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The study of a discrete version of Laplace equation on a fractal is presented. While
in the limit # — 0 the solutions of the equations are close to the usual ones in the continuum,
a new essential feature appears, namely the presence of fixed points in the metric.
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Is our universe, the space-time we use to describe physical phenomena, a continuum ?
For centuries now we have taken to accept this continuous nature of the underlying frame-
work of our world, although the objects we describe are, of course, of finite extension.

The question may take a special significance in a general relativistic or cosmological
approach ; what if the energy necessary to observe a small detail of space-time is comparable
to that required to form a black hole? We! therefore thought it interesting to consider
a simple case of discontinuous undetlying structure. The structure we want to study is based
on the construction of a seif-similar fractal [1]. We first present this stiucture in the context
of an underlying continuous space, although we will later have a more intrinsic look at it.

Consider a triangle (Fig. 1), which is subdivided into several subtriangles (by dividing
each side into n equal parts). We discard all the points contained in, say, the downward
pointing triangles, and perform a similar subdivision of the remaining ones. This procedure
is then repeated indefinitely, and defines 2 (2-dimensional) #-fractal. The Hausdorff dimen-

n(n+1
sion is easily estimated to be: In —(——2——l / In n. The special case n = 2 corresponds to the

“Sierpinsky gasket”. This procedure can be used similarly in underlying d-dimensional
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spaces, by substituting (hyper-) tetrahedra for the upward pointing triangles mentioned
before (notice that the discarded parts are now more complicated polyhedra).
Having achieved this, we must stress two properties of our construction, namely the
lack of translational invariance on one side, but, more interestingly for our purpose, the
preservation of (discrete) dilatation invariance. Namely, if the division procedure is extended

1
indefinitely (in both directions), the figure obtained by shrinking all lengths by — is identical
n

to the original one!

For convenience, our usual pictorial representation of this construction (Fig. 2) uses
equilateral triangles ; there is however nothing compulsory in this, and the underlying metric
has this far not been specified.

We want to study some typical equation on this structure. One obvious choice is
Laplace equation, which we write for a scalar field responding to a point-like test charge?.

Fig. 2

2 This notion will have to be adapted below.
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Let us consider an ultraviolet cut off, corresponding to some level of fractalisation p. We
write at this level the Laplace equation as a finite difference equation for the fields evaluated
at each vertex — this defines the equation for the vertices belongingtolevels p, p—1... p—k,
since all of these vertices are present at level p. In general, we can write this equation as:
(if the test charge e is situated at vertex i = 0)°

Z 8:1(4’1"‘4’:) = ed;q, 1

where the sum over j extends over all nearest neighbors of vertex i. More complex charge
distributions can be considered by using the superposition principle. The coefficients
g are obviously related in some way to the metric. This relation can be exhibited at
the level of an individual p—1 triangle by imposing some values for the length of the
p-triangle sides, and comparing (1) to the continuum limit when the sides of the triangle
are simultaneously shrunk to zero.

Neglecting scalar factors (lattice spacing...), we have:

gi~G+ 15— 1 ()%

where ijk is any p-triangle with summits i, j, k, and I is the length squared of the side ik.
As an example, for an equaliteral triangle in euclidean metric,

g'? = K(i;+15,-1};) = KI?, and g'? = g'% = g%, (3

Alternatively, in the case of a Minkowski triangle, with (12) and (23) light cone lines, we
have:
gl = K(i,+13,-1},) = KI* = g%,

g'? = K(0+0-1};) = —Ki* = —g*,

and g12 — gzs - _g13_ (4)

Up to a normalization, we may thus take (g?3, g'3, g') to be (1, 1, 1) and (1, —1, +1)
respectively for “isotropic”” Euclidean and Minkowski space.

Before proceeding further it may be appropriate to show some of the properties of
the system of equations we are considering (this far a similar set of equations might have
been written on a lattice).

Let us consider a single p—1 triangle, and all the p-triangles it includes. (See Fig. 2).

If we sum all the equations for the internal points of the triangle with the exclusion of
the summits we get the equation:

(¢1,0+¢0,1_2¢0,0)+(¢u-1,0+¢n—1,1_2¢n,0)+[¢0,n—!+¢1,n*1_2¢0,u) — Z Qi (5)

(we replaced the site index i by a pair of affine coordinates (i;, i,), we have also used the
Euclidean nietric to simplify the argument, which is however perfectly general).

3 We have voluntarily omitted scale factors from the equation, as they are of little consequence for
our main topic.
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Equation (5) tells us that the total flux of ¢ leaving the triangle is equal to the sum of the
charges inside. ,
Using the equation for ¢°, we have further:

(@10 +9™' 29" = —¢, 6

which relates the flux to the charge at point (0, 0). We can use the same reasoning at point
(0, n) and (n, 0) and replace effectively the outgoing flux by “mirror charges” as in usual
electrostatic problems. We see that the only type of problems we are allowed to address
are in fact completely neutral ones with the total “‘electric’” charge in the triangle summing
up to 0.

In particular, a test charge e at site (0, 0) has to be accompanied by mirror charges
4o, and g, o at sites (0, n) and (n, 0) with

‘10,n + qn,O +e = 0. (7)

e e

One typical choice would be (go0; 9,05 9o0.0) = (e, 5 5») . As we will see later

this is an essential difference with the continuum or even the lattice situation, where mirror
charges associated with a single point source are usually isotropically spread, and for the
most part altogether ignored.

Rescaling

We now turn away temporarily from the details of the solution of the ‘‘electrostatic
problem™. In order to consider what happens at larger scale let us imagine that after
defining the rules as in Eq. (1) at level p, we want to eliminate the variables pertaining to level
p, and write equivalent equations involving the summits of level p—1 alone. This can be
done at the cost of solving the linear system of equations presented in (1), in terms of the
values of ¢(®™, ¢ and ¢'>%), which can be identified (up to a scale factor) to &1,
@1 and ¢®% — we use capital letters and indices ¢'’ for the variables pertaining to
fractal level (p—1).

We will in general obtain a new system of equations which is equivalent to (1) for the
vertices belonging to fractal level p—1; namely:

Z GIJ(¢J_¢I) = 2510’ (8)

where e is the apparent charge seen at this level, in the metric corresponding to G, (notice
that e and G,; do not have an independent meaning, since we do not postulate anything
about the metric of the fractal structure as a whole). There is in other words no way to tell
for sure the distance between two points without some measurement, and the only measur-
ing rod which we have is provided by the “clectrostatic” equation itself.

We have studied in some detail the processes leading from Eq. (1) to Eq. (8). The
following discussion is a brief summary of our findings, but contains most of the important
aspects.
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For simplicity, we choose in all cases to norm both g'3 = G!3 = 1 (i.e. the g” coefficient
corresponding to the horizontal link in Fig. 2). Furthermore, I will present here only the
case where g!3 = g23; g'? = g, which, by symmetry implies G'3 = G?3 = 1; G'? = A.
Full results will be presented in a detailed publication.

Our purpose now is to compute A4 as a function of a. This can be done very easily
for the Sierpinsky gasket, (n = 2)

_ 3a2+6a+1

4a+6 ©

The non-linearity of this result shows us that, despite the scale invariance of the fractal,
a non-linear change in the metric occurs when we go to large distances. A natural question
arises, namely: what are the fixed points of the rescaling equation (9)? They can easily
be seen from a study of Fig. 3, where we have plotted 4 as a function of «; fixed points
occur for A = a.

The signature of the metric changes for the critical value a = —1/2, while a = —1
corresponds to Minkowski space with 2 sides of the triangle on the light cone.

We see directly that only 2 fixed points exist, corresponding to a = =+ 1. The Minkow-
ski fixed point turns out to be unstable, while the Fuclidean one is attractive.

We have of course generalized Eq. (9). The general situation where g'3/g23 # 1 will
be discussed elsewhere; the conclusions above are however unaffected. We have also consid-
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ered more general n-fractals, with the following rescaling equations:

B 11a*+80a® +1724*+132a +25
~ 2[9a%+54a% +95a +52]

(10)
for n = 3 and:

_ 2547 +430a° +2680a° + 8162a* + 133364 + 11732a> + 5075a + 790
T 4845+712a° +3880a* + 10312a> + 143684 + 100904 + 2820

(11)

for n = 4. These expressions always have fixed points for @ = +1 (this can easily be de-
monstrated for arbitrary n-fractals) but with increasing n, extra (unstable) fixed points
are introduced; for » = 3, we have two additional fixed points for ¢ = —2+.,/3/7 (Fig. 4),
while for n = 4, there are 5 other fixed points for a < — 1, therefore all minkowskian.
All those extra fixed points have turned out to be unstable — with a = 1 the only attractive
fixed point!

We have further considered n-fractal built upon larger dimensional underlying spaces —
using hypertetrahedrons instead of triangles. For a d-dim 2-fractal, we get the general relation
(assuming (") = (1, ..., @)):

_(14+d)a’+(@d+d)a+1
T Q+dya+@+d)

(n=12 (12)

which exhibits characteristics similar to the relations above.

fixed points for 3- fractal

' T
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While it may be disappointing that the large scale metric turns out to be euclidean,
whatever the starting point (except for a small set of trajectories which land on the unstable
points), the presence of this fixed point is already surprising.

It may be that our measuring tool is too crude at this stage and that, say, a similar
equation for the vector potential might be more appropriate to Minkowski space.

The Euclidean fixed point

In this last section, we present the numerical solution of the equations for a test charge
in the Euclidean metiic. For 2-dimensions, we have represented (Fig. 5) the value of the
potential along the side of the triangle (curve I) and along the mediator (curve M) for a
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n = 60 fractal; to this we superimpose a logarithmic fit inspired by the shape of the contin-
uum potential; we see that the fit is excellent, except for points close to the boundary 17,
where the effect of the localized mirror charges is felt. We should keep in mind that the curve
presented here is only a guide to the eye, and has no meaning for points which do not belong
to the fractal. The correct picture would be given by a discontinuous set of points; further-
more scale invariance and flux conservation can be used to establish the ‘shape of the po-
tentials for vertices corresponding to subsequent levels of fractalisation. A similar picture
is obtained in 3 dimensions, as shown by Fig. 6.

Conclusions and prospects

The study of a discrete version of Laplace equation on a fractal structure has brought
some interesting results.

While in the limit » — oo the solutions of the equations are close to the usual ones
in the continuum, we have exhibited one essential new point, namely, the presence of fixed
points in the metric. This shows that whatever first choice we make for the initial metric —
and in particular its signature at a given scale, we are assured that the apparent metric
at large distances will correspond to one of a discrete set of fixed points. In all the cases
studied, the only stable fixed point yields an isotropic Euclidean metric. Further extensions
should be envisaged, among which the case of vector fields ranks first.
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