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in the paper a theory of dissipative dynamics of nuclear collective motion, based on
the projected time dependent Schrodinger equation is formulated. A collective subspace
is defined by means of group theoretical methods. Within this subspace an extension of the
time dependent Hartree-Fock approach appropriate for dissipative phenomena is proposed.
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The theory of large amplitude nuclear collective motion is not well established yet.
The main difficulties are due to the non-unitary and non-linear effects involving many
mathematical and conceptional problems which must be solved [4-8]. We propose a theory
based on the generalized master equation with an appropriately defined collective subspace
by means of group theoretical methods. It is a great advantage of group theory that it allows
one to develop a general method for the solution of the equation of motion. The possibil-
ity for semiclassical approximations and their generalizations is opened. To achieve this
goal, a new variational principle is introduced to find the projected wave function in the
semiclassical approximation. The theory is constructed for the many-fermion system, but
no special objections exist to use it in the boson case, if the corresponding group defining
a collective subspace is compact (an extension to a non-compact case is also possible but
requires more advanced methods of the harmonic analysis on groups [9, 10]).

1. The evolution equation of “‘subdynamics”

Assume a time independent many-body hamiitonian, H, of a closed many-fermion
system and two projectors P and Q satisfying the following conditions

P+0=1 and P-Q=0. )
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Using the standard projection technique [1-2] and Ref. [4] we obtain the “subdynamics
evolution equation” (SEE) for the projected wave function |yp(2)> = Ply(f)):

¢

J n
i 5 lwe(1)) = PHP|yp(1)> +J g(@) lpp(t—1))dr (2
4]
where
g(1) = —iPHQe "¥H¢QHpP (2a)
and
lwp(0)> = {p(0)) = (€. (2b)

The initial condition (2b) allows us to neglect in the derivation of SEE the term which de-
scribes the influence of initial data on |yy(t = 0)) = Qly(r = 0)) on the subsequent time
evolution of the system. Equation (2), when applied to the projected density operator ¢,
instead of the wave function |yp), is sometimes referred to as the pre- or generalized master
equation. It has been investigated by Prigogine and his collaborators, see Ref. [3] since
the mid-1950’s. It was found that Eq. (2) is equivalent to the Schrodinger equation.
In addition, it allows us to get an insight into dissipative processes between the P and
Q spaces. The time integration in the second term (the “memory” term) of the right hand
side of the SEE indicates that the value of |pp(#)) at time ¢ will depend on the past history
of the system ; the equation is nonlocal in time i.e. nonmarkovian. Moreover, it is obvious
that the projected wave function |yp) is not normalized. 1ts norm is a function of time and
describes a contribution of the motion in the P-space to the total evolution of the many-
-body system ie. the norm |yz(t)l| can be understood as a damping function for the
P-space motion.

If the P-space is assumed as a collective subspace and the Q-space describes the intrinsic
degrees of freedom, we see that SEE is a basic equation for non-adiabatic collective dynam-
ics. Clearly, in the first order of approximation the adiabatic theory can be obtained.
This adiabatic approximation is based on the belief that the memory term in SEE can be
practically neglected. But in many cases it is not a satisfactory assumption, e.g. for large
amplitude nuclear collective motion [4-8].

2. The definition of the P-space

To develop a theory of subdynamics based on SEE, the first essential step is the con-
struction of a P-space which, to be useful, should satisfy the following conditions:
— The definition should be general enough to describe a wide class of possible motions.
— The symmcti‘ies imposed by the nature of the collective motion should be conserved.
— No redundant variables ought to be introduced such as it is the case e.g. in the generator

coordinate method.
— The P-space should be defined in such a way that we can find a method of solving
equatiqn 2.
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— In addition, for consistency with other approaches, we require to have a possibility
to generalize semiclassical approximations in a systematic way, such as e.g. the TDHF
theory.

The appropriate definition of the P-space is described in the following: different kinds
of collective motion (and in many cases also non-collective ones) can be imagined as
“deformations” of the initial configuration, {€), of a many-body system. We assume
that all the ‘“deformations” form a s-dimensional Lie group G; let us denote by T(f),
where B € G, an unitary representation of the group G in the space of physical states. Any
vector, e.g. |yp(2)), belonging to the P-space can now be written as a combination of all
possible deformations of the initial state vector |€) (if the following integral is well defined
[9a, 10])

ipp(t)) = £ dpo(B, D*|B> (3)
where (8, t) is a square-integrable complex function on the group manifold for each mo-
ment of time, i.e. | dBi¢(B, 1)12 < co. [ dp is an appropriate left-invariant integral defined

G G

on the group G, and |8) = T(H)|€). Substitution of the ansatz (3) into SEE gives the
equation for the Laplace transform of the function ¢(8, ):

J B3B8, *#(2) 1) = i€) @
with the following ‘“effective hamiltonian”

#(z) = zP— PHP - g(2). (5)

The tilde indicates the Laplace transform, e.g.

0

2(z) = Je"”g(t)dt = PHQ -

0

HP 6
~oiia ©

and the asterisk stands for complex conjugation. For the compact group G (extension
to the locally-compact case is also possible) the Peter-Weyl theorem [9b] allows us to
transform equation (4) to a system of algebraic linear equations

ca @y
Zf,,qu Gy = €E© )

where

(@) = dim () | B, 2)*Di(p)

are the coefficients in the expansion of the function ¢(8, z)* in the series of the matrix
elements D;’;’(ﬂ) of all nonequivalent irreducible representations (i) of the group G; dim (1)
denotes the dimension of the i.r. (). The vectors lef) (s = 1, 2, ..., dim (i) furnish an
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appropriate basis for the i.r. (1) and ¢} are the expansion coefficients of the initial state
vector [€) into this basis. Note, that only residues of the function f,,(z) must be found
to calculate the function ¢(B, t), and finally to solve the Eq. (2).

3. A semiclassical approximation

The assumption of a sharply peaked function ¢(f', 1), i.e. semiclassical motion, for
each moment of time with the peak at §' = f(¢) (B(0) = ¢, where e € G is the identity
element) suggests the following ansatz for the weight function ¢(f', 1)

OB, 1) = WAW:; 1B~ (1B, ®

where x(f'') is a peaked function at " = ¢, and 0 << W[ ; ] < 1 denotes the norm of the
resulting state vector of the “mean motion”. The last statement is a consequence of Eq. (2b)
which implies that

GI dp'x(BY B> = I1€). 9)

From Egs. (8) and (3) we obtain a semiclassical approximation of the projected wave
function

lwp(B(), > = W[B(1): 1] 1B(1)), (10
where
1B(D)> = T(B()) I&.

With equation (10) we restrict ourselves to an orbit (in the group theoretical sense) of the
initial state vector like in the HF or TDHF calculations where only the orbit of the Slater
determinants (with respect to a unitary group [11]) are taken into account. However, it
must be emphasized that the ansatz (10) is much less restrictive than the TDHF approach.
Moreover, for an appropriate choice of the group G it should give an exact form of the
“mean motion” of the many-body system. Obviously, it makes sense only if ¢(B, 1) is
a sharply peaked function. From SEE and Eq. (10), a little algebra and integration from

= 0 to an arbitrary ¢, yield an expression which allows us to postulate a variational
principle for the calculation of WI{[B(¢); t] and |B(¢)) separately:

to d
iIn W[B(to); to] = Jdt' {(50')1 PHP—i - 1B(r')>
4]

. W —1), t'—1]
WB(t), ']

+ | de (B g 1BE =) } . 1)

We assume that the collective path is defined by a critical (stationary) damping function
WI{B; t] (i.e. one which is stationary with respect to small variations of |) at each time).
Clearly, the physical nature of this postulate must be carefully discussed in the future.



303

At this moment we note only that it is fulfilled for the adiabatic case, W = const., and
is expected to be true for small deviations from adiabaticity. The critical point technique
is more suitable for the group transformations than the standard variational calculus [11].
To apply this method we deform the vector |8(7)) by the set of all possible one-parameter
subgroups of G. Because we need these subgroups only in a small neighbourhood around
the identity ¢ € G, we can write

Gy(1) = &7, (12)

where o is a small real parameter and Y(¢) is an arbitrary skew-symmetric operator belonging
to the Lie algebra of G. Transforming with the operator of Eq. (12) one obtains from
Eq. (11)

to

iln W[e™WB: 1] = J dr’ {(ﬁ(:’)se”“"* (PHP—i g;) Rt ()
¢
0

¢

aY(t')
PRI e

W[ a¥(t )ﬁ : } <B( )l aY(t’ )+g(T)an(t )'ﬁ(t ‘C)>} . (13)

1]
We now differentiate Eq. (13) with respect to x and use the fact that - Y(¢t') = 3 A,(t)Y,,
k=1

where Y, is a skew-symmetric basis (independent of time) of the Lie algebra of G and A,(t")
are arbitrary functions of time satisfying the following condition

A0) = Alty) =0, k=12 .5 (14)

(Relation (14) is chosen in analogy to the standard conditions for variations in-the case
of fixed initial and final points.) Because the resuiting equation must be fulfilled for all
functions A4,(t') consistent with Eq. (14), we obtain a set of 5 equations

d §
i:i_t BOIYIB@)) = <BMWI [ Yis PHP]B(1)

w s
+(~1)f ~;E,ﬁ[ﬁ—~—<lf()[g(r), Y] 1pG—1))- (15)

Egs. (11) and (15) provide a system of s+ 1 coupled equations for {f(z)) and W[B(z); t].
In the limit of weak coupling between P- and Q-spaces it is expected that the ratio
WIp; t—1)WI[B;t1~ 1 for 0 < 7 < 1. Equations (15) become then decoupled from Eq.
(11). Neglecting the memory kemel in Eq. (15) and assuming that G is an unitary group
of dimension s with the generators

+ +

a a,—a, a

)/k': .”-{-v v+“ V,[l=1,2,...,n
i{a, a,+a,a,)
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we obtain after a few simple transformations an equation of motion for the one-body
density in P-space

d .
i <B(B)lay alB()y = {B(t)i [ay a,, PHP] iB(1)).

Choosing the initial state &) as a Slater determinant and factorizing the two-body density
into an appropriate product of one-body densities [12] end up with the TDHF equations
(assuming that PHP is a sum of one- and two-body operators). Other choices like e.g.
linear combinations of Slater determinants lead to an extension of TDHF. Corrections
due to a coupling between P- and Q-space are described by the memory kernel in Eq. (15)
and have to be included in any microscopic theory of non-adiabatic phenomena. Much
present and future activities are devoted to studies of various approximations for the mem-
ory kernel.
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