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New periodic in time and space indepeadent solutions of Yang-Mills equations coupled
to massless Dirac bispinors are presented,

PACS numbers: 11.15.Kc

1. Introduction

The Yang-Mills-Dirac classical theory has been studied for several years but still
the number of known solutions is rather limited [1]. In this paper we present new solutions
of Yang-Mills equations coupled to massless Dirac equations. They are periodic in time
and space independent. »

The order of the work is the following: In Section 2 we present the SU(2) Yang-
-Mills-Dirac equations and recapitulate the Jackiw-Rebbi formalism [2]. Section 3 comprises
solutions which were found previously [3]; they give an interesting example of dynamic
bifurcation. New solutions are described in Section 4; for all of them the evolution of a Dirac
bispinor is influenced by a Yang-Mills potential, but the feedback vanishes since the fer-
mionic current is trivial. In the last Section we briefly comment on the possible utilization
of the solutions.

2. The equations of motion

We will study a system of coupled SU(2) Yang-Mills-Dirac (YMD) equations. The
SU(2) strength field tensor F,, can be expressed in terms of Yang-Mills (YM) potentials
Ay as follows

Fa, = 0,47~ 0,45+ A, A,
Here ™* is the Levi-Civita completely antisymmetric tensor, Latin indices @, b, ... = 1,2, 3
denote isospin directions while Latin 4/, k = 1,2,3 and Greek g, v... =0,1,2,3 are

-1, 0
space and space-time labels, respectively. The metric of Minkowski space is 1 1
0 1
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Dirac spinor consists of two 2 x 2 matrices

Y= (zi), )

whose first (spinor) index transforms under the Poincaré group while the second (isospinor)
index transforms under the SU(Z) gauge group.
The massless Dirac equatiohs coupled to YM equations read

M*P0o(p ™)™ F () *P0(p™)*C

p ‘o_a CcD "da‘ CD
+ [(1)‘”A8 (-—) F(a)4] (——) ](«p*)”” =0, (2)
2i 2i ).
- Z - ; [a°\B¥
auFa#v+8abcAchuv = — A K(¢K+)AB(9,")AA ("2"') ('PK)A’B'- (3)
Here 4, A',B,B'... = 1,2, + denotes the hermitian conjugation, ¢’s are Pauli matrices

¢° = 1) and Dirac matrices y are given in the chiral representation,
Y Y

o _. 01 P 0 —O'i
"T\oe)r TG o)

We insert, following Jackiw and Rebbi [2]
p* = g¥a’ (4)
into (2) and then use the identity
o(0) = —ge?;

this yields the following Dirac equations

. a’ . a
Bop™ F o't ~ Asg™ - +Ald'y* — = 0. 5)

1

The fermionic current is given now by
a - - aa

i =tr [((¢+)*¢*+(¢ ) 7) 5], (5a)

, N _ Pl
=t [«wa‘w—w ) a'e )5]- (5b)

From now on there is no need to distinguish between spinor and isospinor indices. The
product appearing in formulae (4), (5) is the ordinary matrix product.
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We will look for position-independent solutions "of Egs. (3), (5)..Let us begin with
the study of evolution of a Dirac field in a field of a prescribed YM time-dependent potential.
We make the following Ansatz

Al =0, A% =A42=0. (6)
The matrices ¢ could be expanded as follows
¢¥ = pil+ofd,, )
where of, ¢F are complex functions. Inserting (7) into (5), employing the identities
o'c" = 6% +igy,0%
o'0"6® = igy,+6%6" — g8, 0™ ®)

and using (6), one arrives at the following equations:

Az
i0opd + 5 @ Lieg,Aipf =0, (9a)
A A A° 4
0oy ilsiak——z @3 +?¢p +?<P +-2—¢pa = 0. (9b)

The spinor current jj is expressed below in terms of ¢’s
jo = X [900s+pogs+icugiol]
= L [KSIghl +ieK (95l — i 90)
* i 3 K *
+K(prgi ~57 3 igt1*+ ol )]

3. Solutions and bifurcation
In this Section we put
Aj=A}=A, A;=4}=B (10)

the remaining components of a potential were already assumed to vanish.
Equations (9a), (9b) reduce then to the system

18,07 = 0, (11a)

Akt A2
idopf £ —— ¢ =0. (11b)
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In an earlier paper [3] we have found
oF=of =0, @95 =¢o =g @5 =¢3 =y agei =ageitn (12)

¢’s are complex constants. Here the asterisk denotes the complex conjugation and g, x
satisfy the identity

—2gx+ep = o*/V2 (13)
‘with a constant « appearing in formulae for YM potentials. The fermion current is abelian:
ja = 6"°6"%%/2. (14)

There are 2 classes of YM potentials which satisfy YM equations with the above current:

0 A= ﬁuos ( \/2) B= \/i sin ( \/2) (15a)

1 t 172
(ii) A= :/-5. (—-P <C+ 5 32, 80:6)) cos 6(1),

t 1/2
B=—|-P{C+ —,32,8«° sin 6(¢). 15b
A (er 5 omet)) amoo s
Here P is the Weierstrass double periodic elliptic function, ¢ is the energy density of the
solution and '

K((2=2)
€;—é€;3

ImC = e

\/81—83 ’

with e; > e, > e; being the roots of 423 —32ez—80% = 0.
The real part of C is the usual integration constant, while the function 6(¢) is given below

4
—a? dat’
2 t )
v P (c+ —, 32, 8«6)
s 2

A period w of a solution expresses via the complete elliptic integral X,

K( _e_?__—.fi)
ey—e
o=4—2" )

\/31_33

Let us point out some remarkable features of the solutions. First, their full energy density
is constant in time. Next, for a parameter « tending to zero solutions (12), (13), (15a) tend

0(t) = (16)
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to zero while solutions (12), (13), (15b) remain nonzero and coalesce with the elliptic
cosine solution of Baseyan et al. [4]!. This gives us an explicit example of bifurcation.
The second bifurcation is in a parameter ¢; for ¢ tending to its minimal value ¢,,;, = 3a4/8
solutions (12), (13), (15b) tend to the sin-cosin solutions (12), (13), (15a). For greater detail
and a theoretic bifurcation discussion see [5].

4. Sourceless solutions

In this Section we will show solutions that are characterized by a trivial fermionic
current.
Let

95 =93 =0, A3=4]=0,

i t 172
A}: —A%=A=ﬁ(_P(C+ 5,328,0)) . (18)

0
idopf F AT = 0. 19)
Their solutions are given by

t
of = exp [+i | A(t)dt']cf
to

t
9F = exp [Fi [ A(t)dr']eF, (20)
to
where ¢’s are complex constants. This fermion field gives the following YM current
J8 = te12(9] 93 — 9391 + 61 97 ~ 97 91), (21a)
3= (el 1P —lor 1) (266" ~8) + (@3 1> — 195 1?) (267767 — 5
+(@1 03 — 91 9z + 01 93 — o1 97) (51157 +57'6") (21b)
which vanishes if
ef =5, lefl = lefi. (22)
Let us put
1/2
A}=A§=A=(-P C+ — 5 , 32, o)) ,
A} = A3 =0. (23)

1 This solution has been earlier found by R. Treat, Nuovo Cimento A6, 121 (1971). The author is
grateful to A. Actor and J. M. Cervero for pointing out this fact.
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If in addition ¢, = 0, k = 1,2, 3, then from equations (9) we get
t
of =exp[+i| A@)dt']c¥; (24)
to
since the current j; has to vanish, we have to imposc
¢ =ct (25)
Further solutions corresponding to Ansatz (23) are listed below:
a) ¢f =@ =9f =0, ¢f =¢

b) ¢§

¥

of = ¢ =0, ¢F

= 02
t
) of =9f =9 =0, of =exp[Fiy A(t")dl']c;
. !

d) ¢of =9 =0, ¢f = ¢fc = const;

for all of them the fermionic current vanishes identically. Potentials (18), (23) (which
coincide with Baseyan et al. elliptic cosine solutions [4]) solve sourceless YM equations
(see Section V in [5]). The YM potential influences the evolution of the Dirac field, but
the feedback exactly vanishes, since j* = 0 if (22) or (23) hold. Thus we found new self-
consistent solutions of YMD equations. Let us point out that the full energy density of all
solutions presented in this Section is constant, although they are time dependent.

5. Concluding remarks

Our main intention is to give an argument that the above solutions are of interest.
To begin with, we remind that in quantum field theory the fundamental role is played by
the generating functional

5y =27 [exp 16017+ - 50|00, 6)

where S(¢) is an action functional and Z = Jexp <72 S(qS)) D¢ ; D¢ denotes a functional

integration measure. The standard procedure to calculate J is to expand the action §
around a classical solution ¢, (if ¢, = 0 then the corresponding QFT is said to be pertur-
bative while for ¢, # 0 the obtained QFT is called nonperturbative):

S(po+0¢) = S(¢o)+3 S ($0)0¢*; 27

the term linear in 3¢ is absent because ¢, satisfies the classical equations of motion. Integral
(27) is then of Fresnel type and can be formally calculated. The effective Green’s functions
might be obtained by a functional differentiation of the generating functional with respect
to the source term f.
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If ¢ has a symmetry lower than the full symmetry of classical equations of motion,
then the Green’s functions are meaningless [6]. This is related to the well known problem of
zero mode solutions (ZMS) which cause great technical difficulties in practical calculation
[7]. Let us explain briefly how the problems with ZMS arise. To calculate the functional
integral

ify=z" f exp [i¢(f)+ T+ S@o+} s"(¢o)é¢’] Dy (28)

one can do the following:
(i) find the eigenfunctions of

S”(¢o)59”z = Adg;, (29)

where d¢; should belong to a certain functional space (in our case, it should be square
integrable)
(ii) expand quantum fluctuations in the basis of dg,,

Sp = }: c:09; (30)
(iii) specify the functional measure of integration D¢ as
D¢ = []dc;. 31

The troubles with ZMS are due to the fact that S""(¢,)d0¢, = 0, that is in certain directions
(in a function space) the second variation of the action vanishes and the integration over
dc, produces infinity. The solutions which we have found have a symmetry lower than the
full 15-parameter G group of space-time transformations? (Poincaré group and conformal
transformations) which is the symmetry of Yang-Mills-(massless) Dirac equations.

Let G, be a symmetry group of a solution ¢,, and define G, by G = G, u G,. To each
generator x, € G,(G, is the algebra of G,) corresponds a ZMS : X ¢, (X, is a suitable repre-
sentation of x,; for gauge potentials this is simply a Lie derivative £, ). The situation is
obscured by gauge degrees of freedom —some ZMS can be compensated by a gauge
rotation — but it is clear that all ZMS? are not square integrable. Thus they can be
ignored.

The first term in the expansion of S in (27) is infinite for the solutions which we found
in this paper. But if one quantizes the theory around exactly one classical solution, then
the formula (26) is still well defined, due to the factor Z-*.

Thus we think that from the technical point of view our solutions are good candidates
for a background of QFT. Yet another problem is whether or not the solutions are physi-
cally relevant.

The author thanks the referee for pointing out an error in the last section of the paper,

2 1 do not discuss zero modes related 10 the gauge symmetry. To remove them, one has to impose
a background gauge condition and to repeat the Faddeev-Popov trick (see, e.g., D. Amati, A. Rouet,
Nuovo Cimento AS0, 265 (1979)).

3 1 mean those ZMS that are related to the symmetry breaking.
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