () di (S)]
S

ds
B f . f | é“() "()
— e [ 63 | aiout, 001:05 71, 0) 0 s(¢,— Oy HCle) os),  (6.15)
o [ .
M = JoZJdnh Tr [0,(1, 0)4:05 (1, O(C,15)]
gy 28 OH) YD 2 0 Y. (6.16)

ot Js dz
The Lagrange multipliers A(Cls) and A; can be eliminated, after some effort, from these

equations using the constraints. Finally we arrive at the equations of motion:

- dee AY° .
(Mg l) Guv(C; S,,S) = 1 dTK(C|s)8quG é (S) (T)
v ¢ - ds dt

x S*(E(s)— Y(1))d(s —s") 6.17)

(Mg2) FCls) = 0 (6.18)

05"(s)

d*Y (1)
L Mt
(Lg) e

= (2Ne)™! jds jéC«s‘,m Tr [x(C|s)F'(Cls)]

{174 a 3 -1
y déi(s) dY°(v) [dé () dfa“fl S4E(s)— Y(2)). (6.19)

ds dt ds ds _

These equations are analogous to the Maxwell and Lorentz equations of abelian theory
(2.8)-(2.10).

The equations of motion for a non-abelian monopole, (6.17)-(6.19), which we have
just derived, are in terms of the rather unfamiliar loop variables. They will presumably
take some time to understand, and more to solve. We have, however, noted an intriguing
relation between equations (6.17)-(6.19) and the Wong equations for a “classical” point
source of a Yang-Mills field [3]. This may help towards understanding the former and arises
as follows. At every spacetime point x where the potential 4,(x) is well-defined, one can
express loop variables in terms of spacetime variables:

dEss)

F(Cls) = ¢ (s, D, F" " (E)Pels, 0) = (6.20)

o&H(s)

G (Cis.8") = — 07 (s, 0)e,, e DIFTE() Pt s, 0) f—(—) 5(s—s)." (6.21)
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These relations fail precisely on the monopole worldline, since 4,(x), F,,(x) and *F,(x)
are patched around the monopole and do not have a unique limit at the monopole position.

Now suppose we choose to ignore this very essential obstruction and insist on using
the relations (6.20) and (6.21) on the monopole worldline. Then the equations of motion
(6.17)(6.19) take the following form:

D*F*(x) = — j a1 e vy, (6.22)
e dr :
DF*(x) = 0 (6.23)
diy*
M 2(’) = (4¢)" ' Tr [K(D)*F*(Y(1))] o (6.24)
dt dt

where K(t) replaces x(Cis) and satisfies again (6.8). These equations look like the dual
transform of the Wong equations under the replacements F,(x) — *F, (x), I(1) - K(z)

1
and e —» g = o’ except that curiously the covariant derivative is still defined in termg

of A,(x) rather than some potential of the dual field *F, (x).

We emphasize again that we cannot as yet give a meaning to equations (6.22)—(6.24),
except in the abelian case in which they reduce to (2.8)-(2.10). However, the formal duality
noted in the last paragraph suggests that the exact dual invariance of electromagnetism
which is lost in the non-abelian case might be reflected in the relation between the dynamics
of monopoles and sources of a non-abelian gauge field. If one could thus assign a meaning
to (6.22)-(6.24), then the monopoles which are defined by their topological charge (a minus-
-charge in the case of SO(3)) would seem to acquire another conserved attribute, namely an
isospin-like K(z), as a result of their dynamics. In that case, might it not be that quarks, which
are usually thought of as sources, are in fact the monopoles of colour gauge field, and that
their dynamics are to be governed by (6.17)-(6.19)? We find this an altogether attractive
possibility, as then both the charges and their dynamics would be necessary consequences
of the topology, and neither need be introduced by hand in the theory.

7. Further applications

Although SO(3) monopoles are representative of the essential non-abelian features
there are many other cases of theoretical interest. Given any Lie group G, the collection
of its first homotopy classes is itself a group, called the fundamental group of G. usually
denoted 7,(G). Of present interest to us are groups whose fundamental group is cyclic.
This includes all the classical and exceptional groups. (Some interesting examples were
considered in detail in Section 3.2). Two very different cases then arise. Either 7,(G) is finite
or it is infinite. In the first case it is isomorphic to the integers modulo p, where p is the
number of elements of 7,(G). Such monopoles behave very similarly to the SO(3) monopoles
we have considered. In the second case it is isomorphic to the integers. Such monopoles
exhibit both abelian and SO(3)-like properties. [10] as we shall now show.
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The most widely accepted theory of chromodynamics has quarks with fractional
charges. This means that the corresponding gauge group (for colour and electromagnetism
combined) is U(3) and not SU(3) x U(1). Now U(3) can be obtained from SU(3)x U(1)
by making the following triple identification:

1 00 w2 0 0 w 0 0
0 1 01 0 w? 0 Low]l={{0 o 0} w?] (7.1)
00 I 0 0 w? 0 0 o

\

where o is any cube root of unity other than 1 (Fig. 8, cf. Fig. 4). For parametrization
purposes, the shaded two-thirds can be ignored. The groups U(3) and SU(3) x U(1) are
locally isomorphic and hence have the same Lie algebra. The potential therefore splits

&

SU,

U,

Fig. 8. Parametrization of U(3)

into two parts, the U(1) part a,(x) and the SU(3) part 4,(1). To set up the topological
action principle we have first to name the variables. Fer expediency, we shall use a,(x)
for the abelian part, although we could of course usc loop variables for this part also.
The loop variables F,(Cls) then reter to the SU(3) part.
The constraints are also of two parts:
23
2nm | u‘)’“(t) s
u(n 2OMM(x) = — — | dt 0" (x—Y(1)) (T (7.2)
¢ ;

o) = {(wz"') if T encloses the monopole

if 2 does not enclose the monopole (Ty) (1.3)
plus constraints (S) and (O),

SU(@3):

where the group elements are all in SU(3) notation. Notice that the same integer n occurs
in (T,) and (T;). When » is a multiple of 3, the monopole is a “free” (i.e. colourless)
magnetic monopole. Hence we see that

unit “free” magnetic charge in U(3) = 3 x unit magnetic charge in U(1) = —. (7.4)
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THe action can now be written:
1 4 By 1 ) Y Palr
o= = |0~ ‘ 5C | ds Tr [FACIHFHCIH-M | dr.  (1.5)

Variation with respect to the variables a,(x), F,(Cls) and Y*(r) give two sets of Maxwell-
-Yang-Mills equations:

0,f"x) =0 (7.6)

OF (Cls)

o — 0 .
0&H(s) -1

plus the constraints (T,) and (T5) (or its equivalent differential form (6.17)), all coupled
via the Lorentz equation:

d*y, n dY’(1)
M-t = - %
dt? 2e Fow dr

+(2Ne')™ ! [ ds | 6Ce,y,, Tr [K(Cl5)F(Cs)]

4 470D dely

X

-1
o4,
ds dt ds ds ] 0°(5(s) - (o)), (7.8)

where k = 0 for n = 3m, and €* = (©v*") otherwise.

We are extremely grateful to our Polish hosts and friends for an enjoyable and stimulat-
ing school. Mest of this work [4] was done in collaboration with Peter Scharbach. TST
acknowledges a travel grant from the Royal Society, United Kingdom.
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