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The “‘unification” of the gravitation and the electromagnetism in a Randers’ space
with a non-linear connection is presented. The equations of motion and the field equations
appear in the natural manner.

PACS numbers: 03.50.De

The purpose of this note is to give some geometrical version of the “‘unification”
of the gravitational and the electrcmagnetic interactions. By the word “geometrical”
we mean that all gravitational and electromagnetic forces have an entirely geometrical
origin in the Einsteinian spirit. The potentials must be components of a metric and the
strengths must be components of a connection for N-dimensional manifold M. The
motion of the test particle proceeds along the geodesic line in M and the action for ficlds
has the Hilbertian-like form

S, = [ #ig)"%a%, )

where # is a suitably defined curvature scalar, g = det ||g,5|!. Well known examples of
such theories are Kaluza-Klein Theory [1-3] and Finslerian theories [4-11]. Kaluza-Klein
Theory deals with a 5-dimensional Riemannian manifold, while the Finslerian theories
use the direction-dependent fields. We propose an alternative approach. We start with
the Randers’ metric, which is a particular case of a Finsler metric. Next, we construct
the suitable non-linear connection.
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The physical space is now a 4-dimensional Randers’ space [12-14] rather than a Rie-
mannian one; i.e., the physical space is a manifold with the metric
ds = v/ g (x)dx'dx’ + a(x)dx", 2)

where det |lg;;l| # 0. (The Latin indices run through 1, 2, 3, 4.) This metric has been proved
to be very useful in the unification schemes [15]. The metric given by (2) is defined by the
pair of the tensor fields (g, @); g;; influences the local inhomogeneity of the space, whereas
a; changes the local anisotropy. We identify g;; with the potential of the gravitational

field and q; = 4 A;, where A4; — four-potential of the electromagnetic field, ¢ and m —
m

charge and mass of the test particle. From formula (2) it follows that we deal with a non-
-standard notion of the test particle. Our test particle changes the local anisotropy of the

space by the factor 4 . The action for the particle has the following well known form (we
m

work with units such that ¢ = 1)
S, = —m f ds = —m J <\/g.~pzséf+ 4 A,;:") dr, 3)
mn

where xX': = Al dr:=+/ &;(x)dx'dx’ . Minimal Action Principle gives now the geodesic
T

cquation, which is simultaneously the equation of motion for the test particle

dx* o
—— x5t =fixd = 0, 4
e I £ 4)
where I'';, — Christoffel’s symbols, f;: = —(]-Fij — tensor of the electromagnetic field.
m

Using the absolute derivative, we can rewrite formula (4) in the geometrical language

DX
T;{ = V5 =0, e

The natural choice of the covariant derivative, i.e.,
Vjui: = ajui"{"rijkuk“f; (6)

leads to the concept of the non-linear connection defined by the pair (I, f). Next, we
introduce the directional covariant derivative for the contravariant vector field » with
respect to X

Vxu: = Oxu+Tyu—fy, )]

where (8xu)' : = X0, (I'y); 1= X', (fy)' : = X’f';. The following identities hold
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(compare [16])

Vxiyt = Vyu+Vyu, (8a)
VA.Xu = AVXu, (8b)
Vx(Au) = (OxA)u+ AV yu, (8¢c)

where A is a sgalar. Of course, generally
Vx(u+w) # Vyu+Vyew,

The non-linear connections have been considered in [17-22] but from a different point
of view. Our connection is defined only in the tangent bundle and it is not induced by any
connection in the bundle of linear frames. This is a G-connection in the following sense

T(h)Vxu = Vy(T(h)u), 9
where T(h) belongs to a linear representation ¢ of G = GL(n, R)
(heG, o:h->T(H).

In our case ¢ is the fundamental representation. From (9) it follows

T(h) (Oxu+T'xu~fy) = (0x+T'x) (T(HW)~fx» (10

where
Ty = T(NTxT™ (W)~ (@xT(M)T™(h), (11a)
fx = T(W) fx- (11b)

Therefore, we have obtained the transformation rules for the connection.
It is easy to calculate

[Vx, Vy]z = V[X,y]Z'i"R(X, Y)Z+P(X, Y)+fy.-x (12a)
and
ViY=VyX = [X, Y]+ T(X, )+ fy-x (12b)
where
Ripy: = 0+, I j— (k> 1) (13a)
Pui= —0,f—Tuf'—(jok (13b)
T = I'y—T'; (13c)

We define the curvature as the pair (R, P) and torsion 7 (= 0 in our case).
Our theory possesses the following “inhomogeneous objects”: metric (g, @), Eq. (2),
connection (I, f), Eq. (6), curvature (R, P), Eq. (12a).
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Finally, we construct the appropriate curvature scalar . Let us introduce

Ry = R+ AP, (14)

where
R:=g*R;, P = Pa',  — constant; according to Eq. (1)
Sp = [ Rilgl?d*x = [ Rig'd*x+2 | Plg|'?d*x (15)

and after some simple manipulations
/1 : . 3 ry
S; = j Rlgld*x+ 3 f Fifilgdt f 0(aig™ |8 ). (16)

In order to obtain the desired result we have to specify the constant A and eliminate the
total derivative. Concluding one can say that the approach proposed in our note is more
natural than that using Finsler space theories. Finslerian connections lead to the curvature
tensors which depend on the directional variable {17, 18]. That dependence has been elimi-
nated by the averaging with respect to the directions [4, 5] or by removing the terms which
depend on directions [9]; both techniques are very artificial.
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