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ON SUMMATION OF PERTURBATION EXPANSIONS
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The problem of the restoration of physical quantities defined by divergent perturbation
expansions is analysed. The Padé and Borel summability is proved for alternating perturba-
tion expansions with factorially growing coefficients. The proof is based on the methods.of the
classical moments theory.

PACS numbers: 11.15.Tk

1. Introduction

The idea that perturbation expansions (PE) in coupling constant g in quantum physics
are divergent asymptotic series' was suggested by Dyson [1] almost thirty five years ago.
It is obvious that in such a case an ordinary summation is not a correct method of the resto-
ration of the expanded function and some “generalized summation methods” (GSM)
should be used. First attempts, based on the Padé method, made in the late 60’s concerned
model calculations [2] as well as theoretical investigations of the applicability of GSM
(for example Padé method for anharmonic oscillator) [3]. They are necessary because in
any particular case the applicability and uniqueness of GSM must be examined and that
is the price which one should pay for giving up the condition of analyticity of the theory
in the origin of the complex g plane. The Dyson idea was confirmed by the discovery of the
factorial growth of the PE coefficients, showed as first numerically, for anharmonic oscilla-
tor [4], and next theoretically [5], for a very wide class of quantum mechanical and field
theoretical models. This property drew theorists’ attention to the Borel (in some cases
connected with conformal mapping) method of summation of the divergent series and to
its modification, the Padé-Borel method, which uses the Padé method in summation of the
series in the integrand of the ordinary Borel integral. A significant progress achieved in
computation of higher PE coefficients has made it possible to do explicit computations
in many quantum mechanical and field theoretical models and to compare them, in the
simplest cases, with exact results available by computer methods, for example, with the
numerical solutions of the Schrédinger equation. A detailed discussion of the results

* Address: Instytut Fizayki Jadrowej, Radzikowskiego 152, 31-342 Krakow, Poland.
(425)



426

obtained may be found in the literature, so here we only mention the best examined models.
For example, in the quantum mechanics an analysis was made for the gx?" anharmonic
oscillator (by Borel method [6]), for screened Coulomb potential ¥(r) = ~r 'f(ur) includ-
ing the Yukawa and Hulthen potentials (by Padé method [7]) and for thc funnel-like
potential ¥(r) = r-' +gr" (by Padé-Borel method [7]). In quantum field theory the applica-
tions of GSM have been based on the Borel method and have referred to the scalar ¢*
models, where critical exponents in the g3, model and asymptotics of the Gell-Mann-Low
function in the 'q)f:,,, model were computed and successfully compared with experimental
and general theoretical results [8]. As stated before, the use of GSM of the perturbation
expansion in any particular case needs a proof of its applicability and uniqueness. The
rigorous results are known in some cases like the alfeady mentioned Padé summation
of PE of energy levels for anharmonic oscillator or the Borel summation of the same quanti-
ties [3, 9] or the Borel summation of PE of Schwinger functions in ¢* in two and three
dimensional Euclidean space-time [10]. In what follows we present a proof of applicability
and the uniqueness criteria of various GSM of the perfurbation expansions in the case
when they are alternating series and their coefficients have an asymptotically factorial
shape.

2. Perturbation series coefficients as Stielties moments

Let us consider some quantum mechanical or field theoretical quantity ¢(g) (for
example bound state energy, the generating functional of Green functions, the Gell-
-Mann-Low function and so on) which depends on real positive variable g interpreted as
coupling constant. In the Euclidean version of the path integral formalism such a quantity
ig given by the non-gaussian functional integral

?(g) = [ du(g)B(p)e ", 2.1

where u(g) is the gaussian measure, {5((})) is a functional depending on fields ¢ which defines
the meaning of ¢ and S\(g, g) is the full interaction action including the counterterms
needed. For the majority of the non-trivial models the exact calculation of the integral
(2.1) is impossible. The only quantities which may be calculated by existing computational

n
technics are derivatives

in the point g = 0. Let us define

. 1L &o(g)

In the standard perturbation method f, are interpreted as coefficients of the Taylor-
~Maclaurin expansion of &(g) whose sum is identified with ®(g). This is incorrect in the
case when &(g) is not holomorphic in the neighbourhood of g = 0, that is, if Si(p; g) is
asingular perturbation. It seems to be the rule in quantum physics and means that the point
& = 0is essentially singular and the PE is divergent in the whole plane of complex g. Exact
calculation of the integrals (2.2) is a serious technical problem solved explicitly only for the

1 .
=5 fdu(wp(q))l’(n, S¢))- (2.2)

9=0
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first few n’s but approximations based on the saddle point method let state that for many
typical models f, have an asymptotic representation of the form [5]:

£, ~ a"T(un+1)nf f/":') and, n-o 2.3)

with calculable parameters @, u, B, «; which, by applying Stirling formula, is equivalent
to the representations

Jo~a' T(un+p+1) i ﬁjn'j, (2.4a)
Jiro
fu~d ;;v,-f (un+B+1-j), (2.4b)

where ay = fo = yo = 1 and the coefficients f; and y; are uniquely determined by a;.
The Gaussian functional integral (2.2) is rigorously defined and calculable for natural
n, but by analogy to the integrals of finite dimensionality it seems quite reasonable :0 con-

n
sider it as the definition of the function of complex variable z in the domain Jarg z| < 35

In this sector of the complex plane the derivation of the asymptotic formulas (2.3, 2.4a
and 2.4b) remains valid, so instead of (2.2) we may consider a complex function

1
I'(z+1)

f@ = dp(@)B(P)P(z; Si(¥)) (2-5)

A . o
characterized for |z| — o0, |argz| < ) by asymptotic expansicn

f(z) ~ aT(uz+p+1) Y Bz’ (2.6)
ito
which means that f(z) belongs to the class of asymptotically equivalent functions [11]
of the type
f(z) = a* I (uz++1)F(z), o))

where F(z) is any function with asymptotics defined in (2.6). The function f{(z) is analytic
in its domain and uniquely determined by its values for positive integer z. Analyticity
is a consequence of an analogy between (2.5) and finite dimensional integrals of such a type.

Due to the analyticity of f(z) the function F(z) in (2.7) has also to be analytic for Jarg z| < %

Its analytical and asymptotical properties guarantee, according to Carlson’s theorem {12},
that F(z) is uniquely determined by its values for natural z so is f{z). The considered function
(2.7) may be represented by Mellin’s integral

f(z) = a I'(uz+ B+ 1)F(z) = ? dte T (), 2.8
0
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where

o+im

1
f*) = i J dst™*a’I'(us+ B+ 1)F(s) 29

a—iw

’ T
because f(z) is regular for jarg z| < B and owing to the asymptotics of F(z) and I' function

we have

| PL(ux + B+ 1+ ipuy)F(x+iy)] ~ (2.10)

|-

~ V2 @yt e Tl e L(dy, R),

which is a necessary condition for (2.8) to hold accerding to general theorems in Mellin’s
transformation theory [13]. Asymptotic expansion of f(z) (2.6) defines the asymptotic
shape of f*(¢f), which belongs to the class of asymptotically equivalent functions

£¥(0) = % (—’-)'#e‘ ¥,

a

o

h(t) ~ Z B; (—:—)' % 2.11)

ilo
which follows from asymptotic propertics of Mellin’s transform [14] and means that
J*(¢) is positive definite in the neighbourhood of infinity. Moreover, f*(¢) is non negative
on the whole positive real semiaxis. Indeed, let us suppose that there exists a point ¢, € (0, o)
such that

o +iow
s

F¥(1) = % f dsty*T(us+ B+ 1)F(s) < 0. (2.12)

o—iw

The integral (2.12) does not depend on the choice of the line of integration ¢ + il because
the integrand is analytic in the right half plane and tends to zero when imaginary part of
its argument tends to infinity (2.10). Using this we may take ¢ big enough to dominate
(2.12) by the leading term of the asymptotics of F(s). Such a procedure gives

c+in
aS
— J dsty*T'(us+f+1) (2.13)
27i

a

- i(.‘o.)"-}fe— (2 5
u
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which contradicts supposition (2.12). .Following our previous results we are able to state
that f(z) is represented by the Stieltjes integral, that is, that there exists the nondecreasing.
function (1) defined on [0, oo) for which

(@) = Oj?o u“do(u) (2.14)

so we can formulate

Corollary I1: The sequence of perturbation expansion coefficients {f,}%,, which
are the values of f(z) for z natural, defines the Stieltjes problem of moments [14].

The interpretation of the perturbation series coefficients as Stieltjes moments gives.
a possibility of the restoration of the expanded function even in the case when the expansion
considered is divergent everywhere. It also gives some information about nature of the PE,.
namely about its asymptotic character. Restoration procedure, suggested by Corollary 1,
may be based on either Padé [15] or Borel [16] generalized summation method and in the
following considerations we shall analyze both of them in a more detailed way.

3. Padé summation of the perturbation series

According to Corollary 1 the perturbation expansion coefficients are the moments.
of the measure o(u) defined on [0, c0), that is

fo= ofw u"do(u) (3.1)
which means that the formal perturbation expansion of &(g)
o(g) = ’;f..(—g)" (3.2)
is the so called Stieltjes series. The properties of the Padé approximants of the functions
belonging to this class are well known and may be listed as follows [15]:

S! — Any sequence of [M +/, M] Padé approximants to a series of Stieltjes converges.
to an analytic function in the cut complex plane —oo < z << 0 as M tends to infinity,

© b
J > —1. Moreover, if ¥ (f,)3"*1 diverges then all these sequences tend to a common.
»n/0

limit.

S2 — The [M, M] and [M, —1, M] approximants calculated for nonnegative real
values of the argument form the best upper and lower bounds available using only a given
number of coefficients. The use of higher M, that is of additional coefficients improves.
the bounds. The same holds for the first derivatives.

S3 — The function defined by the Stieltjes series admits integral representation

o0

do
(g = f 1 +(u). The above properties mean that the considered field theoretical
ug
0
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quantity &(g) (2.1) given by uncalculable functional integral, whose derivatives in g = 0
have the asymptotics (2.3), may be defined in terms of an ordinary integral with unknown
Stieltjes measure

w0

d
(g) = f 1:(:; (3.3)

4]

and bounded for physical values of the coupling constant by the Padé approximants to its
perturbation expansion

[M—1, M] { ; Fi— 8"} < B(g) < [M, M] { i fi—g (3.4)

with accuracy depending on the number of coefficients used in the calculation. In addition,
if these coefficients do not grow too fast with the increasing n (the divergency condition
in 81 is roughly equivalent to f, < (2n)!), such a method determines &(g) in the unique
way what follows immediately from S1 and (3.4).

Corollary 2: Perturbation series may be summed by the Padé method under some very
general assumptions concerning the asymptotic behaviour of its coefficients, and there
exists a class of models where this method gives a unique result.

4. Borel summation of the perturbation series

Borel’s method is probably the most frequently used method of generalised summa-
tion, that is of the restoration of the function defined by divergent series. Nowadays we do
not know what general conditions are necessary for this method to be used but one particular
case is mathematically well understood. This is the case when an unknown function @(y)
o0

has formal series Y, f,(—z)" as its strong asymptotic expansion of the order k and the
n/0 .

Watson’s theorem is valid [9, 17] — that is if we have

o
Theorem 1. The function &(z) has the series Z f(—2)" as its strong asymptotic expan-
n/0o

. kr
sion of the order k if it is analytic in the sector § = {z; 0<|z| <R, argz < 5 +e}
and there exist constants C, o and o such that for all natural N and for all ze S

0 @)~ ¥ S~ < COThN +a+1) JzP"
n/o

Under these conditions @(z) may be uniquely summed by the Borel method, that is it may
be represented by Laplace-like integral

(i) d(z) = f) dxe *x*B,(zx)
1]
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where
o N Sy
Bzx) = z Fkn+oa+1)
n/0

We see that conditions of this theorem, especially analyticity, are not easy to check but
in the case when perturbation series coefficients are the Stieltjes moments we may use the
result which is a small modification of the theorem of Hamburger and Nevanlinna [15].

Theorem 2. Let nondecreasing function o(u), u € [0, ), have finite moments up to the
order 2n o

do(wu*, %k =0,1,2,...,2n,

O'_,.s

() S =

then there exists the function 2(z), analytic in the complex plane cut along real. positive

- . . Im z2(2) "
semiaxis, preserving the relation T >0 for any Im z % 0, and admitting the
m z
integral representation
@
. do(u)
i 2(z) =
(i) ) f o
0
for which
2a—1
_E@= Y si(—2)
(iii) 1111(,’ fz’;’n = 5,,

uniformly in the sector S = {z;0 < |z| < R, argze(—n+3J,n—35)} with any 6 > 0
and (iii) means upper limit. The inverse theorem is true under condition (iff) valid even
if z = iy, and when the conditions about analyticity are fulfilled.

The proofs of both theorems differ from the standard ones only in details and we omit
them.

Using the fact that perturbation series coefficients f, have representation (2.8), that
is that they define the Stieltjes problem of moments and satisfy the conditions of theorem 2,
we obtain for all N and all z belonging to

S={z;0<|z] <R, argze(—n+d,t—05),0 > 0}

N-
|®(z)— Zlfn(— 2)"| < Ca"T(uN +B+1) 121", } CRY

n/0

where C = max |F(z)| according to (2.8). Because of theorem 2 &(z) is analytic in S and

zeS

all the conditions of Watson’s theorem are satisfied for g = 1 and u = 2 so we have
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Corollary 3. If perturbation series coefficients f, do not grow too fast with the
increasing n the series may be uniquely summed to an analytic function by the Borel
method, that is

(g) = }Zﬁ.(—g)" = J dxe "By (gx, 42)
where
f, = a"I(kn+B+1)F(n) (4.3)
and
Raly s
By(2) = Z Tkn+f+1) (44

»/0

Comparing the above results with those obtained by the Padé method we see that in both
methods the uniqueness condition is similar and; roughly speaking, has the form of the
bound

fo < (@2n)! (4.5)

In the case when (4.5) is not satisfied the Padé method seems to have some advantages
because it gives the bounds (3.4) for &(g) for positive real values of g and this result does
not depend on particular shape of f,. In the Borel method we have to control the difference
between &(g) and the truncated series (theorem 1(i)) which can be done because of theorem
2 but, furthermore, &(g) must have an analytic continuation in many sheeted Riemann
surface according to the conditions of the Watson’s theorem. The last is not guaranteed
by theorem 2 and should be proved separately in a different way which has been done only
in some special models mentioned in the introduction.

3. Conclusion

We have considered the Padé and Borel summation of the perturbation expansions
with factorially growing coefficients. We showed that the set of perturbation expansion
coefficients (which do not grow too fast) contains enough information to restore the ex-
panded function in a unique way. In the models which do not fulfill these conditions we need
additional information about the coupling constant dependence of the expanded quantities.
The same happens when the perturbation expansion is nonalternating. The same is the
rule for the models with degenerated vacuum, like double well potentials in quantum mech-
anics and nonabelian gauge theories. In these cases the proposed methods may be used
only for unphysical values of the coupling constant and results obtained have to be contin-
ued to the physical values of this parameter. Such a continuation may be possible if the
analytic properties of the function are known, but this kind of information is lost in the
perturbation expansion because of its asymptotic character and may be achieved only
by essentially nonperturbative methods of analysis of coupling constant dependence in
these models.
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