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The background field method is applied to Yang-Mills theories (e.g. QCD) in the axial
gauge. It provides a simple and elegant way to obtain relations between renormalization
constants in QCD. Constraints on the form of gauge-fixing conditions in the background
field method are derived.

PACS numbers: 11.15.Kc

1. Introduction to the background field method

The background field method was introduced by DeWitt [1]— extension of the formal-
ism was made by t'Hooft [2], DeWitt [3], Boulware [4] and by Abbott [S].

Because in Ref. [6] one can find a beautiful introduction to the background field
method, we shall be brief. However, our way will be slightly different, in order to obtain
constraints on the form of gauge fixing term in the background field method.

We begin with the generating functional in Yang-Mills theories with the gauge fixing
term depending on an additional auxiliary field 4°. For simplicity, we consider the theory
without fermions.

2,00] = ¥ [ 00, e §i [ 4% 210)- S teve wp+siev [}

Using G*(Q, A) (instead of usual G°(Q)) does not affect gauge-invariant S matrix.
w® is the parameter of the infinitesimal gauge transformation on Q. 4(Q, A4) is the Faddeev-
-Popov (F-P) determinant, which is defined (for 2 - 0) as:

47YQ, A) = | DgT]6[G*(Q, °4)], )
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where g denotes full gauge transformation. F-P determinant is invariant under gauge
transformations, as can be seen from

47'(°Q,°4) = | Dh[] 8[G(™Q, " 4)]
= | D(hg) T1 8[G("Q, "4)] = 47%(Q, 4) (3

(we used group properties of gauge transformations and the invariance properties of the
measure Dg). F-P determinant is usually calculated near the identity of the group as:

0G%Q, 4).

4(Q, 4) = det ————,
(@ 4) = det =%

(4)

where ®® is the parameter of a gauge transformation on Q and A.
After a change of integration variable O - Q+ 4, we can write ([5])

Z[JYexp{—ifd*xJ- A} = Z[J; A} (5)
where

Z{J, A] = N [ [dQ]A(Q+ 4, A)

X exp {i J d‘*x[z’[g +A]~- 51; [GYQ+A4, AP +J - Q]} . (6)

The great advantage of the background field method lies.in the fact. that therc exists
a class of functions G* that retains explicit gauge invariance:
Let us make the following transformations in Eq. (6)

: 1
Al A = Af—f" 0’ Ag+ ?a,ﬁf, (M

J: - J:(rot) - J:—fabca)b.’; (8)

and make the change of integration variables

Q; _’=Q:(l'0l) —_ Q:'—fabcwa;- (9)
J: Q in (6) is clearly invariant under (8) and (9). Adding (7) and.(9) we find:
(Ag+Qp) — (4 +Q0) (10

(by prime we denote gauge transformation).

The Lagrangian (by comstruction) is invariant under gauge transformations of its
argument.

So, we see that

Z[J, A] = Z[J*, 4"] (11)
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when the following condition is fulfilled (G(Q+ 4, 4) = G0, A)):
[G*(Q*, A)F = [6%Q, HF (12)

(as previously mentioned, the F-P determinant is invariant under gauge transformations
on its arguments). If we denote by G(Q, 4) an 8-vector (in QCD) with components G*(Q, 4),
then condition (12) will be fulfilled if and only if

. G(Q(rot), AI) — e—is"T“G(Q’ A)- (13)

Note, that generally 9* would not have to be equal to w® — G° = const is an example —
however, as will be shown, due to physical restrictions on the form of G 9° must be equal
to w®. The prime denotes, as before, gauge transformations.

Examples of G° satisfying (12) are given in Section 2.

Now, we shall use results of Ref. [5S]. We define the functional generating connected
Green functions as:

W[J, A] = —iln Z[J, 4] (14)

and (by Legendre transformation) the effective action generating one-particle irreducible
(1PI) Green functions as:

[0, A] = W[J, A]-{d*xJ - @ (15)
with '

~.  OW[J, A]
Y T

From (11), (14) and (15) we can see, that

[[Q, A] = I[[¢*, 4'] (16)
and hence
[0, A] = I'0, 4] a7

which is one of the most important results of the background field method. The effective
action (15) is invariant with respect to gauge transformations of 4. It allows one to use
“naive” Ward identities, simplifies search for possible counterterms etc. Green functions
obtained from [0, A] are calculated in the following way: we put only 4 on external legs
(because @ = 0), and Q only on internal legs (because only Q is integrated over). The
only thing left to be shown now is the connection between the background field effective
action and the effective action written in terms of the original fields Q and 4.

For Z ,[J], Eq. (1), with original field variables Q and 4, we define (similarly to ZLJ, A):

WlJ] = —ilnZ,[J] (18)
and
r,0] = w,Jl-ja*xJ -0 19
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with
oW, [J]
sJ

g =

Simple calculation shows ([5]) that
[0, 4] = I'[0g-4- (20)

This equation shows the equality of 1PI Green functions calculated in the background
field method and in the theory described by the generating functional (1). The connection
between the theory without the background field and the theory described by (1) is given
in Appendix A (for the case of the axial gauge).

2. Possible forms of gauge fixing terms

Now we want to make use of Eq. (13) to obtain possible forms of gauge fixing terms
in the background field method.

The distinction of two cases should be made: either we treat both, Q and A perturba-
tively or only Q is treated perturbatively.

In the first case, the gauge fixing term must have the term K, 0", where K|, is an opera-
tor that does not contain A or Q. That term is useful (for pure Yang-Mills theory even
necessary) to perform integration in Eq. (5) (or, equivalently, to obtain the propagator
of field Q). In order to have the renormalizable theory, there must appear at most four
point vertices — so, the only acceptable terms in G® are Q, 4, 02, A%, QA (in this case
the dimension of the operator {G°* will not exceed four). If we require K, to contain no
more than one operator 9 (and to be local), we have two kinds of G° satisfying (13) (up to an
overall rotation of G) and fulfilling all the above conditions:

a) the axial gauge

GY(Q, A) = n"Q", @1

n, must not depend on Q nor 4.
b) the covariant gauge

G“(Q, A) = 5"(8,0:— gf QLA (22)

S,y — symmetric — depends neither on Q nor on 4.

Putting in b): s,, = g,,—nn,(n = (1,0,0,0)), we have “Coulomb-like” gauge;
putting s,, = g,, we recover the usual background field gauge condition.

Unlike the usual Yang-Mills theory, in the background field method only two choices
of gauge are acceptable.

We see, that in both cases #° in Eq. (13) is equal to »® (parameter of rotation of Q) —
the statement mentioned earlier. Any combination of a) and b) is also acceptable.

The second case (only Q is treated perturbatively) is possible in very simple cases only.
In such cases there is much broader class of G° satisfying (13) and with no higher than
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second power of Q (now vertices connect only Q fields — requirement of renormalizability
does not constrain the number of powers of the A fields in the Lagrangian — contrary to the
previous case). For example, if we find G°(Q, 4)satisfying (13). then G‘([F‘““(A)F;,(A)}‘Q, A)
with arbitrary / also satisfies (13). As previously, G° should contain term lincar in Q (with
a coefficient that may depend on A) to make possible integration in Eq. (6).

3. Renormalization constants in the axial gauge

We shall copsider here the axial gauge in the background field method.

Feynman rules obtained from (6) for G*(Q, 4) = n,Q"" are identical to those in the usual
theory (without the background field) and remain the same under the interchange Q «» 4;
only the propagator of A4 is not defined, but 4 appears only as the external legs. Th's is
true also in presence of fermions. Equations (5) and (6) in presence of fermions read:

ZuJ,ionlexp{—ifd*xJ- A} = Z[J, §, n; 4],
where

Z[J, 7, m; A] = N [ [dQ] [dp] [dy]A(Q + 4, 4)
X €Xp {i fd4x [’?YM[Q*'A] +iy(6;;6 — g(Qa'*' ﬂa)TS)%

1
5 [G(Q+A4, )P +J- Q+ﬁw+¢w}}~

So, we see that coupling $Qy is the same as pAy one.
Following the standard arguments ([5]), we introduce renormalization constants:

Ay = ZA,u"?, (23)
8 = Z,gu’". (24)

Renormalization of the field Q is not needed (ficld Q appears only inside loops — we would
have two Z}/2 from renormalization of the field at each vertex, and Zg ' from renormaliza-
tion of the propagator).

All divergences in (0, 4) must take the form: infinite constant times (Fa)* (due to the

preserved background gauge invariance). Fy, is renormalized by
Fa, = ZY?u **[0,45— 0,45+ gZ,Z/*f " AL AS). (25)

Renormalized F,, will have group-covariant foim only if Z, = Z7V%, so (we define
«: = g2f4n, hence Z, = Z2):

Z, = 27! (26)
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Fig. 1. Diagrams contributing to Z4 in order «

Z,—1 is calculated (to first order in «) from the diagrams shown in Fig. 1. (recall, that
in the axial gauge, Faddeev-Popov ghosts do not couple to the physical ﬁelds) Feynman
rules are the same for the background field vertices and the usual theory vertices (that is not
true, for example, if we work in covariant gauges). We must then. have:

Zy=1; 27
(definition of renormalization constants in QCD is given in Ref. [7]). From (26) we have
Z,=Z;" (28)

We see that the background field method gives result (28) in a very straightforward way.
The equality of the bare and renormalized Lagrangians gives the equation (Ref. [7]
Egs. 12.126b and 12.125):

Z,=2327° = 2,277 = Z3'2%25 %, (29)

So (from (28) and (29)),
Zy =1, (30)
and
Z. =27, =27, @)

We see that equations (30) and (31) make QCD in the axial gauge “QED-like”. Calculation
of Z, in the axial gauge is given, for example, in Ref. [8].

4. Conclusions

In the present work, the axial gauge in the background field method is considered.
It is shown that the axial gauge is the only possible (physically acceptable) choice of a gauge
in the background field method besides commonly used covariant gauge (as follows from
considerations of Section 2). The background field method provides a simple and straight-
forward method of obtaining relations (28), (30) and (31), making the axial gauge so attrac-
tive. The connection between the usual theory and the theory with the background field
is shown.

The author is thankful to Prof. S. Pokorski for many useful suggestions and discussions
and to Dr C. Sachrajda for critical reading of the manuscript.
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APPENDIX ‘A

We shall now show that using changed gauge fixing term (in (1) we have G* = n (0™
— A°y while in the usual theory we have G* = n,Q i) does not change any 1Pl Green
function (except 1-point Green function). Let’ us write (1) with G* = n,(Q% —A4") (we
know that Faddeev-Popov determinant is 1_ndepandent of fields in.the axial gauge)

2,01~ [ a0t exp i [ x| 101~ 7 1n- @0+ o}

= expl— —(n- A2} Z[J], (AD)
22
where Z is the generating functional in the usual axial gauge and
Ta a 1 a
Jy = Ja+ —An,‘(n-A). (A2)
From (Al) we have
~ 1
W J] = wlJ]- 5 j d*x(n - A% (A3)

Differentiating both sides of (A3) over J, we find:

W] _swl]

(@:=)—7 57 (=:0

and

FA[Q] = WA[‘I]—'_[ d*xJ - 0= F[Q]

+{£j~l4( .Qa)( .Aa__i_‘[d4 .AaZ}
i d"x(n n ) 7 x(n Yy

So, we have

or[0] _ 81101
50 " 50"

+ - n,‘(n A%

(which is equal to (A2)) and
orol  _  &r[a]
5@'#1«11 5Qunau 5Qumx 5Qunan

So n-point 1PI Green functions (for n > 2 — for example propagator) are identical for
both gauges.

for n=2.
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