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NONPERTURBATIVE EFFECTS IN ELECTRON POSITRON
ANNIHILATION INTO MESONS
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A cross section for electron positron annihilation into three pions is calculated which
includes contributions made by exact solutions of nonlinear equations.

PACS numbers: 11.15.Tk

In the past few years Burt [1] has developed a quantum field theory that has met with
some success in describing persistently self-interacting spin-zero meson systems. By includ-
ing contributions made by exact solutions of nonlinear equations, problems of nonrenormal-
izability are avoided for field equations with self interacting terms. Using this method
a solitary-wave exchange potential has been found {2] which gives phase shifts in excellent
agreement with experiment [3]. A mass spectrum that matches the known neutral pseudo-
scalar mesons has also been found [4]. In this paper Burt’s theory of persistently self-
-interacting mesons is applied to the calculation of electron positron annihilation. A cross
section for this process, which includes the effects of self-interacting mesons, is found using
persistently self-interacting meson propagators.

The equation describing self-interacting mesons is the nonlinear Klein-Gordon
equation,

0,0 +m*p+ip® = 0. @

Exact solutions to this equation are found by Burt [5] to be
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In this expression V is the volume of the system, m is the pion mass and 4‘®) are creation
and annihilation operators of the Klein-Gordon equation which satisfy the commutation
relations
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k is the four momentum so that
K = K-Fr=0? — k2 = m?. @)

These solutions are generalizations of solitary waves and can be expanded in a series
of Gegenbauer polynomials [6]. In momentum space the persistently interacting propagator
constructed from these solutions [7] can be written -as

o«
(CY*H2@Br+1)*"1GBn+1)1b*"

1 2 2 = 3
P(k,Bn+1)"m?) =i (2 +(n+1)2m?)>" D>+ 1

Ae(k, Gn+1)’m?».  (5)

Here
1
(K2 —(3n+1)’m?*—ie)

Ap(k, B3n+1°m?) = (6)

is the Feynman propagator for the linear Klein-Gordon field with the mass replaced by
(Bn+1Dm?. Cl/® represents the Gegenbauer polynomial of order 1/3. The expression

b contains the coupling constant A and is
A
T V- 10m®’ M

where the volume of the system has been absorbed by redefining the fields and coupling
constant as

¢’ =V and A = AiV2 ®)

The constant D is an arbitrary function of momentum with the simplest form [1]
EZ m2 4/3

D = ay (1+y m) with y = (F) m?. 9

The series expansion for the propagator is asymptotic and for practical calculations must
be truncated. Once a choice of truncation is made, the constant ay appearing in equation
(9) can be determined using the requirement that the probability for intermediate states
is unity. If no perturbative contributions to meson propagation are included, ay can be
shown [1] to satisfy

N

1= Y (C3%0.0)™ > @n+1)!Gn+1)> 2ay> 1. (10)

n=0

Here N is the value of the summation index n where the asymptotic series for the propagator
is truncated.
The cross section for the process shown in figure.1 is

p 1 [M*4m*d*p,d°p,d°ps
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Fig. 1. Leading order diagram for e*e~ — 3m with generalized solitary wave exchange

The subscripts a and b refer to the electron and positron and v, is the relative velocity
between them. Quantities related to the final pions are denoted with subscripts 1, 2 and 3.
The mass of the electron is m, and the delta function assures conservation of four mo-
mentum.

Using Feynman rules [8] the matrix M is

(st)f= oy =(52) 0 = v 5‘"’
M = (u7Y(p,) (—ey")o " (Pp))ep” | —5—= | 1(p). (12)
i(p° —ig)
u(k) and v(k) are Dirac spinors for the electron and positron with spin s; and s,, y is the
standard gamma matrix [8], e is the electron charge and p is the four momentum of the
internal photon. I(p) represents the internal meson lines where the propagator for each
meson is now a persistently interacting propagator given by equation (5) so that

-1

I(p) = (27'5)4

f P(q, 3n+1)’m>)P(p—q, Bl+1)*m?)d*q. (13)

o

Time and angular integrations can be evaluated analytically in the center of mass
frame with momentum transfer equal to zero. The remaining momentum integral and
phase space integration [9] were done numerically for several values of the parameter y with
summation indices / and »n from zero to 10. Values of ay for each value of [ and n were
also found numerically. A plot of the cross section for y equal to 0.62 with center of mass
energy between 1000 MeV and 1900 MeV is shown in figure 2. The location of peaks and
general form of the cross section does not depend on the parameter y. Peak values for other
choices of y are shown in Table 1. Values of y greater than five give unrealistically small
cross sections.

Results of experiments doné at the accelerator at Orsay indicate a possible peak in
the cross section at 1650 MeV of approximately 12 nanobarns [10-12]. Data is not available
for other energy regions. Although the present calculation does not include perturbative
contributions, higher order diagrams or other processes which might produce three pions
from electron positron annihilation, it matches the available experimental data quite well
for y equal to 0.62. For this value of y, a peak of 12.7 nanobarns if found at 1630 MeV
in the calculated cross section. Further experimental results are needed to better verify
the results of this calculation.
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Fig. 2. Cross section for ete~ — 3= (log scale) for center of mass energies between 1000 MeV and 1900 MeV

with parameter » equal to 0.62

TABLE 1

Values of the peaks in the nonperturbative contribution to the ete™ — 3w cross section in nanobarns for

several values of the parameter ¥

y =50 y =107 y=02

1090 MeV 0.2173 x 10° 0.9825 x 10 0.2698 x 10°

1480 MeV 0.4966 % 10~ 0.3066 x 10° 0.4989 x 10°

1625 MeV 0.6156 x 10-1° 0.1715 x10° 0.6456 X 10°

1900 MeV 0.4097 x 10~ 0.4249 % 10* 0.6912 % 10°
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