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METHOD OF SEPARATING THE ANGULAR COORDINATES
IN TWO-BODY WAVE EQUATIONS WITH SPIN*
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An explicit form of total angular momentum eigenfunctions is found for the physical
systems described by one three-dimensional space coordinate and arbitrary spin degrees
of freedom. The resulting formula is usefully parametrized by the multicomponent radial
wave function. The dependence on the angular coordinates is given by action of generalized
spherical harmonics. The formula gives a convenient method of separation of the angular
coordinates in an arbitrary one- or two-body wave equation with spin. As an example, the
method was applied to the relativistic wave equation for one Dirac and one Duffin-Kemmer
particle, proposed recently by Kroélikowski. A corresponding set of radial equations is derived
in" the case of spherically symmetrical interaction potentials.

PACS numbers: 03.65.Ge, 11.10.Qr

1. Introduction

If we try to solve the wave equation for spherically symmetrical one- or two-particle
gystem, it is necessary first to separate the angular coordinates. In the spinless case it can be
easily done by looking for the solutions that are simultaneously eigenfunctions of the L?
and L, operators. Since the angular part of those eigenfunctions is unambiguously deter-
mined by the spherical harmonics

'le,(r’ Ga ?’) = Ylm;(ga QD)R(")9 (1)
we are left with a much simpler equation for the radial function R(r).

For particles with spin the situation is obviously more complicated because we must
look for solutions that are eiggnfunctions of J? and J; operators. The general form of such
eigenfunctions can be written down using the well known formula for adding the angular
momenta

ij;(r9 09 ?’) = Z z Cls(r) Z (19 $, m—msg, 'nsij’ mj) X:nsYl,m—m,(o’ q))’ (2)
I s ms
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where (jy, j2, my, m;|j, m) are the Clebsch-Gordan coefficients and y,, are eigenfunctions
of S? and S, operators. The wave function in the form (2) is parametrized by some arbitrary
r-dependent functions Cj,(r). Substituting (2) into the wave equation enables us to eliminate
the spherical harmonics and obtain a system of coupled equations for the functions C,(r).
Practically, however, this procedure may be found inconvenient, because it needs multiple
applications of reduction formulae for Clebsch-Gordan coefficients, spherical harmonics
and spin- matrices.

Another way of eliminating the angular coordinates was proposed many years ago
[1]in the case of the Breit equation. The method is based on another formula for the eigen-
functions of J? and J;,

Pim (s 0, @) = U™'Z7(6, 9)p(r), 3

where y(r) is a multicomponent radial function, Z7/(, ¢) describes a matrix operator
dependent on angular coordinates, and U stands for a unitary transformation. The operator
Z7/ plays the role of Y, in the formula (1) and, therefore, it will be called a geneialized
spherical harmonic. The form of operator Z7’ for two Dirac particles was explicitly found
in Ref. [1]. In the present paper it is shown that the formula (3) can be generalized for an
arbitrary physical system containing one or two particles. In particular, the explicit form
of the corresponding operator Z7 is derived.

* Since in Eq. (3) the radial and angular coordinates are fully separated, it is convenient
to use this formula to eliminate the angular coordinates from the wave equation. The
general method is described in Sect. 2. In Sect. 3 some examples are given to illustrate
general considerations. The first two examples, reproducing known results, show how the
formula (3) works. In the third example a new result is described. Namely, our general
method is applied to the equation for one Dirac and one Duffin-Kemmer pariicle, proposed
recently by Krolikowski [2]. The corresponding set of radial equations is derived. Results
are summed up in Sect. 4.

2. General discussion

Let us consider the physical system described by one three-dimensional space coordi-
nate x, e.g. one particle in an external field or two particles in the centre-of-mass frame
{(x = x; —x,). The orbital angular momentum of the system is given by the expression

L=xxp=xx <_i£’_), @

ox

applicable both in non-relativistic and relativistic cases. The arbitrary spin angular mo-
mentum can be described by an appropriate matrix operator for which we have

[Si’ SJ] = isijksk, [Si’ LJ] = 0, i,j, k = 1, 2, 3. (5)

The total angular momentum is 2 ’sum of orbital and spin angular momenta J = L+S.
We look for the eigenfunctions of the J2? and J; operators.
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As the first step we introduce the spherical system of reference: x = (r, 8, ¢). Orbital
momentum (4) expressed by the angles 8, ¢ takes its usual form

L ; 2
=—1-———,
3 a¢
I? 19 s'n()a +——1 & 6
= - — 1 e - I.
sin 6 80 80/ = sin® 0 d¢? ©

When the spherical space coordinates are introduced it is useful to rotate the internal
spin coordinates by the following point-dependent unitary transformation:

- i[) = qu,
0-0 = vou?, (7)
U = exp (i0S,) exp (i9Ss), (3

wheie O represents an arbitrary operator. Acting on P the operators O maintain their
primary physical meaning, e.g. S, is the operator of the z-component of spin. However,
from the equation

X ~
§:=—-§=5, )
r

we ‘can see that the operator S, acting on { gets a new meaning of the radial component
of spin.

If the total spin has half-integer eigenvalues the transformation (7) is ‘ambiguous:
the substitution ¢ — ¢+ 2x into expression (8) changes the sign of the operator U. So,
we should consider the operator U and wave function § as two-valued. This fact is closely
related to the behaviour of systems with half-integer spin under spatial rotations.

Using the formulae given above it is possible to find the explicit form of transformed
operators J, and J2:

~

J3 = Lj, (10)

1 cos 8

J? = 1*+ S,)2-2 S,L,. 11
sinzﬂ( 3) sin2g "> (1

It is clear, that operator (9) commutes with (10) and (11), so we can look for common
eigenfunctions of S,, J, and J? with eigenvalues m,, m; and j(j+1), respectively. Let us
denote by x4 the eigenvectors of (9) (index i labels different solutions with the same eigen-
value). Explicit forms of 7 depend on the actual form of spin matrix S,. The eigenvectors
of (10) have the obvious form

o 1 ,
wm,(¢) = ﬁ;}' €Xp (”",“P), (12)
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where m; is integer or half-integer (depending on the total spin). Substituting the form

P96, ) = XD (P Prm,1(0) (13)

for eigenfunctions of (11) we obtain the following equation for @, . ;(0):

L d sin § —d + L (m3+m?)— 2 0s 0 (6)
- i m;m
sin 0 d6 do sin®9 "’ s 2o Pmamyi
= jU+ DPmm,i(60)- (14)

The solution regular at the points § = 0 and 6 = = exists only for j > m = max (|m;l, |m,})
and has the form

g\ lms—my! g\ !ms*mji
Pmom;(0) = (sin 5) (cos 5) Pimemmilmetmil) (cos 9), (15)

where P{*#)(x) is the Jacobi polynomial [3). The general eigenfunction of J2 and J, is
a linear combination of the solutions (13) with arbitrary r-dependent coefficients

Bim(r, 0, 9) = 1Y CLXDBm 6, 9). (16)

my i

The index m, takes the values |m,| < j, while the number of different values of the index
i is equal to the dimension of the spin subspace corresponding to the specific m,.

Eq. (16) can be rewritten in a more convenient form. Let us introduce the operator
projecting onto the subspace corresponding to m,:

Z x(‘) (i)

Hm,Xm,' = X.m,ém,m," (17)
Then formula (16) takes the form

1;”jm_;(r’ 99 ‘P) = Z;’U(O’ ‘P)';’(")a (18)
where
Z;U(Oa ‘P) = Z amsnmsq‘)m_qm;j(e)wm;((p)’ (19)

70 = Z Z L comp@. 20)
a,,,s

The functions C§) can be arbitrary, but some limitation for y(r) comes out from the fact
that m, cannot exceed the value of j:

O,9(r) =0 for [my > j. 1)
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The limitation (21) is important only for the lowest values of j, so that the function 9(r)
can be regarded as unrestricted if j is larger than the maximal value of the total spin.

The coefficients a,,, in the formulae (19) and (20) can be arbitrary numbers different
from zero. It is convenient to choose them in such a manner, that the operator Z7’ is
“normalized”, i.e.

§ r2drdQ(p’,(r, 6, @) P, 0, @) = | r2dr(%'(r))* 9(r). (22)

Using properties of Jacobi polynomials [3] one can get

2 _ U+miG-m!
lam,] - (.]+ (]+m )’(_] m ), (23)
where m = max (Im,], Im;}), m" = min (|m,], [m;).

The derived formulae give us a method tor eliminating the angular coordinates from
arbitrary equation with spin. Such a method consists of two steps:

1. performing the unitary transformation (7),

2. making the substitution (18).
If the equation is invariant under rotations, the operator Z7’ can be transferred to the
left and removed. The resulting equation is the looked for radial equation.

3. Examples

3.1. Dirac particle, j = 1/2, m; = 1/2

To give a simple example how the transformation (3) works we will find the form
of the wave function for the Dirac particle in the state j = 1/2, m; = 1/2. Introducing the

i .
spin matrices S, = } 2, = n enly’, Y1k i,j = 1, 2, 3) we can write the projectors (17) as
M, =5(142,)
H—x/z = %(1“23)- (24)

From Egs. (19), (15) and (12) we have

0 . 6 .
2130, 9) = L (1+2y) cosie‘@f2+-‘z—(1~z:3) sinie“’” (25)

and from Eq. (8):
U™ = exp (—7 Z39) exp (—% £.6)

0 0
= (cos %9— —iZ, sin %) (cosi —iX, sin 5) . (26)
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Using the Dirac representation of Dirac matrices-and denoting the componesnts of function
w(r) by fi, f», 81, g2 we finally obtain

- — o~ - - -

. 0. -
fi fi cos eor? fo+f.cos 8
- 0 ip/2 F . : i
fa f> sin Ee"’ ~f, sin f &
¥14( 6, 9) = UT'Z1)3060, )| | =U"" 0 . |= , @D
g g, cos 5 Packd g_+g,cosb
0 e B P
g2 g, sin — € —g,sinfé
L i 2 L .

where /. = 3 (f; ££2), g+ = % (g1 +g,). The result (27) is the standard textbook solution
of the problem.

3.2. Two Dirac particles, m; =0

As a second example let us consider a system of two Dirac particles. In the centre-
-of-mass frame the wave function is a 16-component function of relative coordinate x.
We look for the 16x 16 matrix Z74. If we restrict ourselves to the case m; = 0, then the

property ¥, 0(0) = P_,,0,0) implies
Z_(})(B’ <P) = Z ams(nms'*'n—m,)qjms()j(e)' (28)

ms=0

Projectors I1, are given by the equations
Iy =3 (1=22P),
m+1n_, = %(1'1'2%1)2%2)), (29

where the upper indices refer to the first or second particle. From the relations between
Jacobi and Legendre polynomials [3] we get

Poo; = P{"(cos 0) = Pj(cos 0),
0 0
Pioj = sz cosi P.2y(cos 9)‘— —_ P H(cos 0). (30)

Thus finally
Z96, ¢) = Vi+% [+ (1 —ZPEP)P(cos )

+ m)% a +Z(31 )E%Z))P}(COS 9)] (31
JU

Operator Z{(6, @) in the form (31) was used in Ref. [1] to eliminate the angular coordinates
from the Breit equation.
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3.3. One Dirac and one Duffin-Kemmer particle, m; = 1/2

Now let us ¢onsider a system of one Dirac and one Duffin-Kemimer particle in the
centre-of-mass frame. The spin operator for the Duffin-Kemmer particle has the form

i L ;
E, = ?g,jk[ﬁ', B, i k=123, (32)

where B* = (B°, *) are Duffin-Kemmer matrices defined by the relation
B*BB+ BB = g"' B+ g7 (33)
Total spin is equal to the sum § = 1 X'+ Z. Here the projectors I1,,, are the following:
Iy, = 3 (L+ 29Ty, I, =5 (+Z)0+5 (1-Z)ly,
M3, =30-Z)ly, H_yp=750-2)o+3(1+Z)l -, (34)

where I', denote the projecting operators corresponding to the third component of Duffin-
-Kemmer spin

Iy =535(1+5;) = +[(E2)*+5;],
o =(1-E3)(1+5;) = 1-(E5)%,
I_, = —E33(1-83) = 3 [(&;)*~5,]. (35

Phases of.the coefficients o, can be chosen as

o Jiad
Oy = CX_yyp == \/J+7 s

U3z = —U_3;3 = \/U-*-__'—)_%i) (36)

Then the operator Z}/? takes the form

1/2 1 iv/?- ]+% .7 8 20 (1,2)
0, 9) = \/j+ j__‘ Huzsmi cos in_’s,z {cos 6)
-3
0
+ m,, cosil’(o 12 (cos 0)
. 0 (1,
+ o_y, smi P; ,,z(cose)

+ ,0
\/j——i I_,,,sin’ 5005 > 'P" V. (cos 9)] . 37
-z
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Recently, Krolikowski [2] proposed a new equation describing in the static potential
approximation a system consisting of one Dirac and one Duffin-Kemmer~particle

{B°[E—V —ap—B(m+3 S)]+pp—(M+7 S)}p(x) = 0. (38)

For some physical systems it is reasonable to assume that potentials ¥ and S are spherically
symmetrical: V = V(r), S = S(r). Let us apply our formulae to eliminating the angular
coordinates from Eq. (38). Due to the rotational invariance the result of the angular
variables separation cannot depend on m , and, therefore, we can restrict ourselves to the
case m; = 3.

The first step is to perform the unitary transformation (7). For ap and fp we get

U(azp)U'1 = — joy — g — ety i j —ia, -i— —1- i
or r 00 sin@ r d¢

1 1
—— (QISZ_azsl)_a2S3 . COt 0,

r r
1 0
r g

3__ 1____ 2
UpU™—" = —ip B — 20 7 oy

1 1
— —(B'S,—B’S,)— >S5 — cot . (39>
r r
The other terms in Eq. (38) are not changed and the transformed equation takes the form

{ﬁ°[(E—V)-—(m+% S]-(M+3S)

o ¢ 0 1 i
B —iay — — — (4,8~ 2, 8)— — K,
or r r

0 1 i
+ [—iﬁ3 — — —(B'S,—B*S))— i Kz:l} P(r, 6, ¢) = 0, (40}
or r r
where
é i 0
K, =a 7 —iayS; cot 0+a, prw 6<p
. , 1 @
Zzﬁ ———-lﬂ S;cot0+p —;n_éé—(_p (4’)

The second step is to substitute Eq. (18) into Eq. (40) and to transfer to the left the
operator Z}/ 2 given by Eq. (37). Using properties of Dirac and Duffin-Kemmer matiices
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(Eq. (32)) and Jacobi polynomials [3] one can obtain
K,Z}? = ZV[ NG +D) (- E)*+(+5) 1= (E)]ia,
K,Z}* = ZJHV G+ (=D [-% 167 +4 Z(1-2E:)6']
+(+3) [ B +1 Z,(1-2(E:)8). (42)

All other terms in Eq. (40) commute with the operator Z}/ 2, Eventially, we get the follow-
ing radial equation corresponding to Eq. (38):

d
{ﬁ°[(E— V)=Bm+3 $)]-(M+% S)+ 670~ )i -
1T —
+ NG+ =D @Y 0~ B~ 3 iZ:1-2E))P']
1
+ — G+D B -(E) ) +3 -7 iTx(1-2E))8']

i ~ .
+ N [ﬁo(a1sz““251)"‘(.8152-/3231)]} y(r) = 0. (43)

Inserting the explicit forms of Dirac and Duffin-Kemmer matrices into Eq. (43) gives us
the corresponding set of radial equations [5]. .

One can easily check that for j = 1/2 Eq. (43) is correct, but the function %(r) must
satisfy the additional condition

(13, +H—3/2);’(") =0, (44)

which diminishes the number of independent components. There are no similar limita-
tions if j is larger than 1/2.

4. Final remarks

A general method of constructing the J? and J; eigen functions was described. This
method, applied to a system of one Dirac and one Duffin-Kemmer particle, allowed one to
obtain the radial equation (43) equivalent to the Krélikowski equation (38). The Duffin-
-Kemmer formalism is appropriate to describe the spin-0 or spin-1 particle, so the derived
equation offers various physical applications. One such example is 2 quark-diquark model
of baryons [4]. Nevertheless, a careful investigation of propeities of Eq. (43) showed,
that for many physically interesting potentials the Krélikowski equation suffers from the
Klein paradox at r — 0 [5]. Modifications removing this Klein paradox are discussed
in Ref. [6}].

I am indebted to Prof. W. Krélikowski for many valuable discussions. This work
corresponds to a part of the author’s Ph. D. thesis [7].
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