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We review a recursive fragmentation model of low-pr jets, based on classical string
dynamics, which possesses all the qualitative features of the multiperipheral model and
Regge asymptotic behaviour. The parameters of the model are uniquely determined by the
Regge trajectories and the reggeon vertex functions. We apply this model to multiparticle
states corresponding to the cut reggeons and the cut pomerons.

PACS numbers: 12.40.—y

1. Introduction

Due to the increasing complexity of the final states and of the detector systems in
high-energy collisions, the comparison between theory and experiment is more and more
often done through Monte-Carlo simulations. In the present paper, I will talk about the
simulation of a jet, more precisely a soft jet, which occurs typically in a soft (low-py)
hadron-hadron collision. I will show that classical string dynamics leads to a recursive
fragmentation model which: (i) contains all the qualitative features of the multiperipheral
model, (i) possesses Regge asymptotic behaviour. The latter property will enable me to
fix the recursive fragmentation function, assuming the knowledge of the Regge trajectories
and the reggeon vertex functions. I will apply this model to the multiparticle states cor-
responding to the cut reggeon and cut pomeron, in the context of two-component duality.
Finally, I will discuss the theoretical limitations of this model.

I will organize my review as follows: in Section 2, I recall the main qualitative properties
of the multiperipheral mode! and define the most general recursive fragmentation model.
In Section 3, I introduce the string picture and show a close connection with the multi-
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peripheral model and with the dual resonance model. I establish the Regge asymptotic
behaviour in Section 4. In Section 5, I apply the model to the cut reggeon and the cut
pomeron and discuss its theoretical limitations. I summarize the results and draw the con-
clusions in Section 6.

2. The multiperipheral picture

The multiperipheral model of Amati, Fubini, Stanghellini and Tonin [1], based on the
diagram of Fig. 1, accounts for the main features of high-energy, soft inelastic collisions,
namely

(i) transverse momentum cut-off, p; < 300 MeV/c,

(ii) leading particle effect,
(i) Limiting fragmentation,

(iv) rapidity plateau,

(v) short range order,

(vi) local compensation of charges and of transverse momentum.
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Fig. 1. Multiperipheral diagram for the production of » particies in hadron-hadron collision

According to limiting fragmentation (or Feynman scaling), the leading particle!
spectrum is of the form

f(if'r: Zl)dzind%/zn 2.1

where z, = pf/ps, p* = p°+p°, pr = (p%, P°), the z-axis being defined by the beam direc-
tion. The recursive fragmentation model [2] iterates the limiting fragmentation down the
multiperipheral chain:

A—-pi+q,
L’ P2+4;

.

! “particles” 1, 2 n... in Fig. 1 are not necessarily final particles but can be strongly decaying reso-
nances.
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However, unlike p,, ¢; is not on-mass-shell and g;; # 0; from rotational invariance in the
transverse plane and Lorentz boost invariance along the z axis, the most general mo-
mentum sharing distribution is of the form?3

dPypiy = f(q 41 b1 47, 2)d’prdzfz, 2.2)

where z = p*/q*. Simplified forms for f appear in the literature, for instance, the quark
cascade model of Field and Feynman [3] uses f(q , Z).

Forward-backward symmetry. As stressed by Andersson, Gustafson and Soderberg
[4], it is important that a recursive model gives the same multiparticle distribution when
iterated from top to bottom or from bottom to top in Fig. 1. For the general form (2.2),
this requires

f=D"'(¢% 4DG(d’, 4, P1. 37 47, (2.3)
where G is symmetrical in g and ¢’ and D! is a normalization factor. This does not drasti-

cally reduce the choice of f but, as we will see later, it will be very restrictive in the case
where f does not depend on g2

3. The classical string picture
1. Geometry and kinematics

Now I take an apparently different point of view. I adopt the dual string model [5] and
assume that a classical treatment is not too far from reality. The most simple classical mechan-
ism for 4+ B — 1+... +nis represented by the duality diagram of Fig. 2a: the incoming
strings A and B coalesce at point F, where the quark pair § ,qp annihilate; it results in a single
massive string, which I call a “dart”; the dart eventually breaks into several pieces at
points Q,, 0, ... Q,_,, where quark pairs are created. Neglecting quark masses and
applying classical rules [6, 7] for string fusion and breaking, one finds [6, 8] that the motion
of the dart and of the final strings is essentially one-dimensional, as shown in Fig. 3. Accord-
ingly, the longitudinal motion is well approximated by the 1+ 1 dimensional limit of the
string model. In this limit, the free string follows the ‘“‘yoyo” motion shown in Fig. 4 and
the whole space-time history of the collision takes the form of Fig. 5. The zigzaging quarks
at the end points fill the places of the transverse pieces of string of Fig. 3. Up to subsection
4, T will consider a 1+1 dimensional world.

There is a simple connection between momentum and configuration spaces. In Fig. 4,
the two-vector I 1’ is equal to p/x, where x is the string tension ~ 1 GeV/Fermi, related to
the Regge slope by

2aka’h = 1. 3.1

2 As one approaches the end of the chain, Feynman scaling is less and less accurate and correction
factors dependent on the subenergy § = (¢4 pg)? have to be introduced. This will not be treated in the present
review.

3 In this paper, we do not take into account the spin degree of freedom. The flavour one will be intro-
duced at the end of Section 4.
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Fig. 2. Bquivalent duality diagrams describing the same reactions as Fig. 1. (a) s-channel picture: the in-

coming strings 4 and B join at point F to form a “dart” D. At F, the antiquark g4 of A4 annihilates with

the quark gp of B. The dart subsequently breaks at points Q,, Q,, ..., On-1, where new quark pairs are

created; (b) multiperipheral picture. I have drawn some gluon lines, which are responsible for the binding

of the quarks and antiquarks in the exchanged mesons. These diagrams contribute to the “resonant” or
' “cut-reggeon” cross-section

Fig. 3. Classical mechanism corresponding to the s-channel diagram (a) of Fig. 2 (a), (b), (c). and (d) display

the shapes of the strings at the times #,, 3, #3 and ¢4 indicated in Fig. 2a. These shapes are typically those
obtained by solving the classical equations of motion [6~8)

Fig. 4. Motion of a string in 141 dimension (yo-yo). The units are such that the string tension x is equal
to one. 7 = dual of p, ie. p° = p%, p* = p°
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Fig. 5. Classical space-time history corresponding to the s-channel diagram (a) of Fig. 2, in 141 dimension

In the following, 1 shall take units such that x = 1. Furthermore Q' is equal to p, the
vector dual to p obtained by interchanging p° and p°. More generally, the polygon
00,0, ... 0,-,05 in Fig. 5 is the dual of the closed chain p,, —p, ... —p,, pp (neglecting
p. and pp ), and the vectors 0Q,, ... 0Q, _, are dual to the momentum transfers q;, ... g,—,
of the multiperipheral picture (Fig. 1).

2. The breaking prescriptions

Up to now, I have said nothing about the locations of the breaking points Q, ... Q,-,.

Let me present two prescriptions, a naive one and the “Lund symmetric” prescription.

a) The naive breaking prescription [6, 81: A string can break anywhere at anytime
with a probability

dP = P dl dt (3.2

per elerzent of length dl and time dt. The parameier 2, of the order of a Fermi-2, will be
called the “fragility” of the string. We shall often use the paramecier

b = P[(2x2) (= P[2, in our units). 3.3)

This law is similar to the law for the creation of e*e~ pairs in a 1+ 1 dimensional electric
field [9] (Schwinger model).

Eq. (3.2) is menifestly Lorentz invariant and forward-backward symmetric. The
part of Fig. 5 within, say, a vertical band of 10 Fermi wide about the time axis, looks
similar in events with very different values of p, amd pg provided py and p; > 10 GeV.
This is sufficient for speaking of a rapidity plateau.

Let us now consider in F'g. 5 the chain of breaking points Q,, ... Q,., which occur
in the do-i history (thus excluding points iike C, which we interpret as resonance decay).
It is clear thet a breaking po'nt Q preempts new dert decay in its future light cone. One
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can then show easily that the density of such points is
dN = 2bd*Q exp [ 2b2(O)], 3.9

where &/(Q) is the area spanned by the dart in the past light cone of Q; the exponential
factor is the probability that no preempting breaking point lies in this area. Thus breaking
points lie not far from the hyperbola &/(Q) = 1/2b and we have effectively an “inside out”
cascade, as was also argued for by Bjorken [10].

Since the vector OQ; in Fig. 5 is dual to the momentum transfer ¢; of the multiperiphe-
ral picture (Fig. 1), we have

dQ)=%qi = —%al = —1aqr (3.5)
Thus, large negative g+g— are suppressed by a factor
exp (—blg*q™)). (3.6)

Large |g*q~| are also suppressed in the multiperipheral model, owing to the suppression
of large

—¢* = —q"q" +4t. (3.7
In fact, the main qualitative features of the multiperipheral model, (i) to (/) of Section 2,
are contained in the naive string model. Hence, diagram (a) of Fig. 2, which represents the
classical string picture of Fig. 5, is ““dual” to diagram (b) of Fig. 2, which represents the
multiperipheral picture.
Similarly, we can show that the n-particle exclusive distribution is

Ouldo = (20)" " 'd?p, ... d*p, 0P (py+ py—py .. —Pae P, (3.8)

where &7 is the spanned arca in the union of the past light cones of Q,, ..., Q,-, in Fig. 5.
(3.8) has an important factorization property: The possible substates emitted between
two fixed breaking points Q and Q' (Fig. 6a) hare the same relative weizhts as those emitted
by a dart where Q and Q' are the turning points (Fig. 6b).

The deep reason is causzlity + thc iomogencity of the string : in Fig. 62, and Fig. 60,
the spacclike dotted curve represenis an unbroken piece of siring in some curved reference
frame; this piece is the relevant initial state for the subsystem QQ’; it is in the same state
in Fig. 6a and Fig. 6b.

The model can also be formulated as a recursive one {8, 11], by looking at dart decay
in the infinite momentum frame, i.c., taking X~ = X°- X3 as time coordinate. The splitting
distribution is then

dPypeq = bexp (—bm?[z)dm*dz]z. (3.9

m?/2z is the area spanned by the dart since the preceding breaking point in the infinite
momentum frame, whence the exponential foctor in (3.9). This factor is similer to (3.6)
since

2
2., PR
19" 7 Iz (3.10}
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(b)

Fig. 6. Hlustration of the factorization property which follows from (3.8): the final substate emitted between
Q and Q' in diagram (a) and the identical state produced in diagram (b) have the same probability, for fixed
Q and Q'

It is clear from (3.9) that the masses of the final strings are not fixed, but have a continuous
spectrum extending from zero to infinity, with an exponential cut-off at m? ~ b-!, This
is due to the too great simplicity of the law (3.2) which allows the dart to break at two
arbitrarily nearby points. The model may describe the limit & — 0, g2 — 0 of the dual
resonance model when the resonances, whose masses are given by

m? = (n—ap)ja’ = 2nhx(n— o) (n integer), 3.11)

become infinitely dense and, for finite n, infinitely narrow.
b) The “symmetric Lund” prescription [4]: If we want the final strings to have
the masses of physical particles or resonances, instead of the continuous spectrum implied
by (3.9), we must modify the probability law (3.2). Miraculously enough, it is ‘still possible
to fulfill limiting fragmentation as well as the factorization property illustrated in Fig. 6.
This means that the model is of the recuisive type, if, for example, we look at the dart in the
infinite momentum frame; the splitting function must be a function only of z, since the
dependence on g2 allowed by (2.2) would spoil our factorization property.
Furthermore we require forward-backward symmetry. This restriction then deteimines
the form of the splitting distribution [4, 12]:

f(2)dz[z = N(1—z)" exp (— bm?[z)dz/z. 3.12)

Here b is an arbitrary parameter, unlike the constant b appearing in (3.9) which was
defined by (3.2)-(3.3), and m is the common mass of all the produced particles. a is a param-
eter greater than —1 and N a normalization factor.
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We note the same exp (—2b x area) ~ exp (—b|g'*q’~|) damping factor as in (3.9).
In fact, one can generalize Eq. (3.12) to allow an arbitrary spectrum of produced particles,
which includes (3.12) and (3.9) as special cases [13].

3. Connection between the two prescriptions and the dual resonance
model [13]

In the naive prescription (3.2), the lifetime of a string of mass m can be shown to be
7 = (mkb)™ L. (3.13)

In the dual model, the resonance has zero width and hence infinite lifetime, in the tree
approximation. However, if we take the Regge slope «' to be complex, they acquire a width

I'=mIma'/Rea'. (3.14)
Since the string tension and the Regge slope are related by
Reo' = (2nhi)™!, (3.15)
the two results (3.13) and (3.14) agree with, i.e. I't = /i, provided
=2zlma’. (3.16)

The connection (3.16) can also be obtained from the fact that the dual model cross sections
are damped at large |g*g~| by a factor*

exp(—2nIma’jgTg™)), (3.17)
which reduces to (3.6) with the identification (3.16).

4. Generalization to flavour and transverse degrees of freedom

(3.12) can be generalized to 1+3 dimensions and several flavours [4, 13] by choosing
a splitting function of the form

/;c';(zi%a i;%'a 5"['2, Z) = dk-l(a%) (z/#z)""(‘h'z)
x gu(@t, P, 4r) (1/z= )™ ™ exp (— by*}2), (3.18)

where A, k and / label the internal quantum numbers carried by p, g and ¢’, g is symmetrical

in the interchange ¢, k 5 ¢', I, u = \/m2 +p2 is the transverse energy of the hadron and
the factor d-! normalizes the total splitting probability to unity. Note that fis again inde-
pendent of g2. “Transverse softness”” requires g to be a strongly decreasing function of
*2 —5’2
gr and g7

4 Eq. (3.17) has been checked [13] for the elastic cross section and-the leading particle spectrum.
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4. Asymptotic Regge behaviour

Let one rapidity gap 4Y; in the multiperipheral chain be large; then
(Pt pina) ~1gigr 1T~ (1=2) 7! ~ e (4.1)
From (3.18) and (4.1), we see that the probability that 4Y; be larger than some 4 is
P(4Y, > 4) « exp {—[1+a,(qg%)]4}. 4.2)

This result (4.2) coincides with the prediction of Regge theory, which applies for large
4Y; [14], if we make the identification [13]

alq?) = O =20t = —33), (4.3)

where o,(¢) is the exchanged trajectory and a,,, the intercept of the “output trajectory”
defined by

Gt o Saoux“'l- (4.4)

More generally, we can show that our model possesses multi-Regge and triple-Regge
behaviours, where the reggeon-particle-reggeon vertex yh(t, 4% t') and the triple-Regge
vertex 7 ..oult) and related to the functions g, and dj of (3.18) by [15]

=2 *2 *2

gn(a3, b3 q out - -,
l—uj;rz-— = “2 o ebuzl)':l(_q%s #23 —qu)Iz, (4-5)
Va @d §s

A (%) = Virom(—43)- (4.6)

Thus our model possesses all the Regge asymptotic limits and we have obtained the explicit
relation between our input functions and the Regge trajectories and vertex functions.
Conversely, the values of the Regge parameters uniquely fix the model for all kinematic
regions.

5. Applications

We have seen that our classical string model has a multiperipheral interpretation, with
Regge asymptotic behaviour. In two-component duality [16], the mechanism of Figs. 2,
3 and 5 contributes only to the “resonant™ or ‘“‘cut-reggeon” cross-section,

ar(0)—1

Gg & § ~ 512, 6.1

Accordingly we take o, = ogx(0). Thus, up to now the pomeron was not included. To
obtain the “‘cut-pomeron” cross section,

Op oC SO o (5.2)



466

we must take account of diagrams like the one of Fig. 7. This can be done in two possible
ways: the first method is to use directly the classical string dynamics depicted in Fig. 8,
which corresponds to the duality diagram of Fig. 7a. This yields a result in which the two
darts of Fig. 7a decay independently, as in the dual parton model [17].

The second method goes beyond classical string dynamics. We generate the diagram
of Fig. 7b by allowing the particles to be emitted either upward or downward in a random
manner, with vertices which are obtained as before from Eq. (3 18) and (4.5)-(4.6), but
with

Uoue = 0p(0) = L. (5.3)

The second method has the advantage of generating not only cut-pomerons but
also cut-reggeons as particular cases where particles are emitted all upward or all downward.
This offers a refined way of doing “reggeon bootstrap™ [18] by checking that

number of cut-reggeon events

~ sli-z(o)"m’(o) (5 4)
number of cut-pomeron events

The second method is also preferable theoretically: the first one, indeed, is equivalent
to the double multiperipheral model represented in Fig. 9, with reggeized quark chain
instead of ordinary reggeon chain. Thus the probability of a rapidity gap is governed by
a Regge cut instead of @ Regge pole. In short, the first method completely neglects the gluons
exchanged between the two quark chains of Fig. 7b. It predicts no compensation of trans-

(a) UUU

dart 1

Yldart 2

(b)

A

Fig. 7. Equivalent duality diagrams contributing to the ‘‘background” or ‘“cut-pomeron” cross section
(a) two-jet picture: the incoming strings A4 and B rearrange their quarks to form two “darts” D, and D,
which subsequently decay. (b) multiperipheral picture. I have drawn some gluon lines as in Fig. 2b
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verse momentum between a particle emitted by the upward chain and one emitted by the
downward chain at the same rapidity (e.g., the K+ and n* shown in Fig. 9), whereas the
second method does predict a compensation.

Limitations to the accuracy- of the model. Our classical model necessarily neglects the
interferences between different multiperipheral diagrams. Since we are using planar dual
diagrams (Figs. 2 and 7); these interferences are suppressed by powers of Ng2.... f,
instead, we had chosen multiperipheral diagrams where the exchanged reggeons have
definite isospins and signatures (these diagrams are combinations of the former ones),
the interference terms would have not been suppressed. Thus our choice minimizes the in-
terference effects. On the other hand, our:model generates factorized multi-Regge limits

B A

@ - -

Fig. 8. Classical mechanism for the two-jet picture of Fig. 7a. As I did in Fig. 3, I have displayed the shapes
of the strings at four different times. The difference comes from the “crossing over” shown in (b), which
replaces the joining by the extremities

Fig. 9. Double muitiperipheral model for the reactions contributing to the *‘cut-pomeron’; This model
corresponds to the assumption that the two *“darts” in Fig. 7Ta decay independently. It neglects the gluon
exchanged: betweén- the' two quark chains, displayed in Fig. 7b
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for all diagrams, which is not true for the dual amplitudes without definite signatures
{19]. This indicates a theoretical limitation of the model, ,

Finally, the factorization property illustrated by Fig. 6, and the inferred g2 (or ¢'*)
independence of the splitting function, does not exactly account for the gluons exchanged
vertically in Figs. 2b and Fig. 7b. These gluons have the effect of generating the hadron
poles in the g} channels. This is particularly important in the case of pion exchange, due to
the proximity of the pion pole; the actual pole contribution, in (g'>—m?)-2, is simulated
in our model by (q'i—m?2)-2, which is true only in the Regge limit.

6. Summary and conclusions

I have shown how classical string dynamics leads to a model for production of soft
jets which contains the main qualitative properties of the multiperipheral model, including
Regge asymptotic behaviour. Furthermore, there is a one-to-one correspondence between
the functions which parametrize the model and those which parametrize Regge behaviour.

In high energy hadron-hadron collisions massive elongated strings are formed. At
the classical level, their decays have the following three properties:

— limiting fragmentation, or Feynman scaling,

— factorization of the decay of a subsystem (Fig. 6),

— forward-backward symmetry.

The first two properties are based on causality + homogeneity of classical strings. They
yield a fragmentation model of a recursive type, having a splitting function independent
of g*. The third property leads to the “symmetric Lund” solution.

Large longitudinal momentum transfers are suppressed by a factor exp (—blq=q|).
This factor arises because a large value of |g*g~| means that an unbioken string lives for
a long time; this is an unlikely process.

Our recursive fragmentation model yields multiparticle states corresponding either
to cut reggeons or to the sum of cut pomerons + cut reggeons. In the second case, one
avoids the decomposition of 2 pomeron jet into two independent quark jets, which has no
theoretical justification.

The model is at variance with the idea of “topological jet universality” [20] which
relates, for instance, a cut-reggeon jet to a qq jet in e*e~ annihilation. The latter process is
not determined by Regge theory. On the other hand, triple-Regge behaviour yields a leading
particle spectrum in a cut-reggeon jet which behaves like (1 —z)-'/2 at z — 1; this contrasts
with the (1—2z) or (1—2)> behaviour observed in quark jets.

The main limitations of the model are the following: a) Spin-degrees of freedom have
not been included. b) Interference terms are neglected. We have minimized the interference
effects by taking planar multiperipheral diagrams instead of diagrams where the exchanged
reggeons have well-defined isospin and signatures. This procedure has errors which are
only of order 1/Nf,,ou.- ¢) The pion pole appears in the variable g2 because we neglected
the ¢* dependence of the splitting function. v .

In spite of the above limitations, the classical string model described here has the
advantage over other often used models in that it accounts for longitudinal softness (/g+g~!
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damping), forward-backward symmetry and Regge asymptotic behaviour. It can be applied
to any physical situation where soft jets occur such as the following : deep inelastic reactions
having “‘spectator jets”; reactions producing high mass diffractive states (triple-Pomeron
mechanism); reactions with several “‘cut-pomerons” which are becoming important at
present accelerator energies. These particular processes are not naturally described by the
two-component duality model.

I wish to thank Zakopane Summer School for having given to me the opportunity
to give this review lecture, and I am indebted to Martial Baker for his valuable help in the
final form of the manuscript.
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