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We propose a class of grassmanian models in 2k dimensions which for k = 1 reduce
to CPY models and for £ = 2 to composite SU(2) Yang-Mills models. We define and discuss
the conditions of selfduality for these models and present corresponding one instanton field
configurations. Next we consider a universally coupled Dirac field. We exploit the similarity
of the matrices used in the construction of one-instanton field configuration to the convenient
choice of Dirac gamma matrices to find zero modes of the associated Dirac background
problem.

PACS numbers: 11.30.N:

1. Introduction

In recent years an increasing degree of attention has been paid to topological properties
of field theoretical models. Ficld equations of these models are nonlinear and they often
possess extended solutions in either Minkowski or in Euclidean space. In Minkowski
space they describe real extended objects — like solitons of the Sine-Gordon or KdV
equations, in Euclidean space they provide stationary points of functional integrals used
in studying quantum properties of the theory. This latter case represents itself, for instance,
in the existence of instanton solutions of nonabelian. gauge theories.

In the functional integral formulation of a field theory we compute various integrals
of the type

I = d[¢]exp {~ | d*xL($, 0,9, .)}0[$ ... 1}, (L.1)

where d[¢] denotes functional integration measure and O[¢, ...] various expressions
constructed out of ¢ and its derivatives [1]. The only practical way of calculating expressions
like (1.1) in general is by expansion around stationary points of the action

S = | d*xL(¢, 8,9, ...) 1.2)
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(i.e. solutions of the Euclidean “equations of motion”). The conventional purturbation
theory corresponds to the ¢ = 0 solution and the expansion around ¢ = 0. As the action
for this solution vanishes we find

0

I=g"Yy gfa,, (1.3)

p=0

where g is the coupling constant. If there are further solutions they contribute to I as well.
Their contribution is given by

o

S
1= exp(— f) Z g b, (1.4)

=0

where S, denotes the value of the classical action on such a solution. Are these further
contributions important? Clearly each one of them is not — but their total contribution
can become very important in some theories. In most theories we do not know and so
further studies are needed in order to clarify this point.

As we have already said nonabelian gauge theories possess such solutions. To find
them one has to solve

D,F,, = 0,F,~[A, F,] =0, (1.5)
where as usual

F,, = 0,A,—0,4,+[A,, A4,]. (1.6)
These second order equations for 4, are hard to solve. However, one can find first order

equations which when solved give solutions to the full second order equations. These so
called self duality equations

F,, = +*F,, (1.7)
where
*F‘", = ’%‘ 8“‘,“’;1"“” (1.8)

guarantee solutions of the full equations (1.5) due to the Bianchi identities

D¥F. = 0. (1.9)

BT py

Similar properties are also true in other models and in different dimensions. The Yang-
-Mills self duality equations (1.7) were solved by Atiyah-Drinfeld-Hitchen and Manin
using a construction (ADHM) [2] which involves an auxiliary s-model like field ¢. This
V field is matrix valued, satisfies

Vv =1 (1.10)
and the Yang Mills 4, field is given by

A, =V*o,V. (1.11)
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Can we exploit this composite nature of the 4, field? Should we take seriously the more
elementary V fields? It is interesting to recall that composite Yang-Mills fields arise natu-
rally in some supergravity models [3]. These models are often considered as theories in
higher dimensional spaces — and then dimensionally reduced to 4-dimensional space.
Such a reduction often involves finding some classical solutions and then imposing con-
straints on the possible forms of quantum fluctuations about these solutions.

A simple lower-dimensional model with similar topological properties is the CPY !
model in 2 dimensions {4]. In this case the basic field is the vector valued complex Z field
which satisfies a constraint similar to (1.10) namely

ZYZ = 1. (1.12)
The action density is given by
(D,2)'D,Z, (1.13)
where D, is defined by
D,y = 0,y—9Z"9,2). (1.14)

As the field strength in (1.6) can be considered to be given by
F,, = [D,, D,], (1.15)

where D, is defined as in (1.14) with Z replaced by ¥ we see striking similarities between
the CPY ! model in 2 dimensions and composite Yang-Mills fields in 4 dimensions. In fact
we can generalize these similarities further and obtain a sequence of o-like models in 2k
dimensions, which for £ = 1 and £ = 2 reproduce the CP'! and composite SU(2) Yang
Mills models. In the next section we present these models and discuss their properties.
We show that we can define a topological charge and state appropriate selfduality relations.

Moreover, a simple generalization of a Bogomolny bound [5] allows us to show that
solutions of the selfduality equations are local minima of the action. All this is discussed
in the next section.

We then proceed to look for solutions to these selfduality equations. An ansatz is
proposed which allows us to find solutions to these equations. We show that for d = 2
we recover one instanton solution of the CP! model and for d = 4 — one instanton of the
SU(2) Yang-Mills model. Next we consider the minimally coupled Dirac field. We show
that the matrices used in the construction of our one instanton solution can be used to
define appropriate Dirac matrices. This allows us to find zero modes solutions of the appro-
priate background problem [6].

Actually the problem of looking at Yang-Mills theories based on Lagrangian densities

L=tt(FA..FAF)YFA..FAF)
“-—Y_—J
k times
in 4k dimensions has a long history [7]. In these papers the selfduality equations are pre-
sented, shown to imply the full equations of motion, and some solutions of the equations
of motion are given. Our solutions, when considered as expressions for the composite
SU(2%*~1) gauge fields coincide or are equivalent to some solutions given in reference [7].



354

2. Grassmann models in even dimensions

In analogy with nonabelian (grassmann) ¢ models in 2 dimensions our basic fields
will be grassmann valued fields Z(x) [8] defined over a 2k-dimensional space (x € R*).
A convenient representation is provided by p x N matrices,

Zi(x), .1

where o = 1... N and i = 1 ... p denote the indices of the global and local symmetry
respectively and we require that N = 2p.
On our fields Z we impose the constraint

zzZ =1,, (2.2a)
which in our representation is given by
Z}z% = 5}, (2.2b)
To construct the Lagrangian we define
D,y =0,9y—yZ*0,Z (2.3)
for any grassmannian field y. Then

[D,,D,] =F, = 0,4,—0,4,+[4,, 4,], 2.4
where
A, =2%3,Z (2.5)
i8 a composite Yang-Mills-like field. The curvature in (2.4) can be thought of as the coeffi-
-cient of the form

D A Dy (2.6)
and so it suggests that we consider also higher order forms

DYy =D AD A ... A Dy. QN
———

I times
Then for a Lagrangian density form in 2k dimension we can take
Ld*x = tr [D™Z]*DWZ, (2.8)

where the fields Z are, as usual, subject to the constraint (2.2a).
As D is a covariant derivative with respect to local U(p) transformations

P(x) = y'(x) = p(x)R(x) (2.9)
where

R(x) € U(p),
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we see that the proposed model possesses a nonabelian local U(p) symmetry. Moreover in
the case k = 1 the model reduces to the familiar grassmann model in. 2 dimensions

L=tr (D,,Z)*D,,Z 2.10)
and in the k = 2 case it leads to
L=tr (F;Z‘”ZFW) = {f F:fvl“,‘v 2.11)

i.e. the familiar Yang-Mills Lagrangian density for the composite field 4, (2.5). In 6 dimen-
sions (i.e. for k = 3) we use D31Z, The coefficients of this term correspond to antisymmetric
combinations of D,ZF,, and so the Lagrangian density in this case is given by

L =tr (A,‘,,,)’“AM, (2.12)
where

Aup = DZF,,, = D,ZF,,+D,ZF,+D,/ZF,,. (2.13)

In 8 dimensions (i.e. for K = 4) we use D'*JZ, whose coefficients correspond to anti-
symmetric combinations of ZF, F,; and so are given by

ZAaﬁ)'6 = Z[(aﬁF?J} = Z[Faﬁpyé + F}’aFﬂJ + Faan? + ‘Flﬂ.yFm; + FéﬁFa]? + F?JFdﬁ} (2a.14)

and agrin the overall Z factor in (2.13) drops out of the Lagrangian density which is given
in terms of 4,;, alone

L =tr (A;}y,,Z‘LZA,,y‘,) = tr (A;;y,,A,,,,,,). (2.15)

Returning back to the form language we see that due to the constraint (2.2a) the Lagrangian
density form is given by
Ld® = tr (F A F)*(F A F), (2.16)

where F= D A D.
This observation generalizes and so we see that in d = 4K dimensions

Li*x =tt(FAF A ..F)"(FAF A ..F) 2.17)
k
times

while in d = 4k+2 dimensions

Ld**?x =tt(DZAFA .. ANFY'DZAFA ..AF. (2.18)
L_.__Y.____J “‘—Y'_—J
k times k times

This demonstrates the alternating patterns of models mentioned in the introduction:
d = 4k dimensional theories involve only composite potentials and field strengths and the
overall Z fields in D'Z can be dropped while in d = 4k+2 dimensions covariant deriva-
tives of the grassmann fields appear as well.
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We can proceed to define a topological charge and to write down the generalized self-
-duality equations. As the space is even-dimensional (say d = 2k) a dual to a &k form is
again a k form. This allows us to define a topological charge density form

Qd*x = tr {[DMZ]**p¥IZ}, (2.19)

where *DIZ denotes the dual of D™Z and so if the coefficients of D™Z are represented
by 4 the coefficients of the dual form *D™Z are represented by

ay...ax

*Aax..-ak = ;(—, gm...akﬂx-.-ﬂkAﬂx-an’ (2~20)

where &,,. 4 5,..5,. 15 the completely antisymmetric tensor in 2k dimensions. Notice that
this definition of the dual form and of the topological charge density agrees with the familiar
definitions in 2 and 4 dimensions. Moreover a few lines of algebra allow us to prove that
Q is a total divergence.

Q = 0", (2.21)

where

T, =T 6us aeevpr s (L 0,2) (0,2704,Z) ... (O _,Z" 0p,_,2) (2.22)

which in turn establishes the topological nature of Q.
The self duality (antiselfduality) relations are now given by

D¥IZ = +ikplilz, (2.23)

and again agree with the corresponding definitions in 2 and 4 dimensions.
As the form D™Z is completely antisymmetric so is its dual *D™1Z, This antisymmetry
allows us to prove that

tr [[*D™Z]**D™MZ] = tr [[D™MZ]*D™MZ] (224
which in turn gives
tr [[D™Z]*D™Z] = ; tr [[DWZ +i*DMIZ]* [DMZ + i*+D™MZ]]
+4 tr [[DMZ —i**DpMZ ]+ [ D¥IZ — i** pIZ]] (2.25)

which shows that the selfdual and antiselfdual fields are local minima of the action [5].
Thus solutions to the selfduality equations [2.23] will automatically solve the full equations
(Euler Lagrange equations for the variational problem based on the Lagrangian density
(2.8)). In each case we always restrict ourselves only to fields which also satisfy the
constraints (2.2).
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Let us recall that for k even D™™1Z and its dual *D™Z involve an overall factor Z.
Thus for k = 2p the selfduality (antiselfduality) relations (2.23) can be rewritten

FAFA..AF=x%FAFA..AF), (2.26)
k___Y_J ¢ ~ _J
p factors p factors

while the corresponding relations for & = 2p+1 are given by

DZAFA..ANF=+i¥DZAFA ...AF) 2.27)
p factors p factors

As these relations involve the composite field strength form F but we treat them as equations
for the grassmannian field Z we see that in order for the theory to have nontrivial topological
properties the degrees of the local and global symmetry transformations that can be applied
to the underlying grassmannian field Z (in 2.3) have to be sufficiently large. In the simplest
case (d = 2 dimensions) there are no restrictions and so p > 1 and N >>2. Thus the simplest
model (p = 1, N = 2) i.e. the CP' model has already all required topological properties
and though we can consider p > 1 and N > 2p not much is gained by these generalizations.
For d = 4 we should take p > 2 and so N > 2p > 4. The simplest of such models (p = 2,
N = 4) is just the familiar HP! model, used in the ADHM construction of a SU(2) Yang-
-Mills one instanton solution [2]. Here not much (from the topological point of view)
is gained from increasing p; the increase of N is required in order to find multi-instanton
solutions. However, for the simplest nontrivial field configuration p = 2, N = 4 is required.
In a similar way we expect to increase p and N in higher dimensions. For d = 6 we can
take p = 4, N = 8 and in general for d = 2k we will take p = 27!, N = 2“. Such a choice
may not be strictly required — but as we will show in the next section, it is very convenient
and in some ways very natural. It allows us to propose an ansatz which in turn allows us to
find one instanton solutions of the selfduality equations (2.26)-(2.27) in arbitrary even
dimensional space.

3. One instanton solutions and their properties

The discussion in the previous section centred on proposing self-duality relations
(2.26)—(2.27). Here will find some solutions of these equations. In seeking such solutions
we will require that their action is finite and nonzero (i.e. they correspond to the familiar
instantons of 2 and 4 dimensional theories). This restriction is imposed for “physical
reasons”’ — such solutions provide important contributions to the quantized version of the
theory defined in terms of functional integrals in Euclidean space; they are genuinely
nontrivial from the topological point of view. Relaxing this condition opens the door to
the whole plenora of topologically trivial (by maybe physically important) solutions. For
example if the grassmannian Z in (2.1) does not depend on one variable x' of space-time
it is automatically a solution of the relations (2.26) or (2.27).



358

To find solutions to our selfduality relations (2.23)-(2.26) we try the following ansatz:
we take d = 2k, consider Z¢ where i=1,...2°7 %, a = 1,..., 2" set

zi = ﬁ_ , 3.0

V14x?
where x? = x3+x3+ ... +x3,, and choose
fF=06"% for a>k
f2=[r0X,); for o<k (3.2)

The problem is reduced to finding a suitable set of 2k 2~ x2*~! matrices I',. Before
we construct them let us observe that the familiar one instanton solutions of the CP!
model and SU(2) Yang Mills theory (in the regular gauge) are reproduced by this ansatz.
They correspond to, respectively, I',(1) = 1, I',(1) = i and

rQ = [(1) (1’] ~1, Q= "[(111(1) o “)] = ioy,

r,Q2) = i[ﬁl(l) r 253))] = io,, T42)= i[(l) _(1)] = oy, (3.3)

Hence it is natural to define I' (k) inductively

ri = (1’]

~_ |0 I (k=1 _ 3
F’(k)—l[l",_l(k—l) 0' ] 1=2,..2k-1,
I, (2k) = i[(l) _(1)]. B4

It is easy to prove that our matrices I' (k) satisfy
I (k)T (k)+ T (KT (k) = T (oI (k)+I' (kI + (k) = 26,,1. (3.5)

This shows that our grassmannian Z is properly normalized (i.e. satisfies (2.2a)). Moreover
a few lines of algebra show that

[(1 —P)Fﬂ]ai" (3'6)

(D2 = 8,27~ 252;79,2% = ’
H H i“B Y J1+x2

where P is the projector
P, =ZZ}", 3.7
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and that

- )2[ Y- | (38

In addition, our choice of I',(k) matrices and the antisymmetry of the forms appearing
in (2.23) and (2.25) reduces the condition of selfduality to

rry..ry= (@ Meii T s - T 3.9

However, due to (3.5), this condition is equivalent to
I35 . Ty = ()L (3.109)
It is easy to show that this condition is satisfied by our ' 4(k). To do this we observe that as

IOy (k) ... I3(k)

=i[g;f(k~1)r2(k—1)...r,k_z(k—l) (1 I k=3 1) . Ty 1)] @3.11)
and
IFk=DIy(k—1) ... Tyy(k—1) = —Ty(k—DI§(k=1) ... TH_5(k—1) (3.12)
we have

r,(k)r;‘(k)...r;,‘(k)=irl(k—1)r;(k—1)...r;k-z(k—l)@(é (1)) (3.13)

and so repeating this procedure k—1 times we find
r(ryk) ... ry(k) = —it1. (3.149)

What are the properties of our grassmannians ? Clearly, as we noted in the previous section,
they correspond to the minima of the action and so satisfy the corresponding equations
of motion. What is the value of this action?

Let us look first at the case d = 4k dimensions. Then, using the result (3.8) we see that
all x dependence of the action density resides in the factor (1 x2)~2 associated with each
field strength tensor F. So the action is proportional to

o)
1 xH1 I(2k)
S~ |d¥sx ——m=8%"1 ldx ——5 =" —— 3.15
j ¥+ x2y* A+ T " Ik (3-15)
0
as S¥*7!, the volume of the 4k—1 sphere in 4k dimensions is given by

SH—1 - g2k fé—k) . (3.16)
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In d = 4k + 2 dimensions in addition to the x dependence in the field strength factors I', x
appears also in the DZ term. However as

(DZAFA..AF)*=F"AF* A ... A@D2Z)" (3.17)

we see that the DZ factors contribute

1
— I} -PPr,= ——-rir .
Wy U= s (3.18)

and so the action is' proportional to

1 s TQ@E+1D)

= . 3.1
A+x%2 =" T@ak+2) (3.19)

S ~ J\ d4k+2 X
The coefficient of proportionality in (3.16) and (3.19) is quite difficult to determine. It comes
from the trace of strings of I', and I'}. As our I', matrices satisfy (3.5) its calculation
is straightforward though tedious. It is easy, however, to check that this coefficient is non-
zero and so that our field configurations represent genuine nontrivial stationary points of
the action.

Our field configurations are clearly not very general. First of all, using translational
invariance we can shift vector x, in x,I", by an arbitrary constant x, — x,—a,; moreover
o > k components of f" in (3.2) do not have to be given by a Kronecker delta function
(but then the normalization in (3.1) has to be appropriately modified). Further generaliza-
tions can be performed exploiting conformal invariance of our action (2.8). We could
also exploit the global U(N) and local U(p) symmetry of the action based on our grass-
mannian (2.1).

Even though we discussed the general case we presented our ansatz for a d = 2k
dimensional model for p = 27! and N = 2*. Clearly we can increase these values. In parti-
cular, for kK = 1, the increase in N takes us from CP! to CPY™'. The increase in p leads
to a nonabelian grassmannian. With our ansatz the increase in N is particularly easy if N
increases in multiples of 2°7!. Then for f in (3.2) corresponding to adaitional values of
a we can take A(x—a),I", — and, of course, we have to modify appropriately the normaliza-
tion factor in (3.1). The increase in p (together with N) can be achieved for example by
embeddings.

So far we have discussed only one instanton field configurations. Moreover; these
field configurations were such that the composite fields A4, (of (2.5)) were in the so called —
regular gauge. Can we also find multi-instanton configurations [2}? In d = 2 this is simple
but for d > 4 the situation is more complicated. In the Yang-Mills field case we have to go to
the singular gauge and as ADHM construction showed it is convenient (and in their con-
struction essential) to increase N linearly with g (instanton number). In fact we would take
N=2q+2 (d=4).

The necessity of going to the singular gauge complicates the calculations; we have
so far been unable to determine whether we can conveniently adapt ADHM construction
to generate multi-instanton configurations for d > 4.
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4. The associated background Dirac problem

Now we turn our attention to the problem of a fermion in the fixed background of the
instanton composite Yang-Mills-like field 4, [6]. Such a fermion satisfies

Yu(Oup—vA,) =0, 4.1
where

A, =232 (4.2)

and the fermion field y transforms under the local U(2*™') transformations in the same
way the grassmann field Z.
For the 2k Dirac gamma matrices y, we can take

0 Ik
yu(k) = I:I‘“(k) 0“( )], p=1,..2k 4.3)

Notice that due to (3.5) this is a possible choice as these matrices satisfy as required, the
Clifford algebra condition of the Dirac gamma matrices

VuPy+V¥u = 20,1, 4.4

Moreover, this is a very convenient choice as it will allow us to solve the background
equations (4.1).
To do this we define a generalization of the familiar ys of 4 dimension

2k
K o wwfTila. . Ty O {1 0
= (=D Zy‘—( n (0 rry..ri) =\ —1) @Y
i=1

Its eigenstates play the role of chiral eigenstates in 4 dimensions.

Next we let
_ [ ¥
v (‘PD>

such that y, and v, are 27! x 2" ! matrices in spin and the local symmetry group. The
equations of vy, and v, decouple:

I @up—ypZ70,2) = 0, (4.62)
I’: (auzp,,—y;,,Z““a#Z') = 0. (4.6b)
Of course, in our case

(F+x)Fu—xul .

Z70,Z =
" 1+x?

(4.7)

We can now essentially repeat the discussion of B. Grossman [6] and show that there exists
a normalizable solution to Eq. (4.6b).
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To do this we put

Yu = (1+x%)y,, 4.8)
where y, is a constant spinor.
Then, as ‘
rror, = —(2k-2)(I'x) “4.9)
we find that (4.6b) is satisfied if @ = 1/2—k. This solution is normalizable (if £ > 1) as
1
J‘deXI‘lplz ~ J\dex (-f_‘:}—c‘z—)—zm < ®© 4.10)

and for k = 2 coincides with the solution of Grossman. For k£ = 1 we have to procéed
differently. Its solution, however, can also be found with ease.
One can also find solutions to Eq. (2.6a). They are given by

(1 +x2k?
p = ol - x) & (4.11)

but, they are not normalizable. Let us finish with some remarks about further work and
some open problems.

Clearly an important problem is that of finding further solutions to the selfduality
relations (2.26) and (2.27). Some modification of the ADHM construction [3] is required.
The tantalizing connection between Dirac gamma matrices and I', matrices used in the
construction of one instanton solutions calls for further applications. It is easy to check
that some straightforward generalizations do not go through. For example the beautiful .
result [9] for the scalar Green function .

Z*(%)Z
DG = -1, G= V) 4.12)
4n’(x—y)
does not generalize to
Z¥(x)Z
G« (x_(:))z(,ff’ ). 4.13)

At the same time the more physically relevant questions such as what is the relevance
of all this to supergravity, dimensional reduction, etc...?” also remain unanswered.

I would like to thank my colleagues at the University of Durham for useful discussions
and the organizers of the Zakopane school for the invitation to give this lecture a.nd for
creating a very enjoyable and scholarly atmosphere at the school.
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