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INVESTIGATION OF THE WAVE EQUATION FOR ONE DIRAC
AND ONE DUFFIN-KEMMER PARTICLE: A NEW FORM
OF THE KLEIN PARADOX*

By A. Turski

Institute of Theoretical Physics, Warsaw University**
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The wave equation for one Dirac and one Duffin-Kemmer particle proposed recently
by Kroélikowski is investigated. The radial equation derived in a previous paper is written
down in the component form and reduced by eliminating auxiliary components of the wave
function. Then, the limiting behaviour at r — 0 is checked. In the case of the Duffin-Kemmer
spin equal to 1 and the potential having the singularity r~¢ (¢ > 0) it turns out that there
is only one regular solution instead of three, two of them becoming oscillating solutions.
It is shown that this phenomenon is a drastic form of the Klein paradox. A possibility is
discussed how to apply the derived radial equations to quark-diquark systems, using the
regular potential emerging from the finite size of diquarks.

PACS numbers: 03.65.Ge, 11.10.Qr

1. Introduction

The quark-diquark potential model of baryons needs a wave equation for the boson-
-fermion pair. Such an equation for a pair of a Dirac particle and a Duffin-Kemmer particle
has been proposed recently by Krolikowski [2]. In the center-of-mass frame this equation
has the form

{°LE~V —dp—P(m++ S)]+Fp—(M+L S)}yp = 0, (1

where y* = (B, f) are Dirac matrices, f* = (8°, ﬁ) denote Duffin-Kemmer matrices defined
by the property

BB+ BB = g™+ g B, ©)
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m(M) stands for mass of the Dirac (Duffin-Kemmer) particle, and the potentials ¥ and
S describe an interaction in the static approximation. For spherically symmetrical poten-
tials: ¥V = V(r), S = S(r) it is possible to eliminate the angular variables from Eq. (1).
A general method of eliminating such variables from two-body wave equations is described
in details in the previous paper [1]. Here we recall only the results concerning Eq. (1).

Let us look for solutions of Eq. (1) being cigenfunctions of J2 and J, operators with
the eigenvalues j(j+1) and m;, respectively. The general form of such an eigenfunction
is given by the formula [1]:

Vim 75 8, @) = UTZ7O, @)p(r), (3)
where U describes a unitary transformation
U = exp (i0S,) exp (igS3), )

Z7 has the meaning of a generalized sphevical harmonic

6 ,0
ZM0, ¢) = Vi+1 e [\/——— I, sin - 3 cos? 5 P§u2) (cos )

9 h,
+ I, cos - 3 P32 :12(cos 6)
9 o
+ II_y,sin - 5 Pj21x(cos 8)
.0 0
—H 32 sin® icos 3 P 3/2(cos 0)1, &)

and zz(r) stands for an arbitrary radial wave function. In the above formulae S; denote
the matrices of total spin, I,,, are the projectors on the subspaces with S, = m, and P{*#)(x)

are Jacobi polynomials. Function 17)(r) has the same number of components as the full

wave function (X). The only constraint for 17)(r) comes in the case of j = 1/2 from the
condition

(IT3 +11_3,2)9(r) = O. (6)

Formula (3), when substituted into Eq. (1), gives the following radial equation [1]:

d
{B°[(E— V)=B(m+% $)]—(M+5 S)+[ B~ p°]i o

1 e L 3nr:  AN\TRO o \2 1p2 1 = 2yl
+ - Vi+ (-2 [B(Es)a,—3 B =7 iZ3(1-2(25)7)8"]
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1
+ " (+%) [_50(1 —(E3))2, +3 B2 —% izl —2(53)2)51]

1 20 1 2¢ >
- (8% S, — x2S )~ (B'S,— B Sx)]} y(r) =0, @)

where 2, = 7 ey’ and E, = ig;f'p are the matrices of Dirac and Duffin-Kemmer

spin, respectively (total spin S = 1 2 +53).

The algebra of Duffin-Kemmer matrices (2) has two irreducible representations:
one S-dimensional describing the spin J and another 10-dimensional corresponding to
the spin 1. Thus, the radial equation (7) can be written as a system of 20 or 40 equations,
respectively. Since some equations in these systems are algepraic and some components
of the wave function are auxiliary, it is possible 1o decrease significantly the effective number
of equations. This technically important problem will be discussed in two following sections.

To interpret the components of ;(r) it is useful to know transformed forms of some
physical operators. For a given operator O let us define the operator 0 by the formula

U™ 'ZM0p(r) = OU ™' Z™5(r). )
Then one can find:
5% = 82, ©9)
L% = j(j+ 1) +S>=2(S5)?
VI D (13 [~ Zu(E =, + Z5(1 = 2E)D)iE,]

+(+1) [, = (E)H+E, + Z5(1-2E5)iE, ], (10)

P = (= 145,25, - 1InB[2(8%)* 1], (11)

where P is the total parity operator and #» denotes the phase factor in the intrinsic parity
operator #f[2(8%*~ 1].

2. The case of the Duffin-Kemmer spin equal to 0

Let us use the specific representations of Dirac and Duffin-Kemmer matrices given in
Table 1. In the case of Duffin-Kemmer spin equa' to 0 the wave function ;;(r) is 20-compo-
nent and has the form ;(r) = (@(r), po(r), w,(r), va(r), ws(r)), where @(r) and y,(r) are
4-component Dirac spinors. These 4-component spinors can be split into 2-component
ones as follows: ¢ = (¢*, 03¢7), Yo = (Yo, 03%), Y1 = (G391, Y1), ¥2 = (¥3, 0397),
vy = (3, 03%5). So, if we substitute the wave function @f;(r) expressed in terms of ¢°(r)
and y.{r) (¢ = +1) into Eq. (7), we obtain two independent systems of equations with
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¢ = +1 listed in Table II. The fact that the systems correspondingtoe = +lande = —1
decouple from each other is connected with the correspondence of e = +1 and ¢ = —1
to two different eigenvalues of total parity operator (11):

Py® = —(=1)"*ney, (12)

which implies that £ is an additional “good” quantum number.

TABLE |
Used representations of Dirac and Duffin-Kemmer matrices

Representation of Dirac matrices:

@ = -0, ® 0 % ¥ %!
= - PNy 01 @G T, A0, @0 b
1 2 2 gl ’ : ! :
Hay 2 1 Lo, 33T ""z’
T
o
B= 10 =f-2i-.
3 :
) 0y

5-dimensional representation of Duffin-Kemmer matrices (corresponding to the spin 0):

00i0 000

' '
LI RN s PR & g8 o2 2y A A

7(?): .

Q0
X
i

o i 1 [ RN
AL TTTIgge!
: : 1010 ' 100+
0 :_.-J_-_;..o.ol 1 R 7 SR
=1 e e
' y N I
Lo 10001 ] Lm0 ]
- 00! i i
1040 0 ;
00+ 4]
L__J____8iC . G0«
CTTewn ) [T B0
! 000 {00
2 _ P-‘Lb.o.;:"_gg;.__ 3 .__:6?.010_995__-_
@ 1000’ ’ @ Tloaoo
L 00 1. . L0000 L]
0 H ; g :
I ' ! 0! I
Q! : " i

(The empty fields are understood to be zeros.)

For each & the system in Table Il can be further reduced by eliminating auxiliary
components of the wave function. If we substitute Egs. (b), (c), (d) and (e) into Eq. (a),
we are left with the single equation for the component ¢°(r)

) d 1 1 L o
—io,{ — + — ] —0.k — +6o3;(m+3 )
dr r r
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LE=VY+(m+38)>*—(M+38)

7 (E-V)
1 1 1
~1g e D l—koy) i (V=L S0y — i
* M+1lSE-V r( o) +3 (V=3 §'05) g 00,
fis L P m+zS 1 r) = 0 a3
S ———io r) =0,
*° M+is O’ M+is E-v ¥ )

d d
where V'(r) = A V(r), S'(r) = Er—S(r), k = —&(j+ 3). Since ¢°(r) is a two-component

spinor, Eq. (13) is actually a system of two first-order differential equations. The last four
terms on the Lh.s. of Eq. (13) are specific for the interaction of a Dirac particle with the

TABLE II

The set of radial equations following from Eq. (1) in the case of Duffin-Kemmer spin equal to 0

(M4 1St ) toviion L+ LY Coetivn L ey | -2 L
(M+2S)(p +{ (E-V) 0‘3(m+25)+162 - + p o,6(j+ 3 iyl + 5
r r

1 1 1 d 2
— Leas(i+L+4/) r]””n [—503—+1(]+ _\/_)T]iw§+ (;—-+ )w3 =0, (a)

. d 1 ; L.
I:—-(E— V)+as(m+4 S)—io, (—;{: + —r-> + 0.8 +1) T:I i — (M+18)yE = 0, (b)
1 .
[——%—r— —Leos(j+3+ ) :|1'<;:5——(M+%S)1p‘l =0, ©
1 1
d £ 1 &
7 —(M+L1Sws = 0. ©

spin-0 Duffin-Kemmer particle. In the limit M — oo these terms can be neglected and we
get the equation for a Dirac particle moving in external potentials V{(r) and S(r).

In the nonrelativistic limit the uppcr component of ¢*(r) is the “large” one. By acting
of the orbital momentum operator (10) on the wave function 17:80*) one can find that the

upper component of ¢°(r) corresponds to the eigenvalue of i equal to (j+3 &) (j+3e+1).
Thus, Eq. (13) is a relativistic equation for the states denoted by nonrelativistic spectroscopic
symbols #°l5, where s =1, I = j+1e and P = y(—1).

For the Dutfin-Kemmer spin equal to 0 the total spin is equal to 1/2 and the constraint

(6) does not appear.
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3. The case of the Duffin-Kemmer spin equal to 1

In the case of Duffin-Kemmer spin equal to 1 we will use the 10-dimensional
representation of Duffin-Kemmer matrices written down in Table I. The 40-component
wave function 17:(r) expressed by 4-component spinors has the form y:)(r) = (9o, Y1, Va2,
V3, ©1, P2, P3, 11> X2, X3). For the spinors w,,(r), @u(r) and x(r) we assume the follow-
ing 2-component notation: o, = (G35, ¥5), ¥: = (¥7, 93¥1)_ ¥2 = (0393, ¥3),
vy = (0393, v3), @1 = (63907, 97), @2 = (93,0393), 3 = (93 20393 3 2= (1 03%7),
¥z = (63%75%37), 73 = (6313, 13 ), Substituting the wave function w(r) expressed by yi(r),
@i(r) and xi(r) (¢ = +1) into Eq. (7) one can get two separated systems of equations
corresponding to two values of £. As previously, this splitting is connected with the relation
between ¢ and the total parity (Eq. (12)).

For given j, m;, and ¢ the resulting system contains 20 equations. The simplest form
of this system can be obtained when introducing a Jordan basis for the matrix f%, — 3

d
standing in Eq. (7) at the differential operator 7 According to this, let us define new
r

components f,(r), gi(r) and A(r) by the relations

1
+ —= hi,
Jf’ J2
1 [
'=-—"-.: 2—“’: E,
Y1 \/282 \’/283

&
Y2 = - \/ 3g2 \/‘" 0’3g3,

f = —0,f% _a h3,
P3 \/2 21— \/ 2
£ € & & & 1 2 1 z
Py = — "é-dsfz— '2—03h2+‘2'03f3 +7 03k,

14 €
Y e LY Py

RS
N
il

2
973 = ief;,
X = -%‘Tzf;"“;“o'zh‘z sza Uzhs’
x5 = Unfz l?"'xfs"'"f"lh

(all these functions are 2-component spinors). Then we obtain the system of equations
listed in Table IIL
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TABLE Il

The set of radial equations following from Eq. (1) in the case of Duffin-Kemmer spin equal to 1
3 1 d 1 1 1 1
—ofit | —= — +A2— + —= 0+ —=vie,+ —=k —0; | g
fo [\/i r '\/_ dr ‘\/i #10y '\/i o, \/2 ’ S]gl
B PRI RS S \/2 e — \/' o =0, @
—K—0 e —— G io o3 =
V2o oz ’ \f e §
11 1 NNV SRS B
- — — 4 = %0, —=viC,+ ——k—0 *
3 7 A T T Lty ek
+ ! Ly 3.4 l +1 7 P B \/il' ¢ =0 (b)
_— /2 — ~ 2,0, + —= vio,— —k —0 - —ig,8° = 0,
2 r Vdr \/711 »\/iwz 2 roo | rlzg2

1 1 1 1 1 1
_— T e e T — ..G —_ k c_ hl
[\/2 P IV IV, Gs]gl o
+

1 1 1 1. 1 1 .
R O ©
1 1 1 1, 1.
[_—ﬁk701~~'\/—§_7102]f5+ﬂ7162hi-x2f;
— 1 — d 1 1 1 1
+[‘\/2—r*+'\/27i;~~—ﬁxlﬂ'l— %‘Diﬁz]gg—WJTngi:O, (d)
1, 1 1 1 d 1 1
\/f—r—zazg’l+ [- -ﬁxlal+ -:/.E-viaz]f;—ngg-% I:\/ET + \/5:1—'_— + ———ﬁ X101 ~— \—/i-viaz]h;
.y 1 1 1 1 .
'\/“\/— o3 fi+ \/_\,/— a3k + T/_?kT-%V.a——r—as fi=0, @©®

1 1 1 1 1 1 1
[WkTGy- —\7_5 Tia;]h‘i—{-[ #1601+ —— '\/i vm{l &5 —nzh+ —\/_——2—\/—%0'3‘%: 0, O
L\/‘_l_g fi—- _1_,\/‘ 1 e £ 1 \/_
'\/i r 1Sy *\/i 703g2_x2f3+ '\/— , + dr \/“ v—- via, gS =0, (g)
i 1 1 1 1 1
—.V_?\/—Tasf;+°\/——2—\/_—;03h;+[—~\/—§—xldl+~\/~_£'vidz:|f;
1 i £ 4 =
— %288+ [V_— + \f " \/_ #1077~ 72—1”62]"3 \/i \/_ f 0, (h)
1 1 1 1
- 7‘2—'\/- Uxha \/... '\/_ 3g;+ ["\/-{ %01+ inaz]g;-xzhg =0, (l)
1 01 1 17, 1 1, ,
[ﬁ"?““ﬁ“‘r‘]g2+”ﬁ‘f7g3“”’f"“o' o
Notation: %; = m+ —12-S(r), #y = M+ %S(r), v = E—V¥({r), k= —e(J+ -%),
vV =VU+PU-P = Vi~
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We can see that in Table III the equations (c), (f) and (i) are purely algebraic, while
the components f;(r) are not differentiated anywhere. Due to this we can eliminate all
the functions f,; and also /;. This elimination consists of two steps. In the first step we remove
the components 7, H5, f5, /5 and f§ using the equations (d), (f), (g), (i) and (j), in the second
we take away f$ and A substituting () into (b) and then (c) into (b). The practical calcula-
tions were performed with the help of the computer program for algebraic manipulations
“SCHOONSCHIP” [3]. The results are given in Table IV. We are left with 3 equations
for the 2-component spinors g3, g5 and g5, so we have altogether 6 differential equations
of the first order.

TABLE 1V
The equations following from the set in Table III by eliminating auxiliary components of the wave function

(see text)

d 1 1 1 1 1
—20— —2— QR-0x3)—S — v — D)+ V' + | —kS'— — (& —oxd)—ko— @ +x]—x})
dr r 3, Xy r r?

1 2 2 1 1 11 2
~2av| 1+ — | o+ | —@P+xi—x3) | 1+o—5 | —2konio — 8 — — (5 — D) |io,
r r r ®y ¥
1 1 s 1 11 1
+| —2%kv— 48— ut—wd)+ LS jos b gD+ —z{ |V — — +S00— | o,(k—03)
r P2 \/2 #, r

1
—(+ 04d) (0 -4 + %g)} &)

1o 11 ’ 1 . , 2
- ’“’Q‘S"-T'*’SQ"J:T io(k—03)+S'(1—oxz)—

#a 2
1 1 1 1 1 1 1
+— V' — — +800— [0+ | = LS — — +8%0x, — |ic
V2 w{[ %y F ¢ r] ! [ 27 ok r e r] 2
1 11 .
—| S0 — +o— — (WP—Hi+x3) [(k+03) ;g5 =0, @)
r2 %y 3
1 L1 1 L L . 2
—5 V' —m — +800— lok—03)+ | — 38 — = + 870, — |ioy(tk—03)+S(1— 0%3)
2 2y F r #y r

1 2, .2 d 1 20, 1o . , 11 2
—20%, — (VP —x1+x%2) pgi(n)+ { — 2 - =20 — 2~ p3)+ S 00+ V' + | 1 kS — — (1—0x3)
r r r ¥

%2

1 1 1 1 1
tho— @+xfi—m)+200 (1+o— )01+ |38 — —U—ox)+ @+ +x3) | 1+ 0
r? r2 Xy ¥ 2

r

1 1 1
+2ko = mv] ioy+[— 18 o2+ % S’]aa} g0+ {[%S’e%z il ry (v’+H3—%§)] f!
r2

1 11 1 1 1 1
—20mp—icr+ | — LhS'o—n, — +3S0—v—S+Ww—{1+9 —J|os— LS80 — i~
r? %2 ®y 1t r 2 2 »

11 1),
+ L kS0 v +2kov— 1 g5(r) = 0, (b)
xy r? r
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TABLE IV (Continued)

T S T T AU U P O DU
7_2“"\/ - V—;—* T+SQUT Oy~ —iS '-’-‘— T+SQK; -;* lO’z—SQ?(k—O‘;;) g‘;(r)
2 2

— 1 1 1 1 1 1 1 1
+ ‘\/ {%S'QXZTUI‘I' [i—%-kS’g——x—z-xl 7 - %S,Q—ZUF +ZDT‘] o3+ %S'QZ ¥y ~;E-

L Lor 1 1 . d 1 o ’ L 11 2
+-ik89—:—v-2— 8N+ {—20— —2v — + 3 S 0x0+ V' + TkS — — (1= px2)+ 25,0 | 0y
x2 T dr r %, r

11
+ [— %S’—;— —a —gx§)+(v2+xi—z§)] 02+ [~ 3802+ —}S’]o‘;}gg(r) = 0. ©
2

d
Notation: %, = m+ 4 S(r), %y = M+ 1S0), v = E-V(r), k= —e(j+ D), V' = - Vin),
r

r

d 1 -1
§'=—S0. o= [x§+ 7<k2—1)] .V =V HG-H = Vie-l.

In the nomelativistic limit (|p|, ¥(r), S(r) < M, m) the system listed in Table IV splits
into 3 separated subsystems, each one corresponding to the Schrddinger-like equation
for a combination of the upper (“large”) components of spinors gj. Acting by the operators
§2 and 12 (Egs. (9) and (10)) on these combinations one can recognize that they cortespond
tos=2%and/=j+3e0ors=3and !/ =j+ieors=32and ! = j—3e In the relativistic
case these states are mixed because of the spin-orbit interactions (there is also a “small”
admixture of other states). Nevertheless, the total number of degrzes of freedom should
be preserved, i.e. for fixed j, m; and ¢ the system in Table IV should describe three sequences
of states.

The case j = 1/2 needs a special attention. The system in Table 1V divides into two
parts: the fi1st containing Egs. (a) and (b) for spinors g5 and g5 and the second one given
by Eq. (c) for the spinor g5. This separation enables us to impose in a consistent way the
constraint (6) which now assumes the simple form: g5 = 0. Physically, this condition means
that the states with / = —1 or I/ = 0, s = 3, j = 1 do not exist. In fact, one can easily find,
that the spinor g5 corresponds to these unwanted states. Concluding, in the case of j = 1/2
the system contains Eqgs. (a) and (b) and describes two sequences of states (corresponding
in the nonrelativistic limit to /= 1, s=forl=1,s=3fore= +land [ =0,5s =%
orl=2s=3fore= —1).

4. Behaviour for r - 0

Generally, the number of solutions regular at r = 0 should be equal to the number
of degrees of freedom. It means, that Eq. (13) should have one regular solution, but tbe
system in Table IV should get three regular solutions. Obviously, such a situation takes
place if the potentials ¥(r) and S(r) are regular at r = 0, since then the equations become
asymptotically free. Let us now investigate the case, when the scalar potential S(r) is regular
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(the value S(0) can be put zero by the appropriate redefinition of masses), but the vector
potential ¥(r) has a weak power-like singularity:

I”(r) r_""b bor—ao, 0< ag < 1,
S() = 0. (15)

Substituting the behaviour (15) into Eq. (13) and keeping only the leading terms one
can obtain the asymptotic form of the wave equation for the case of Duffin-Kemmer spin
equal to O:

P A P LA 14 Hr) =0 (16)
2\gr ; T2 V() iog,+o(V(r)) p ¢'(r) = 0.
Now, it is easy to show that there is one regular solution (with behaviour r/~**#%)
and one irregular (with singularity r~/"#7%%) Thus, the number of regular solutions
is consistept with our expectations.

The situation is different in the case of Duffin-Kemmer spin equal to one. The asymp-
totic form of the equations listed in Table IV is the following:

2V( ) i e _1‘ I/vl 1 1 k €
r) o, 8- NG (n 57 - ok —03)ga()

Qe T
+ —Jax/kz-—l V) o 018 = 0, (17a)
L1 ) d
\—/5 12 (r)M - G;(k—ffs)gl(r)+2V(r)2; g2(r) =0, (17b)
Ve L1 d .
— V-1V = = 6,850 +2V(r) — g4(r) = O. (17¢)
V2 M r dr

Assuming the solation in the form
£ 4 € K
(81> 82, 83) ~ (41, A3, Az) exp - (18)

one can obtain that six independent solutions correspond to the following values of «:

-1 1
Ky = Kg = +i%x/k2—1—l, Ks = Kg = —-i%\/kz—lﬂ. (19)

Solutions “1”” and “2” have the asymptotic form different from (18). By a careful investiga-
tion of higher order terms it is possible to show that the leading bebaviour of these solutions
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is power-like with the exponent j—+3a, (regular behaviour) or —j—3+1q, (irregular
behaviour). The remaining solutions *““3” to “6” are oscillating with the phase rising to
infinity as r approaches zero. So, we have only one regular solution instead of three.

In the case of j = 1/2 the situation is similar. The asymptotic behaviour of the wave
function is of the type exp (xr *'?). From the four possible values of k one is negative
(providing regular solution), one is positive (leading to exponentially divergent solution)
and two are imaginary (giving irregular oscillating solutions). Thus, in this case we get
only one regular solution instead of two.

The above considerations formally do not apply to the potentials with the Coulomb
singularity. Nonetheless, carefully investigating the case of Coulomb potential one can
find out that in this case the asymptotic solutions at r = 0, though differing in details,
are qualitatively very similar. In particular, there appear oscillating behaviours instead
of regular ones when the Duffin-Kemmer spin is equal to 1.

If the number of regular solutions is smaller than the number cf degrees of freedom,
we fall into a contradiction and the equation (1) cannot be used in a consistent way. The
lack of a sufficient number of regular solutions in the above examples is connected with
the appearance of oscillating solutions. Oscillating solutions of other Dirac-type wave
equations are known to be characteristic for the Klein paradox. The possible interpretation
of the contradiction found in this paper as a consequence of the Klein paradox will be
discussed in the next section.

5. A new Klein paradox?

In Ref. {4] it was shown, how to obtain from Eq. (1) the equation consistent with
the hole theory. The modification has the form

B°V(r) - B°P(RYV(F), (20)

where!

1
B°P(p) = 3 B°(ap+ pm) T T2 (—fp+M) - (2

Vpi+ \/p +M?

The nonlocal projecting operator a la Salpeter, P(p), eliminates the sea of particle-anti-
particle states responsibie for the Klein paradox. In order to show that the oscillating solu-

! When in pamcular there is no scalar potential S(r) the operatcr P(p) can be written in the form

P(p) = AR(P)APK(~p)— AP(p)APK(~p),

o pr 6y2 0 ﬂp+M
AP = (1— —M—>( (k¥ fi ~1_W>

Here, A2 and AEK are projectors onto the subspaces spanned by the positive (++) or negative (—) energy
solutions of the Dirac (D) and Duffin-Kemmer (DK) free equations. In this argument we were able to
assume consistently (when S(r) = 0), that the wave function satisfies the constraint Bp(8%°%y

= M(1-(°))y.

where
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tions found in the previous section are connected with the appearance of the Klein paradox
it is sufficient to prove that S°P(p) vanishes asymptotically in acting on w(r):

IB°P(p)p()y(M)] =, 0. (22)

Let us assume that the function w(r) satisfies the conditions:
1. ¢(r) is the solution of Eq. (1);
2. (r) bas the asymptotic behaviour exp [i § fir)dr], where the function f(r) is power-

-like:
~f< "% 1) (23)
and singular:
f(r)] = . (24)

All oscillating solutions found in the previous section satisfy the above conditions, We will
prove that Eq. (22) follows fiom these conditions.
Assumption 2 implies
2

- d -
Py(r) & — 59, 0, 9) = [f(N] () (25)
r—0 d" =0
and similarly
w( r) p(r), (26)
P [f( )]2
$() = p(r). 27
\/ 2 r- +0f( )
By expanding the operator 1/\/ 1)2+nz2 in a fcrmel series in m?/p? one can write
) = —= (14 - ) () ~ — . @28)
=) = o=l plr wir
\/p2+mz’ VP2 *p? re >0f(')

independently of the mass value. Substiiuting (28) in (21) we obtain

AOP r) =~ *~ 29
j; (p)w()ﬁO f() (B%ap— Bp)y(P), (29)

where only the terms of crder u(r) are left. On the other hand, if the potentials ¥(r) and
S(r) have the behaviours not more singular than 1/r, then it follows from the assumption
1 that y(r) satisfies asymptotically the equation

1
(Bap~FinG) = 0+o<r w(r)>. (30)

Suabstituting (30) into (29) and using the assumption (24) we see that the condition (22) is
fulfilled.
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In Ref. [4] it was generally proved that Eq. (1) modified by the substitution (20)
is free from th= Klein paradox at r = 0. Ie particular, using the present method, it is easy
to shew that such an equation does not admit ,olutions satistying the condition 2. To this
end let us suppose that such a solution exists. From the asymptotic condition

N Vi) x f 5
we see that the term BOP(pYV(F)w(F) can be naglected in comparison with {— fo(ap + fm)
+Bp— M}y(r). The resulting equation is asymptotically a free equation (if S(r) 3 0,
50 it has no solutions satisfying condition 2. In this way we have proved by the reduc’uon
ad absurdum that also for the initial equation such solutions cannot exist.

It is surprising that the Klein paradox in Eq. (1) appears even for potentials with
a very weak power singularity. Another known two-body relativistic equation with static
vector interactions, the Breit equation (without Breit terms), also suffers from. the Klein
paradox, but only for the Coulomb potential with a strong coupling constant. Some analogy
of the paradox found in this paper is provided by the drastic Klein paradox appearing
in the three-body Dirac equation [5]. Note that both in the case of three-body Dirac equation
and in the case of Eq. (1) with Duffin-Kemmer spin equal to 1 we have tormally three
spins 1/2.

V() (31)

6. Final remarks

A patural field of application for Eq. (1) and the radial equations derived in the present
paper (Eq. (7) and Table IV) is the quark-diquark mode] of baryons. In the first approxima-
tion one may try to treat the diquark as a point-like particle and to use the colour triplet-
-antitriplet potentials emerging from the quark-antiquark model of mesons [6]. In such
an approximation the vector potential at small distances is dominated by the one-gluon
exchange and has a Coulomb-like singularity (with an additional log-dependznce if the
asymptotic freedom is taken into account). As it was shown in Sect. 4, in the case of the
diquark spin equal to 1 there appear troubles related to Klein paradox, as the potencial
here is singular. To remove this paradox we should modify Eq. (1) by the substitution
(20) [4]. Nevertheless, the modified equation contains the nonlocal operator and is difficult
to solve practically.

Another approach may be based on the finite size of diquarks. When the diquark
structure is taken into account, then the inweraction is smeared out by the diquark extension
and the potential is regular at r = 0. In such a case the Klein paradox does not appear
and our radial equation can be us:d directly. There are also physical motivations for this
approach: computations based on the Breit equation have showed [8] that the tieatment
of diquarks as point-like objects is physically wnacceptable.

A priori it is an open question, whether it is necessary to use the modification (20)
if the finite spatial extension of diquarks is taken into account. Acting on the wave function
by the projector (21) one removes the non-desired particle-antiparticle states. If the Klein
paradox does not appear in Eq. (1), then the wave function has only a small admixture
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of such states and so the action of the projector (21) introduces few changes. Thus, the solu-
tions of Eq. with and without the modification (20) should be in the first approximation
similar. Nonetheless, higher order differences may be significant. An analogous problem
for the Dirac equation was discussed in Ref. [7].

Concluding, the derived radial equation listed in Eq. (7) and Table IV can be helpful
in relativistic calculations for energy levels of quark-diquark or other fermion-boson
systems. If the complete wave function is needed (e.g. for a perturbative treatment), then
the auxiliary components of the wave function can be found from the sets of equations
given in Tables II and IIIL

I am indebted to Prot. W. Krélikowski for many valuable discussions. This work
corresponds to a part of the author’s Ph. D. thesis [8).
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