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This paper discusses singularities in the set of solutions to the field equations in Hamilton-
ian field theories with first class constraints. We assume that the evolution equations are
well posed, so that such singularities are caused only by the constraint equations. The latter
require that the moments associated to the gauge transformations vanish. The moment map
is a concept in classical mechanics which generalizes the idea of angular momentum associated
to the rotation group. It is shown that level sets of certain moment maps have quadratic
singularities exactly at points in phase space that are fixed under subgroups of positive
dimension. A normal form for the moment map in canonical coordinates is derived.
Applying these results to gravitational and Yang-Mills fields shows that the solution
sets for these field equations have quadratic singularities exactly at fields with (infinites-
imal) symmetries. Thus at a symmetric solution, a linearized solution must satisfy not
only the linearized equations but also a quadratic condition if it is to be tangent to a curve
of solutions to the full field equations.

PACS numbers: 03.50.~-z, 04.20.Fy

1. Introduction and summary of results

Over the past decade or so a number of researchers have studied singularities in solu-
tion sets for relativistic field equations, especially the Einstein field equations. This research
culminated in results of Arms (1981), and Arms, Marsden, and Moncrief (1981, 1982)
showing that for Hamiltonian field theories with first class constraints, the solution sets
have quadratic singularities precisely at symmetric solutions, and are smooth manifolds
elsewhere. This introduction summarizes some of the earlier research and briefly describes
the quadratic singularity results and the main ideas used to derive them. Section 2 discusses
some symplectic geometry (i.e. Hamiltonian mechanics); tools are developed which describe
the location and structure of the singularities in level sets for (generalized) momentum.
In Section 3 these symplectic geometry results are applied to classical Lorentzian field
theory to give the structure of solution set singularities. The Finstein and Yang-Mills
field equations serve as specific examples; extension to other fields is discussed. Most
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proofs are only outlined, and the reader is directed to the literature for details. Some
generalizations of the symplectic geometry results which are new are proved in Section 4.

The study of singularities in solution sets began with the question of the validity of
linear approximations. The nicest possible structure for the solution set of a nonlinear
equation is a smooth manifold of solutions, approximated near each exact solution by the
linear perturbations of that solution; that is, by the solutions of the linearized equation.
At singularities, however, the linearized equation may have “too many” solutions. A simple
example from algebra illustrates this point. Consider the nonlinear equation

x?=y2 =0 (1.1
with the corresponding linearization
2x(0x)—2y(6y) = 0. (1.2)

At most solutions (x, y) to (1.1), solutions (dx, dy) to (1.2) are vectors tangent to the solu-
tion set for (1.1). For instance at (—2,2), a linearized solution (Jx, Jy) satisfies

—4(6)—4(») = 0,

so 0y = —0dx; for any such linearized solution (dx, dy), there is an exact parameterized
solution of the form

(=2, 2)+ A(dx, 6¥)+ O(32).

(In this simple example, the higher order terms happen to vanish.) But at the ongm (0, 0),
(1.2) becomes the trivial equation

0(0x)—0(3y) = 0,

which is satisfied by arbitrary (5x, dy), most of which are not tangent to the solution set
for (1.1). (For example, no choice of higher order terms will make (4, 0)+ O(4?) a solution
of (1.1).)

Much as we might hope that this phenomenon is merely a mathematical curiosity,
it is not: it does occur for nonlinear field equations. Brill (1972) and Brill and Deser (1973)
showed that there are such spurious solutions for the linearized Einstein equations at the
vacuum spacetime given by the flat three torus with zero extrinsic curvature. In fact that
spacetime is an isolated solution to the nonlinear field equations even though the linearized
equations have many nontrivial solutions. (Fischer and Marsden (1975)).

Fischer and Marsden (1973) coined the term linearization instability to describe this
problem. A nonlinear equation F(x) = 0 is said to be linearization stable at a solution x,
if every solution éx to the linearized equation F'(x,) - §x = 0 is tangent to a curve of solu-
tions to the original nonlinear equation. If dx is considered as the first order coefficient
in a power series solution, linearization stability means that there does exist a parameterized
solution with that first order coefficient. For (1.1), linearization instability occurs only at
the origin.

(Linearization stability is not directly related to other kinds of stability, such as dynam-
ic stability. However, dynamic stability is often dectected by examining linearized solu-
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tions. Thus linearization instability might confuse the question of dynamic stability by the
presence of spurious linearized solutions.)

Fischer and Marsden (1973, 1975) established sufficient conditions for linearization
stability of the Einstein field equations. For spacetimes with compact Cauchy surfaces,
Mongcrief (1975A) identified these sufficient conditions with the absence of Killing fields.
A Killing field on a spatially compact, globally hyperbolic vacuum spacetime together
with a linearized solution gives rise to an integral conserved quantity which is quadratic
in the linearized field. Moncrief (1976) showed that this conserved quantity must vanish
if a field that solves the linearized equations is in fact a first order approximation to a non-
linear solution. Similar results were established for the Yang-Mills and Einstein-Yang-
-Mills equations (including the Finstein-Maxwell system) (Moncrief (1977); Arms (1977,
1979)).

A common theme of these results is the link between symmetry and linearization
instability. This link has important implications for perturbative analysis. Known explicit
solutions at which perturbations can be done are almost always found by assuming some
kind of symmetry. Two key characteristics of a field theory needed for this link are revealed
by examining cases where symmetry exists with linearization stability. Choquet-Bruhat
and Deser (1973) and O’Murchadha and York (1973) showed that Minkowski space is
linearization stable, and D’Eath (1976) showed the same for Robertson-Walker universes.
D’Eath’s matter variables are not Hamiltonian. An essential assumption for the quadratic
singularity results is formulation of the field equations as a well-posed Hamiltonian system
with constraints that are first class (in the sense of Dirac): we assume such a formulation
throughout this paper. (Recent work of Bao, Marsden, and Walton (1985) suggests that
symmetric fluid universes such as the Robertson-Walker spaces will be singular points
if solutions are restricted by the Lin constraints.)

Minkowski space can be described in a Hamiltonian (canonical) formalism, but
causes difficulties because it has a noncompact Cauchy surface (i.. it is an open universe).
For technical reasons (although one could also argue on physical grounds) only perturba-
tions which vanish rapidly at spatial infinity are considered. As in the compact case, infinites-
imal symmetries, that is Killing fields, give rise to obstructions to linearization stability;
however, only Killing fields which vanish rapidly at spatial infinity are considered. All
Killing fields on Minkowski space have non-zero norm at infinity, so there is no obstruction
to linearization stability. To avoid these technical details about asymptotic behavior,
we will assume that all our spacetimes have compact Cauchy surfaces. (The reader interested
in the noncompact case is referred to Choquet-Bruhat, Fischer, and Marsden (1979),
and to Moncrief (1977) for some discussion of the noncompact case for Yang-Mills(-Higgs)
fields. In another approach to perturbation theory for asymptotically flat spacetimes,
investigated by R. Beig (1984), quadratic constraints also appear; work of L. Anderson
and J. E. Marsden indicates that these quadratic constraints must be considered if the
class of allowable perturbations includes those asymptotic to Poincaré transformations
(private communication).)

This study of linearization stability identified the solutions with symmetry as candidates
for singularities in the solution set. Furthermore the quadratic constraint was a beginning
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on describing the structure of the singularities. Additional work in the late 70’s and early
80’s was needed to show that in fact no higher order constraints are needed. Also in this
time period the results were extended to other fields such as certain scalar fields coupled
to gravity (Saraykar and Joshi (1981 and 1982) and classical supergravity (Bao (1984)).

Briefly stated, the complete result is as follows. Consider a Hamiltonian field theory
with first class constraints, such as the Yang-Mills, vacuum Einstein, or Einstein-Yang-
-Mills theories, on a spacetime with a compact Cauchy surface. (Certain other technical
restrictions, such as ellipticity for certain partial differential operators, and positive energy
for matter fields coupled to gravity, will be detailed in Section 3.) The solution set for such
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a field theory has singularities only at solutions with infinitesimal gauge symmetries. An
infinitesimal gauge symmetry means a one parameter family of gauge transformations
that leave the fields not merely covariant but invariant. The singularities are quadratic;
that is, they can be described by a set of homogeneous quadratic equations. These equations
state that certain conserved quantities, one for each infinitesimal symmetry, vanish.

Furthermore, the structure of such a singularity can be described in some detail. It
is the product of a smooth manifold of solutions with the same degree of gauge symmetry
and a cone of solutions with fewer gauge symmetries. For example, consider SU(2) gauge
fields. A gauge field with a gauge symmetry can be reduced to a field with a smaller gauge
group, in this case U(1). Thus there are quadratic singularities at the U(1), or electromagnet-
ic, solutions within the set of solutions to the SU(2) Yang-Mills equations. These singulari-
ties look something like Fig. 1.

The nature of the singularities in the solution set tempts one to say that there is a cone
of solutions which “break symmetry””. However, the relationship between this picture and
the term “symmetry breaking” has not been investigated.

Now in nonlinear field theories such as gauge theory and general relativity, known
explicit solutions, at which we try to apply linear perturbation theory, usually have some
kind of symmetry. If this is gauge symmetry, then the linearized fields must satisfy not only
the linearized field equations but also a quadratic, second order condition. Thus lineariza-
tion stability is clearly an important question for finding classical solutions, and also for
perturbative methods in quantum field theory. In fact in any quantization procedure,
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the classical solution set plays an important role; if the linearized solutions are not a good
approximation to this set, it will cause difficulties in quantization. Some aspects of this
problem have been studied by Moncrief (1978).

We close this introduction with a sketch of the proof that gauge symmetries should
be linked with singularities in the solution set. Field equations such as the Einstein or Yang-
-Mills field equations split into evolution equations and constraint equations on the initial
data. We assume that the constraint equations are well posed: given a solution to the
constraint equations, the evolution equations can be solved, and the solution will preserve
the constraints. Thus singularities in the space of solutions must correspond to singularities
in the constraint set.

Assume that the field theory can be expressed in the canonical, (i.e. Hamiltonian)
formalism. As an easy example, consider electromagnetism. The canonical coordinates
(g, p) in this case are the vector potential and the electric field, (4, E’). (Actually the canoni-
cally conjugate momentum for the vector potential is a minus the electric field density,
but such details are unimportant for the present argument.) The one constraint, divE = 0,
is first class.

Recall that first class constraints generate gauge transformations, that is, the Hamilton-
ian vector field associated to such a constraint leaves the physics invariant. If we represent
the constraints by @ = {®;} = 0, the Hamiltonian vector field on phase space P,

Xo, = (69,/0p) (0/cp) —(8®;/0g) (0/5p), (1.3)

is an infinitesimal gauge transformation. (Where the phase space is more than two dimen-
sional, a sum over all p’s and ¢’s is understood.) The flow of the vector field X, is a finite
gauge transformation; in our example, this is an ordinary gauge transformation,
A - A+di.

An easy argument using the implicit function theorem from advanced calculus can
be used to locate possible singularities in the constraint set ¥ = {& = 0}. The implicit
function theorem says that wherever d® = @’ is surjective, i.e. at any x, where the set
{d®(x,)} is linearly independent, the set ¥ is a smooth manifold locally near x,, with
tangent space at x,, 7,,%, given by ker @' = the set of linearized solutions. (Derivatives
are to be evaluted at x, unless otherwise specified.) Note that (1.3) establishes
a one to one correspondence between vector fields the X;; and the forms d®;. The implicit
function theorem fails when the do;’s and thus the X,;’s are linearly dependent, that is
when there are N’’s such that

N’'X 4 (x0) = 0. (1.9

(Summation convention assumed.) But this last equation says precisely that there is an
infinitesimal gauge symmetry that fixes x,. When (1.4) holds, N’.X,, ; 18 called an (infinitesimal
gauge) symmetry for x,. The dimension of the space of N’ for which (1.4) holds is called
the degree of (gauge) symmetry for x,.

Another easy argument suggests that at points with symmetry, linear perturbations
which are tangent to curves of solutions satisfy a quadratic equation. Consider a curve
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x(4) in phase space, x(0) = x,, satisfying #(x(4)) = 0. Differentiating the linear combina-
tion N’®; with respect to 4 yields

NIDY(x(D)) - x'(A) = 0; (1.5
differentiating again,
NI (x(A)) - (x'(A), X' (A)) + N'®(x(2)) - X''(4) = 0. (1.6)

When the latter equation is evaluated at A = 0, the second term vanishes by the arguments
of the previous paragraph. This leaves a quadratic equation,

NI®Y/(x0) - (6x, 8x) = 0, (1.7)

where by (1.5) evaluated at A = 0, éx = x'(0) is a linear perturbation of the solution x,.

But these simple arguments raise as many questions as they answer. In the quadratic
condition (1.7), together with the linearized field equations, sufficient to determine which
linearized fields are actually tangent to curves of solutions? Additional differentiation,
that is to say higher order perturbations, might yield additional higher order constraints.
It is not even clear if the condition (1.7) is nontrivial. In the example of electromagnetism,
the gauge transformations are given by 4 — A+di, so the set of gauge transformations
is parametrized by the functions 4. A constant function 4 leaves the vector potential
unchanged, and is therefore a symmetry for all electromagnetic fields. Although this
symmetry is clearly trivial, it does lead to a homogeneous quadratic equation (1.7); the
equation, 0 = 0, is also trivial. Thus as one expects for a linear theory, there is no quadratic
condition on the linear perturbations. When will (1.7) be trivial, as in this example? To
answer these questions and determine the structure of the singularities in the solution set,
we will need the concept of a moment map. A moment map is a function associated to
a group of canonical transformations of phase space and generalizes the idea of linear
momentum associated to translations and angular momentum associated to rotations.
The idea that symmetries of phase space give rise to conserved quantities dates back to
Noether, if not beyond, but we will use the formulation developed recently by Souriau
and Kostant. It is to this topic that we turn in the next lecture.

2. Bifurcations of moment maps: a theorem in symplectic geometry

A moment map is an abstract form of Noether’s theorem: every symmetry has associat-
ed with it a conserved quantity. A field theory with gauge transformations has associated
conserved quantities. A subset of the field equations, the constraint equations, set these
conserved quantities equal to zero. Thus the constraint equations can be described as the
zero set of a moment map, and the problem of describing the solution set for the constraint
equations can be rephrased, and somewhat generalized, as describing the level sets for
a moment map. In this lecture we study this problem in finite dimensions. Lecture 3 will
discuss applying the results to the infinite dimensional (function) spaces that occur in the
study of field theories.
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This lecture is organized as follows. First we give the abstract definition of a mo-
ment map. Applying this definition to the rotation group acting on the phase space of
a single particle in three dimensional space yields the usual angular momentum as the
moment map. Additional requirements, such as metrics, are discussed. Next we construct
a diffeomorphism, or if you like coordinate change, that reveals the quadratic nature of
singularities in level sets of moment maps. The structure of these singularities is described.

Suppose that G is a group of canonical transformations on a phase space P. Let
g be the Lie algebra of the group; for each ¢ e g, there is a vector field &, on P which gener-
ates the corresponding flow on P. (Specifically, if x — g - x represents the G action, then
Ep(x) = didt{exp (t&) - X)}|,=9.) A moment map for the G action is a map #: P — g*
such that the Hamiltonian vector field associated to function ¢ #, &) is the vector field &,.
(Here g* is the dual to the Lie algebra g and the double brackets ¢ , » indicate evaluation
of Feg* on feg.) In other words, for each one parameter subgroup in G (repre-
sented by its generator &), there is a function ¢ #, &) which is the Hamiltonian whose
dynamics are exactly the action of that subgroup on the phase space; the moment map
is simply a collective Hamiltonian for the group action.

Now in Dirac’s constraint theory, the first class constraints are Hamiltonians whose
dynamics are the gauge transformations. Thus the first class constraints are the moment
for the gauge transformations. The study of the solution set for the field equations has been
reduced in Lecture | to the study of the constraint set; that is now further transformed
into the study of level sets for a moment map.

This definition can be given more preciscly by recalling some definitions and notation
from symplectic geometry, the abstraction of Hamiltonian systems. Let P be a manifold
of dimension 2n. A symplectic form w on P is a closed, nondegenerate, covariant two
tensor. Darboux’s lemma says that locally there are always canonical coordinates
4", ... 4" p1, ..., py) in which © = dg’ A dp ; (summation convention). The nondegeneracy
of w means that it gives a one to one correspondence between vector fields and one forms
(covariant vector fields): if H is a function on P, the vector field Xy corresponding to dH
is given by dH = w(Xg,). In canonical coordinates, this means that

Suppose that there is a group G that acts on P on the left by symplectomorphisms
(i.e. canonical transformations). The moment map for this action is defined to be a map
F: P — g* such that

KFV), & = 0.(&p(x), V), 2.1)

where x is a point in P and V is a vector at x.

As a simple example, consider the rotation group G = SO(3) acting on the phase
space P = T*R? ~ R® of a single particle. A point in P is a pair of vectors (g, p), ¢ = posi-
tion, p = momentum of the particle. The group G acts in the usual manner on each of
these two vectors. Let £ be a vector in the Lie aigebra SO(3) ~ R?; the direction and magni-
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tude of ¢ indicate the axis and magnitude, respectively, of the one parameter family of
rotations it generates. From vector calculus one knows that the vector field tangent to the
flow this generates on the phase space is ¢ = (£ x ¢, £ x p). But this is also the Hamilton-
ian vector field for the Hamiltonian ¢ - g x p, so the moment for this action is the angular
momentum £ = gxp, as expected.

Not all group actions admit moment maps, at least not globally. There are several
conditions on the phase space, the group, or the action that will insure the global existence
of the moment. (Cf. for instance section 26 of Guillemin and Sternberg (1984 A).) One which
applies in all of our examples is the following. If the group action on the phase space P is the
lift of an action on the configuration space M, then there is a natural moment map:

£, ), &> = £p, En(9)D,

where ¢y indicates the generator of the group action on M and the brackets on the right
hand side indicate evaluation (or inner product, if you regard the canonical moment p as
a contravariant vector).

Thus the moment map is a modern formulation, as presented here due to Souriau,
of Noether’s theorem. Recently there has been much interest in the momentum map, not
only in mathematical physics but also in several areas of pure mathematics. For instance
Guillemin and Sternberg (1982), and independently Atiyah (1982), have shown that the
image of certain moment maps for torus actions is a convex polytope. This generalizes
old results of Schur and Kostant on eigenvalues for Hermitian matrices, and has applica-
tions to solving polynomial equations and geometric invariant theory. (See e.g. the survey
article of Atiyah (1983); Guillemin and Sternberg (1984 B) and Kirwan (1984 A, B).
Other applications include work on action angle variables by Duistermaat (1980), and
reduction of Hamiltonian systems with symmetry, for instance by Meyer (1973) and Mars-
den and Weinstein (1974) and Bos and Gotay (1984), which generalizes Jacobi’s “‘elimina-
tion of the node” in celestial mechanics. Guillemin and Sternberg (1984 A) discuss many
physics applications of symplectic geometry in general and the moment map in parti-
cular.

An additional requirement on a moment map which is often present in applications
is equivariance. The group has a canonical action on its dual Lie algebra, the coadjoint
action defined by <<Ad;‘ u, &y = {u, Ad,-.&». (For matrix groups, the adjoint action
is given by Ad,-, { = g-'¢g, and the coadjoint action by Ad)u = gug-'.) The moment
map £ is said to be (4d*)-equivariant if £ (g - x) = Ad}(#(x)); in other words the follow-
ing diagram commutes:

P 3 g*

g | L Ad.
*
P }? g

Most moment maps that arise naturally in physics are equivariant. For instance, when
the group action on phase space is the natural lift of the action on configuration space,
the canonical moment map described above is equivariant.
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In addition to the symplectic (canonical) structure, the phase space P often carries
a natural Riemannian metric, which we will denote by (,). We will require that the group
action also preserves the metric, and that the symplectic and metric structures together
give an (almost) complex structure or complex rotation J. (The qualifier almost indicates
that the structure exists on each fiber of the tangent bundle, but may not be integrable.)
This structure is defined by the requirements ahat J2 = — identity and (X, Y) = o(X, JY).
In local coordinates, J(6/6g’) = 8/dp;, and J(0/ép;) = —¢/dq’. The complex structure
will be preserved by the group action because the metric and symplectic structures are.
In terms of these metric and complex structures, we can rephrase the definition of a Hamil-
tonian vector field as Xy = —J(VH). On a finite dimensional manifold, one can always
choose such compatible metric and complex structures (Weinstein (1977), p. 8), and if the
group is compact by averaging one may assume that all these structures are G-invariant.

We assume the group action on phase space has closed orbits, which will follow for
instance if the group is compact. This assumption plus the assumption that the action
preserves the metric will insure the existence of a slice for the action. We recall the basic
properties of a slice S, at a point x:

(g x=x=>8-5, =38

(@) g-Sen S, #J=>g - x=x;

(iii) if G, is the stabilizer subgroup of x (i.e., G, = {ge G: g - x = x}), then there
are neighborhoods N and N, of the identity in G and G,, respectively, such thatif N~ N,
x H, then S, x H ~ a neighborhood of x. Roughly speaking, this means that the slice is
fixed by and only by the stabilizer subgroup of x, and locally near x, P is the product of the
slice and a complement for the stabilizer subgroup in a natural way. As an example, consider
the action of SO(3) on R3. At any point other than the origin, a slice is a radial line segment.
At the origin, a slice is an SO(3)-invariant neighborhood. Note that at points where the
dimension of the orbits is locally constant, the slice parametrizes the orbits, as one would
expect; this is not true at a point where the dimension of the orbits jumps, like the origin.

For the rest of this lecture, derivatives of the moment map are to be evaluated at a fixed
point x unless otherwise specified. 1t is useful to introduce the adjoint map to #', #'*: g
- T _P*, defined by

KF(V), &) =V, F'™MEM;

in other words, d{ ¢, £ = #'*(£). We will assume that there is an Ad*-invariant metric
on the dual Lie algebra. (All that is actually needed is invariance under the stabilizer group
of the point in phase space at which we are working, but often there is invariance under
the full group.) This metric gives a canonical identification of the tangent and cotangent
spaces; with some abuse of notation, we shall also use #'* to represent its composition
with this identification. Then the dual Lie algebra splits as

g* =ker #'* ® Im #". (2.2)

(Such splittings are simply the statement in linear algebra that the equation AX = Y is
solvable iff Y is perpendicular to ker 4') Using the adjoint map, (2.1) becomes

§p = —Jo () (2.3)
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Thus the tangent space to the orbit G- x, is ImJ - _#'*. An obvious candidate for the
tangent space to the slice is the orthogonal complement, ker #' o J. To obtain the slice,
we can exponentiate this tangent space and take a G-invariant neighborhood of x. The
properties of the slice then follow because the action is isometric. In many applications,
however, the phase space is naturally an affine space on which the G action is affine. Then
the tangent space at x can be identified with P; using this identification we may use an
“affine” slice, a G-invariant ncighborhood of the origin in ker ¢ - J.
There are two obvious splittings of the tangent space at x:

TP, =ker £ @Im f*  =ker #F' o FJ @ ImJo g'*, Q2.4

Suppose that ¢ = #{x) is a fixed point of the coadjoint action on g*, i.e. that the
orbit G - ¢ = {u}. (In the field theory applications, such as general relativity or Yang-
Mills, ¢ = 0, so this condition is clearly satisfied.) Equivariance implies that 7.G - x
=ImJdo- #* Cker #'. Thus the splittings in (2.4) can be combined tp get

T.P=kerg nker g JDImf*@ImJo g'* 2.5)

This splitting is orthogonal. The summands have the following interpretation at regular
points of #. Since ker ¢ is the tangent space to the set of solutions to the constra intequation
F = u, the first summand is tangent to intersection of the constraint set with the slice,
and as such can be thought of as the ““true degrees of freedom”, the tangent space to the
“Meyer-Marsden-Weinstein™ reduced space of G orbits in the level set of ¢. (Cf. references
to reduction mentioned above.) We shall call the first summand the linear reduced space.
The second summand is orthogonal to the constraint set, and the third summand is tangent
to the orbit ¢ - x. This splitting of the tangent space is called Moncrief's decomposition
{Mongcrief (1975B)) and generalizes a decomposition of gravitational waves on Minkowski
space in general relativity due to Deser (1967). (In the case that G - ¢ # {u}, then the
tangent space splits into four components; see Theorem 4.2. For the rest of this lecture
and in the applications in lecture 3, however, we shall assume that G - p = {u}.)

Let us summarize the structure we have to work with. The group action is canonical
and isometric, has an equivariant moment map and admits a slice at x. The tangent space
at x splits as in (2.5), and the dual Lie algebra splits as in (2.2).

Our goal is to describe the constraint set ¥ = #-'(p). The first step is to characterize
the smooth points of #. Actually this has already been done in Section 1, but we repeat
the argument in the current language. Lei g, be the Lie algebra of G,.

Proposition 2.1. If g, = {0}, then € is a smooth manifold near x with tangent space
at x given by ker ¢'.

Proof. From (2.3), g, = ker #’*. Then the result follows from the implicit function
theorem and (2.2). B

Thus the implicit function theorem fails at a solution with symmetry. At these
points, we apply the “Liaponov-Schmidt” procedure: that is, we split the moment map
into two pieces, to one of which we can apply the implicit function theorem and a second
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for which we must find another approach. Let 7, be the orthogonal projection of g* onto
ker #'* and m, the complementary projection onto Im #'. Let ¢, = 7, o #; #, is just
the moment map for the G, action, and #7(x) = 0. Let #, = n, o #; #,is the nonsingular
part of # at x in the sense that #;(x,) is surjective. The implicit function theorem tells
us that the set ¢, = {#, = 0} is a manifold near x with tangent space given by ker ¢,
= ker #'. To show that there are quadratic singularities in ¢ = ¢, N €,, where ¢, = {#,
= 0}, we need only find coordinates on €, such that the defining equation for ¢, is a homo-
geneous quadratic equation in these coordinates.

In finite dimensions, there is an equivariant form of the Darboux lemma which gives
this result. Briefly, restrict attention to the set P' = S n ¥,, where S is a slice for the
G action at x. The tangent space TP’ is the first component of the splitting in (2.5), which
is symplectic. Since being symplectic is an open condition, P’ is a symplectic submanifold
near x. Now the equivariant Darboux lemma, by Weinstein (1977) (see also Guillemin and
Sternberg (1984 A) Theorem 22.2), may be applied to the G, action on P’, giving canonical
coordinates in which the G, action is linear. (The Weinstein-Moser proof of the Darboux
lemma uses the constant symplectic form on the tangent space to obtain the canonical
coordinates. Since the group action is linear on this tangent space, a simple check that the
construction may be done in a way that preserves the group action gives the results.)
Since the G, action is linear, the corresponding moment map #, is quadratic, and further
more since its derivative vanishes at x, it is homogeneous quadratic. Thus S N % is given
by a homogeneous quadratic equation; the properties of the slice and the equivariance of
F imply that €~ SN €x G - x.

But this elegant Darboux approach is unsatisfactory in applications to field theory.
In infinite dimensions it is difficult to check several technical details needed to make this
approach work; in fact, there is no guarantee that it will work on arbitrary Banach mani-
folds, although I suspect that the field theory cases probably contain enough structure to
make it work. In any case, no onc has checked these details, because a simpler approach
is available, which we are about to discuss. Also, although the Darboux argument is
in a sense conmstructive (the required coordinate change is obtained by flowing along
a vector field), the coordinate change we shall use below is more explicit.

This alternate construction applies in the case that the phase space P is affine, e.g.
an open subset of a linear space, and the moment map # is already quadratic (but not
necessarily homogeneous quadratic) in the affine coordinates. In fact, it is only necessary
that #, be quadratic. This is the case for Yang-Mills and for general relativity in the case
of spacelike Killing fields. (As is often true in relativity, the timelike case must be handled
separately and patched together with the results of applying some general theory for
Hamiltonian systems to the spacelike case; see Lecture 3.)

Now it may seem at first glance that if ¢ is already quadratic then there is nothing
to prove. A simple example shows that a system of quadratic equations may have a higher
order singularity. Let F(x, y, z) = (x?+ y*—z, x?— yz). Although F is quadratic, F-1(0, 0)
near (0, 0, 0) does not have a quadratic, conical singularity, but rather a cubic one:
{x =432 z2=y24y3+ .}

We will find a diffeomorphism, that is a coordinate change, that flattens ¢, onto
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its tangent space ker ¢’. Then we will show that this diffeomorphism maps the set %,
onto a cone of solutions to a homogeneous quadratic equation. (In fact the discussion
below can be refined to show that there are canonical coordinates on the slice in which
the moment splits into the direct sum of a linear map and a homogeneous quadratic map;
see theorem 4.3.)

For simplicity we assume that #(x) = 0. If #(x) = u # 0, but G- u = {u}, then
the arguments below apply with the constant ;1 added or subtracted in various equations
as appropriate. (Equivalently, modify the moment map by subtracting the constant .)
For the case G - u # {u}, see Theorem 4.1.

The affine structure of P can be used to identify P and the tangent space at x locally
near x. In these coordinates,

F(x+h) = £ (+B, h),

where B(h, h) is the bilinear function #'/(h, 1)/2. Recall that derivatives are to be evaluated
at x; h is a vector on which the linear map #’ acts. Consider the “Laplacian™ 4 = #' o #'*
which is an isomorphism of Im #’ onto itself. (In the field theory applications, this map
is a second order differential operator whose highest order term is the ordinary Laplacian.)
Let¥ = 4! o, : g* » Im £/, the “Green’s function” for 4. The required diffeomorphism
F:P->Pis

F(x+h) = x+h+#'* < ¥ oB(h, h). (2.6)

We call this map the “Kuranishi map’’; a construction by Kuranishi (1965) in his study
of the deformation of complex structures inspired the use of a similar map by Atiyah,
Hitchin, and Singer (1978) in their study of Euclidean Yang-Mills fields. (Note, however,
that the type of singularities we obtain here do not occur in the Euclidean theory.)

Proposition 2.2: Properties of the Kuranishi map: A. It is a local diffeomorphism near x,
because near x it differs from the identity by a quadratic perturbation. B. It flattens 4,
onto ker ¢, as desired, for

F(F(x+h)—x)

F'(W+40Y¥oB(h,h)

(' (M) +B(h, h)) = F1(x+h). 2.7)

C. It preserves the slice. Equivariance gives Im J o #'* C ker #’, and applying the rotation
J to this inclusion gives Im #'* C ker #’ o J. The former contains the difference (F —
identity) and the latter is the slice, so F moves points within the slice. D. It preserves the
symplectic form restricted to the slice, for Im #'* is the kernel of w on S. (Simply consider
the splitting (2.5).) Thus F is in some sense a canonical map of the coisotropic subspace S.
(Remark: The proof of D. in Prop. 1.4 of Arms, Marsden, and Moncrief (1982) is in error:
it assumes a constant metric, which is not true in the case considered there, general relativ-
ity. The present proof applies to that case.) The intersection ¥, » S is symplectic, and
combining the properties above we obtain the following. E. The Kuranishi map is a symplec-
tomorphism (canonical transformation) of a neighborhood of x in €, 0 S to a neighborhood
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of x in ker # n S. Thus we have a canonical coordinate system in which a subset of the
constraints are satisfied (¢, = 0). The key result which takes care of the rest of the con-
straints is the following.

Theorem 2.3. The Kuranishi map F maps the zero set for the moment in the slice and
near x to the cone
Q ={x+h:heker #' 0 ker ',
and for all symmetries & e ker #' of x, {B(h, h), £} = 0}. (2.8)
(The quadratic equation (2.8) may be rewritten
7, o B(hy h) = 0.) 2.8)
Using the group action to move off the slice, we obtain
F7Y0) = € ~ (locally near x)0xG - x = @xG/G,.
Proof. Given Proposition 2.2, it suffices to show that for x+he S,
ny o B[F(x+h)—x, F(x+h)—x] = #,(x+h). 2.9)
Now F(x+h)~x = h+k where heker ¢ and k e Im #'*(x).
Lemma: For keIm #'*%, n o Blh+k, h+k) = =, o« B(h, h).

Proof. Let B,(h, h) = 7, o B(h, h). The proofs of lemmas 3 and 4 of Arms, Marsden and
Moncrief (1981) apply to show that B, is gauge invariant, i.e.

Bih,f)=0if feImJo #'*,
and B, is J-invariant, i.c.

B,(J(h), 3(f)) = B(h,f).

Now B(h+k, h+k) = B(h, l)+B(k, 2h+ k). But J(k)elm I o #'* so the second term
vanishes. @
Thus the left hand side of (2.9) reduces to =, - B(h, #). The right hand side is

m[A(x+h)] = =, [ (h)+B(h, )] = =,[B(h, h)].

so (2.9) is established. il
Remarks: (i) As discussed above, this theorem generalizes to nonzero values of the mo-
ment; see Theorem 4.1. (ii) When applied to a single Hamiltonian H :R? —» R! with
closed orbits of common period, the theorem says that H is homogeneous quadratic
in coordinates centered at a critical point, and so is the Hamiltonian of a harmonic
oscillator. (iii) The quadratic equations in {2.8) may be degenerate so that Q in fact turns
out to be a manifold. An important example is the electromagnetic field : see the discussions
at the end of Lecture 1 and below. Another example is the harmonic oscillator, with Ha-
miltonian = moment for the one dimensional group of dynamics = g2+ p?; here the zero
level set is also a manifold, but of much smaller dimension than expected.

By study of the quadratic map B, Arms, Marsden and Moncrief (1981) are able to
describe the structure of the constraint set € in some detail. It is a product of a smooth
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manifold of solutions with the same degree of symmetry and a cone of solutions with
a lower degree of symmetry. As an illustration, suppose that the quadratic condition (2.8)
is x*~»*=0 on a four dimensional space with coordinates (x, y, z, w). The set
{(x, y,z,w): x = y = 0} is the degeneracy space of the quadratic function B, and will
be solutions to the comstraint equations with exactly the same (inﬁm'tesimal)’symmetries.
(By property (ii) of the slice, the stabilizer subgroup of any point in the slice is a subgroup
of G,. When F-'(Q) is swept out by the group action to fill out all of &, the degeneracy
space spreads out to include all nearby points with a group of symmetries conjugate to G,.)
Solutions out on the cone, where (x, y) # (0, 0), have smaller stabilizer subgroups. Another
example is given in the discussion of Fig. 1. More details are given in Arms, Marsden,
and Moncrief (1981).

In some cases, all solutions have some symmetry. For instance, in electromagnetism,
a constant function gives rise to a gauge transformation that fixes all potentials 4, and
no potential has any other symmetries besides the constant functions. The corresponding
quadratic equations (2.8) turns out to be 0 = 0 and the constraint set is a manifold defined
by the linearized equations alone, as we knew it must be in this case since we know that
electromagnetism is a linear theory. Looking at this from the perspective of the description
of the constraint set, we see that there are no solutions of lower symmetry to branch to,
so there can be no cone, and the whole linear reduced space is the degeneracy space for (2.8).

A similar situation arises for angular momentum. Away from the origin (¢, p) = (0,0),
a point of phase space has zero angular momentum if and only if the position and linear
momentum vectors are proportional, and rotations around their common axis give such
a point one degree of symmetry. The corresponding quadratic condition (2.8) is again
trivial ; this reflects the fact that it suffices to require that the two components of the angular
momentum vanish — the two perpendicular to either the position or the velocity. The
origin, however, has a higher degree of symmetry (three) than the surrounding solutions,
and (2.8) is nontrivial. In fact the set of points with zero angular momentum is a cone over
the smooth manifold made by identifying antipodal points in the product of spheres S! x $2,
(Arms, Marsden, and Moncrief (1981) and Bo« and Gotay (1984)).

If we consider the total angular momentum for two or more particles (which for
simplicity we will assume can be in the same state at the same time), the picture is more
interesting and harder to describe. The origin is the point of maximal symmetry. From
there we can ‘“‘break symmetry” to a set of particles with one degree of symmetry (all
positions and linear momenta proportional); or we can move to a point with no symmetry
at all (e.g., two particles with nonzero but opposite angular momentum). Thus we get
“cones over cones’’.

it is tempting to suggest that this picture has something to do with symmetry breaking
as the term is used in the physics literature. Unfortunately the relationship, if any, has not
been established.

The set of solutions with the same degree of symmetry as x is a symplectic mani-
fold. Thus the phase space is a stratified set of symplectic manifolds. For purposes of
studying the dynamics of one particular solution to the constraint equations, the singular-
ities in the solution set have no significance: the dynamics will preserve the degree of
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symmetry, sO we may restrict our attention to the manifold of solutions with the same
degree of symmetry. Moncrief (1980) discusses this situation for Yang-Mills fields. However,
in so doing we ignore solutions with fewer symmetries. If we wish to study the set of all
classical solutions, we are forced to deal with quadratic singularities.

For more examples of nontrival quadratic singularities, we turn to field theory, the
subject of the final lecture.

3. The structure of the solution set for the classical Einstein and Yang-Mills equations

The theory in Lecture 2 is developed on a finite dimensional phase space. In this lecture,
we apply these results to field theory, in particular to gravitational and gauge fields. The
phase spaces for field theories are infinite dimensional, so some complications arise. Thus
there are several goals for this lecture: (i) to show how the abstract results of Lecture 2
translate into statements about the Einstein and Yang-Mills field equations; (i) to list
the technical details that must be checked in applying the theory in infinite dimensions;
(iii) and to discuss briefly how the theory can be extended to other field theories.

First consider the example of a Yang-Mills field. Let G be the gauge group, say SU(2),
with Lie algebra g. The basic field variable is the g-valued vector potential on spacetime.
Recall that the field theory must be expressed in Hamiltonian form. This means we split
the four dimensional vector potential into two pieces, using a spacelike Cauchy surface X.
A point in configuration space is the restriction of the four dimensional vector potential
to X to obtain the three dimensional vector potential 47, The superscript a (b, ¢, etc.)
indexes the Lie algebra values of the potential and the subscript i(j, &, etc.) indicates that
the potential is a one form on X. (Of course one may ignore the Lie algebra indices and
pretend the field is electromagnetic.) The canonically conjugate variable is (minus) the
electric field (density), which we shall represent by #:. (From a mathematical viewpoint,
it is more natural to use the two form dual to this vector density; cf. Arms (1981).) The
action of the group of gauge transformations ¢ on the configuration space lifts to an action
on the phase space P = {(4, n)}; A is pseudotensorial and # is tensorial. If we represent
the group ¢ as a matrix group, a gauge transformation is given {(at least locally) by g: 2 — G,
which acts on the fields by

A- g 'Ag+gTdg, n- g 'y
The corresponding moment is the gauge covariant divergence of n:
KA, 1) = (Vn)a = Huyi+ Con ANk, (3.1)

where the double bar in the subscript indicates the metric covariant derivative. For a gauge
field with no sources, Gauss’s Law says this moment must vanish.

For gravity, we use the formulation of Arnowitt, Deser, and Misner (1962). The
configuration space is the set of (positive definite) metrics {g;;} on the spacelike Cauchy
surface Z. The conjugate variable is the symmetric covariant two tensor 7/, which is essen-
tially the extrinsic curvature of X. The Einstein field equations and a point in the phase
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space P = {(g, n)} determine the spacetime metric. The diffeomorphisms of spacetime are
the gauge transformations, acting on configuration space and hence on P by pulling back
the tensors g and n. The equivariant moment which generates these transformations is the
pair (H,J), where H is the super Hamiltonian and J is the supermomentum. (Explicit
formulas are given for instance in the ADM reference, and in Fischer, Marsden and Mon-
crief (1980).) For vacuum relativity, the constraint equations on the initial data require
that both H and J vanish.

Recall the restrictions on the field theory mentioned in Lecture 1. Essential assumptions
include that the theory must be Hamiltonian with constraints all first class; this condition
is satisfied in our two examples. The phase space must carry, in addition to its canonical
(symplectic) structure compatible positive definite (Riemannian) metric and almost complex
structures. We require that the gauge transformations preserve the metric as well as the
canonical structure. In our examples, this metric is obtained from metrics on the space-
time and g by integrating over . It will be compatible and gauge invariant, and positive
definite if the metric on g is. This puts a mild restriction on the gauge group G, but the
gauge groups of interest all satisfy this condition. For instance, it suffices for G to be com-
pact semisimple, abelian, or the direct or semidirect product of such groups. In the case
of general relativity, the metric is pulled back by the diffcomorphism, but so are the fields
(g, m); the end result is that the scalar product is invariant. For convenience, we assume
that the spacetime has a compact Cauchy surface; see Lecture 1 for a discussion of the
consequences of removing this assumption.

Using this metric we can define the adjoint map #'* from the Lie algebra of the gauge
transformation group back to the tangent space of phase space. The splitting (2.5) then
follows. Note that in both our examples, the group action is affine, so that we can use the
first two components of the splitting, that is the orthogonal complement of the orbit, as
the affine slice. We remark also that the evolution equations for relativity (or gauge fields
coupled to gravity) can be expressed in terms of the adjoint map; see for instance Fischer,
Marsden, and Moncrief (1980).

There also must be a positive definite metric on the dual to the Lie algebra of the group
og diffeomorphisms or gauge transformations. This metric must have certain invariance
properties with respect to the natural coadjoint action of the group on the dual Lie algebra.
Choose a particular (gravitational or gauge) field; call this the background field, and call
the subgroup of gauge transformations that leave this field invariant the symmetry sub-
group. The metric must be invariant under the action of the symmetry subgroup. For
the gauge fields, the Lie algebra of g is the space v of gauge covariant Lie algebra valued
functions; these can be exponentiated to obtain a gauge transformation. As above, metrics
on the spacetime fields give rise to a positive definite metric on the dual space v* which is
invariant under g. For general relativity, a fixed vector field on spacetime is an element of the
Lie algebra for the group of diffeomorphisms; it is represented on Z by its normal and
tangential components, say (N, X). (Moncrief (1975A) first showed that (N, X % in the kernel
of the adjoint map can be evolved to a unique Killing field.) The scalar product of two
such vector fields is given by {;(NM+X 'Y,)dV, where dV is the volume form on X. This
scalar product is not invariant under all difffomorphisms, but is for those which fix the
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spacetime metric; in other words, it is invariant under the action of the symmetry sub-
group. Using this scalar product, we get the splitting (2.2) of the dual Lie algebra.

A few technical points. The exact function spaces used must be carefully chosen. In
order to make the arguments from finite dimensions carry over to infinite dimensions,
Sobolev spaces of some minimum degree of differentiability must be used. Then by taking
the “inverse limit” as the degree of differentiability goes to infinity, the results are proved
for smooth fields. These differentiability arguments become particularly ticklish in the case
of gravity. If a diffeomorphism has & continuous derivatives, its derivative, used in the
pullback action, has only k—1 derivatives. Nevertheless, all the constructions in Lecture
2 can be made to work, modulo some modifications mentioned below. The metric on the
phase space need only be a weak metric; that is, the associated map from the tangent to the
cotangent spaces of the phase space need only be injective, not necessarily surjective. The
existence of adjoint operators and the various splittings are not automatic; in the cases
of general relativity and gauge theory, they are obtained using the Fredholm alternative
from the fact that the constraint equations are elliptic in some generalized sense. See for
instance Fischer, Marsden and Moncrief (1980) for details.

For gauge theory, the moment map (3.1) is quadratic in (4, ). Thus the quadratic
version of Theorem 2.3 can be applied with little difficulty. An infinitesimal symmetry
for a gauge field is a covariant constant function. Now some such symmetries are trivial
in the following sense. If the center of the Lie algebra of the gauge group is nonzero, any
constant in this center is covariant constant for any connection, and is therefore a symmetry
for all fields and in particular all solutions. The corresponding quadratic equation (2.8) is
the trivial equation 0 = 0. There is no singularity because there is no way to break sym-
metry to branch off the symmetric solution set to the cone. In fact it is possible to modify
the implicit function theorem argument in this case: since the covariant constant functions
are symmetries for all fields, they are in the kernel of the adjoint map for all fields. Therefore
the image of the moment map has no projection on the subspace of constant functions
in the center of the Lie algebra. We can use the complementary subspace as the codomain
of the moment map, compute that the derivative is surjective, and conclude that at any
field with no extra symmetry the solution set is a manifold, as in Proposition 2.1. This
is another way to treat electromagnetic fields; ¢f. Arms (1977) and (1979).

Excluding such trivial symmetries, we get the following result. Let the term Yang-
-Mills field indicate a gauge field which satisfies the Yang-Mills equations. At any Yang-
-Mills field with a nontrivial symmetry, the constraint set has a quadratic singularity. The
singularity consists of a product of a manifold of solutions with the same degree of sym-
metry and a cone of solutions with less symmetry. The cone is diffeomorphic to the solution
set of the following homogeneous quadratic equations: for each covariant constant ¢

§ 9°K.(34, dn)dV = [ Ci(5mu(64) ¢°dV = O, (3.2)
P z
where the Cj, are the structure constants of the Lie algebra and (64, dn) is a solution to

the linearized field equations.
Additional information is gained by noticing that when there are covariant constant
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functions, the gauge group may be reduced to the subgroup which commutes with the
covariant constant functions. For example, suppose the group is SU(2). Local gauge
transformations can be used so that a covariant constant function takes its values in a one
dimensional subspace of the Lie algebra (the tangent space to a U(l) subgroup); in fact,
the local gauges can be chosen so that the gauge group is reduced to U(1). We get a manifold
of U(1), i.e. electromagnetic solutions, with a cone of true SU(2) solutions branching over
each U(1) solution. (See Fig. 1.) Thus to obtain approximations of SU(2) gauge fields by
perturbing a U(1) field, one must consider (3.2) as well as the linearized field equations.

As usual, applying general results about field theories to gravitational fields involves
some additional complications. We sketch the arguments and refer the reader to Fischer,
Marsden, and Moncrief (1980) and Arms, Marsden, and Moncrief (1982) for details.
A symmetry in this case is a vector field whose flow leaves the gravitational field invariant,
that is a Killing field. We assume that we may choose the Cauchy surface 2 to have trace
constant extrinsic curvature, for instance a maximal hypersurface. (This is analogous to
working in a slice for the time translations.) It is well known that the space of Killing
fields for a given metric is finite dimensional; furthermore if we choose X as above, the
space of Killing fields will have a basis that has at most one timelike field, orthogonal
to X, and the rest of the fields spacelike and tangent to Z. The spacelike component of the
moment map, the supermomentum, is in fact quadratic in the canonical variables, so
that the techniques of Lecture 2 (with attention the technical details mentioned above) suf-
fice in the case of spacelike Killing fields. The super Hamiltonian, however, is not quadrat-
ic in the canonical variables because of the scalar curvature term. If there is a single time-
like Killing field, then an infinite dimensional version of the Morse lemma gives the result.
To combine the two cases, one must find coordinates on the phase space that decouple
the components of the moment. This turns out to be possible on a maximal hypersurface;
the desired coordinates are a splitting of g and = into transverse traceless tensors, hessians,
etc. We recover the same picture as before: there is a manifold of solutions with the same
number of independent Killing fields, and over each such symmetric solution is a cone
of solutions with less symmetry. The cone is diffeomorphic to the solutions of a set of
quadratic equations, one for each independent Killing field X*:

J(X°H"+XT{"dV =0, (3.3)
z
where the double primes indicate a second order functional derivative evaluated on (and
quadratic in) (g, on) satisfying the linearized field equations and a gauge fixing condition.
All the calculations for the theorem are done in a particularly nice gauge — that
is to say working in the slice for the diffeomorphism group action. This restriction even
applies to the perturbation (dg, 6n). Thus in order to check (3.3), it seems that one would
have to work on a maximal hypersurface, in a particular gauge for the spacelike diffeomor-
phisms, and consider only perturbations that preserve these conditions as well. It turns
out, however, that the integral in (3.3) is a conserved quantity, that is independent of hyper-
surface ¥, and furthermore is gauge invariant. Thus the condition (3.3) can be checked on
any Cauchy surface and in any gauge.
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For the coupled case, the gauge transformation group includes simultaneous gauge
transformations of the Yang-Mills field and diffeomorphisms of spacetime. In terms of
the bundle formulation of gauge fields, these are bundle automorphisms that do not neces-
sarily preserve the base space. A symmetry is a Killing field X" and a function ¢® whosc
covariant derivative cancels the Lie derivative of the connection with respect to X: in
other words, there is a gauge transformation that compensates for changes in the gauge
field caused by the change of (external) coordinates. The moment map is (H,,, Jio K),
where the subscript indicates the total superHamiltonian and supermomentum for the
coupled fields. As for gravity alone, the cases where X is spacelike and timelike have to be
handled separately. When both kinds of symmetry are present, cocrdinates must be found
which decouple the spacelike and timelike picces of the moment map. This is possible
exactly because the Yang-Mills field adds positive energy term to the total superHamilton-
ian. The quadratic condition on lincar perturbations is given by

[ (X°H"+X'T}+ ¢°K.)dV = 0. (3.4)
P

As with gravity, this condition may be checked in any gauge and on any Cauchy surface;
the necessary invariance conditions are established in Anderson and Arms (1986).

Let us summarize briefly the characteristics needed in a field theory to obtain these
quadratic singularity results. We need a Hamiltonian field theory with first class constraints.
The gauge transformations generated by these constraints must preserve a positive definite
metric on the phase space. Certain technical details must be verified, most easily if the
constraint equations are elliptic in some suitable sense. For coupling to gravity, we need,
at least for the proof that has been used so far, a trace constant extrinsic curvature Cauchy
surface and some kind of positive energy condition. For example, in the case of the scalar
field coupled to gravity, the full program has only been carried out for the massless case,
because the massive scalar field adds a negative term to the energy. (Cf. Saraykar and
Yoshi (1981, 1982).) Other candidates for this program include other formulations of gravity,
classical supergravity, and spinor fields. Anderson and Arms (1986) list the conserved
quantities for various possible fields and list the relevant liferature.

4. Some additional geometry

This section contains proofs of several previously unpublished results. Theorems 4.1
and 4.2 generalize the quadratic singularity, Theorem 2.3 and the splitting (2.5), respec-
tively, to the case of nonzero moment values. Theorem 4.3 indicates how level sets for
different moment values fit together by giving a normal form for the moment in cano-
nical coordinates on the slice.

A. Nonzero values of the moment map

The results on the structure of the level sets for the moment map can be generalized
to nonzero values of momentum. For vacuum or coupled dynamic fields, the field equations
always specify that the (total) moment vanishes, so the nonzero values are not of interest
in those cases. However, if a static source field is given, then the moment value is nonzero.
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The generalization has not, to my knowledge, appeared in the literature, but is “known”,
e.g. to Marsden and Weinstein. Similar techniques are used by Guillemin and Sternberg
(1984 A, § 26) to construct the reduced phase space. For convenience the result is stated
here for compact groups and finite dimensional spaces; the compactness assumption
may be replaced by the various assumptions discussed in Section 2.

Theorem 4.1. Theorem 2.3 generalizes to nonzero moment maps. That is, let § be the
equivariant moment map for a compact group action on a finite dimensional space. The level
sets for  have quadratic singularities at symmetric points. The singularities are diffeomorphic
to the product of the solution set for a set of homogeneous quadratic equations, one for each
independent symmetry, and a manifold of symmetric points.

Proof. The notation is as in Section 2. If i = #(x), let G - u be the orbit of x under
the action of G. If G - u is a single point, i.e. if the subgroup G, which leaves 4 fixed is
equal to the entire group, then the proofs for ¢ = 0 carry through unchanged, as noted
above. If G - u is nontrivial, then it carries a symplectic structure, canonical up to sign
(cf. Abraham and Marsden (1978)), as follows. The tangent space tc G - u at u is spanned
by the generators ¢, of the G action on g*, where ¢ € g. The symplectic form at u is given by

Let P = PxG - 1~ that is, P as a manifold is the product of P and G - y, and the
symplectic form on P is the pullback of the symplectic form on P minus the pullback of the
symplectic form on G - p. The group action on P is the product of the actions on the factors.
The moment for this action is giver by

F(x,v) = F(x)—v.
Thus #-1(0) N (Px {v}) = #-1(v) x {v}, and by the equivariance of #,

F10) =\ WxGp

The singularities in _#~!(x) will be essentially those in #-1(0).
Now we apply Theorem 2.3 to #. Note that F'(x,v) = #'(x) — Id, where Id is the
identity on the second factor, and that ¢"(x,v) = #"(x). Equivariance implies that

ker #'(x,v) = ker #'(X)x% - .
All these facts together imply that
FHO) = (ker £'(x,v) 0 {F'(x) = 0PxG-p. WA

Utlike the singularity results, the splitting (2.5) does change when G - u is nontrivial:
there are four components instead of three. Let H be the subgroup of G that fixes u = #(x)
and b its Lie algebra. We have assumed an adjoint action invariant metric on the dual
Lie algebra g*; this metric can be used to identify a copy of b* inside g*. (The cross-section
construction of Guillemin and Sternberg (1984 A, § 41) gives a nice formulation of this
identification without using the metric, although the metric is used in the proof)) Let
X be the moment map for the action of H on P; note that 2" is just the composition of ¢
with projection onto h*.
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Theorem 4.2. In the notation just described, the tangent space splits as follows:
T.P=kerfF nker '« J@ImIoA"*@ImF*nImIo F*DImA'* (@4.1)

Discussion. The first summand, obviously symplectic, is the space of “true degrees
of freedom™ or linear reduced space. In the nonsingular case, it is tangent to the reduc-
ed space, either the level set #-'(u) reduced by the action of H or the inverse image
of the orbit, #-*(G - p), reduced by G. The second summand gives the generalized local
angle coordinates; it is tangent to H - x, the orbit of x under H; this orbit is the intersection
of the level set #~!(y) with the full orbit G - x. The complementary orbit directions are
given by the third summand; angle and action in these directions cannot be separated
because this space is symplectic. It can be thought of as the tangent space to G - x/H - x.
But G- x/H-x~ G/H~ G-y, so the third summand ~ 7,G - (=b**). In fact #' is
a symplectomorphism between these two spaces; this follows from the definition of equi-
variant montent, the choice of symplectic structure on G - y, and the fact that ¢ is one
to one on this space. (Thus # is a symplectic covering of G - u, as Kostant showed; cf.
Abraham and Marsden (1978).) The third summand can be rewritten as ¢’ *(h*), because
J'* preserves orthogonality between b and b*, as follows. Using the metric to identify
g ~ ¢*, the tangent space to the orbit of any ve g* is g; = [v, g] = [v, .]. Then

(I 485> = {Gups [y 85p]> = <[t Gl Gy = 0, 4.2)
using the facts that J and v, are infinitesimal isometries and that & —» £ = Jo #'*(¢)
is a Lie algebra (anti-) homomorphism. The fourth summand is perpendicular to #-1(G - p)
and gives the local action variables corresponding to the angle variables in the second
summand. This action angle description was given by Marsden [1981], pp. 30-33, but
the present derivation is more direct.

Another result in the literature which follows immediately from (4.1) is the following
theorem of Kostant and Sternberg. (See e.g. Guillemin and Sternberg [1984 A], Theorem
26.8). The orbit G - x is symplectic iff the connected components of G, and G, coincide,
ie.iffg, = g,. But the tangent space to the orbit is the sum of the second and third summads
in (4.1), which is symplectic iff the second summand is trivial. The latter means that J™*
is the zero map, so

. =kerA'* =b =g,
Proof. The original splitting result in Arms, Fischer, and Marsden (1975) gives

TP=kerfg' nkerA' o J®ImIoA"* @ Im #* 4.3)
Applying the rotation J to (4.3) gives
TP=kerfF oJnker A" ®@ImA'*DImIo g% (4.4)

To combine these two splittings, we will need a

Lemma: ker A = ker #'+Im Jo #'* (not direct sum).

Proof: First note that Y € ker " iff #'(¥Y) e b iff £'(Y) = &, for some & € g because
b* is tangent to G - u. Now by equivariance F(Ep) = &4, so that Y—&p e ker #'. Since
{¢p:legl =ImJo ¢'* the lemma is proved. @
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By the lemma the first summands in (4.3) and (4.4) both become ker #' n ker
#' +J. Now from the third and fourth summands we get

ImJo"*@Im #* = ImA'* D ImJo % 4.5)
But ImK'* CIm #'*, so (A.5) is equal to
ImJoX'*@Img*nImIo f'*® ImA'* W

B. A normal form for the moment map

From Theorems 2.3 and 4.1, we know that under certain assumptions the level sets
of the moment map have only quadratic singularities. This suggests that the moment map
ought to be a quadratic function in canonical coordinates on P and linear coordinates
on g*. In fact one probably cannot obtain exactly this result: the singularity results from
quadratic dependence on the linear reduced space and equivariance forces the moment
to be quadratic in the coordinates along the orbit. Thus in any canonical coordinate system,
the moment is probably fourth order near any singularity that has a nontrivial orbit.
(It is possible that in some cases nonlinear coordinates on the dual Lie algebra, say that
linearized the orbit, would eliminate this problem). On a slice for G action, however, cano-
nical coordinates can be found that make # quadratic. Furthermore, the moment (more
precisely, the moment minus its value around the point of singularity) splits into a direct
sum of a homogeneous quadratic function on a symplectic subspace and a linear function
on an isotropic subspace. This result applies to both the zero and nonzero moment values;
the compact group case is implicit in the moment map reconstruction argument of Guille-
min and Sterberg (1984 A, § 41).

Theorem 4.3. Let ¢ be an equivariant moment map. Suppose either that the moment
is quadratic in some canonical coordinates on an affine space (the field theory case) and the
various assumptions discussed in Sections 2 and 3 hold, or that all spaces are finite dimensional
and G is compact. Then there exist local coordinates (q, p, r) on a slice for the action at x,
where the pair (q, p) is symplectic and r is symplectically orthogonal to (x,y), in which

Fg, p, 1) =p+ [ggg; p)jla

where x = (0,0, 0), u = g(x), O is homogeneous quadratic and L is one to one and linear.

Remarks. If G = G, then L is an isomorphism. In terms of the discussion of Theorem
4.2, (g, p) are coordinates on the linear reduced space and r is the set of action variables
with corresponding angle variables along G, - x.

Proof. First assume that #(x) is invariant under the group action. We wish to use
the affine slice, ker #'(x) - J, where local coordinates are used to identify the tangent space
TP with P. In the field theory case this works because the momentum is quadratic so the
group action is linear. In the finite dimensional case we must first apply the equivariant
Darboux lemma. Let H be the stabilizer subgroup of the point x. The equivariant Dar-
boux lemma implies that there are local canonical coordinates at x in which the H action
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in linear. Thus the H action preserves ker #'(x,) = J. From this and the compactness of
the group it follows that ker #'(x,) o J satisfies the properties of a slice.

In a neighborhood of x in P, define the Kuranishi map as before, replacing the second
derivative by the remainder

R(h) = F(x+h)—F(x)—F'(h)
(all derivatives are evaluated at x unless otherwise states). Thus
F(x+h) =x+#"% o ¥oR(h).

As before ¥ is the “Green’s” operator ((# ' = #£'*)' on Im ¢, and =, and n, are the ortho-
gonal projections on ker ¢'* and Im _#’ in g*, respectively. All the properties of the Ku-
ranishi map listed in Proposition 2.2 still hold; in particular F is a symplectomorphism
on the slice and linearizes the , components of _#; that is,

A (x+ )= F(x) = ' (F(x+h)—x).

Note that 7; o # = 7,(#(x))+n, o R is the moment for the H action, and is therefore
homogeneous quadratic in the coordinates we are using on the slice. Thus we can apply
the lemma in Theorem 2.3 to , » R: For ke Im #'*#, 7z, o R(h+k) = n, o R(h). Therefore
7, o R is invariant under F. Let IT, and /1, be the orthogonal projections on ker #' and
Im #'* in P, respectively. The lemma also implies that =, o R(h) is [T, invariant: 7, o R(h)
= 7, « Ro Il (h), since I1,(h) = h—11,(h) and I1,(h)eIm #’. Thus F reduces the m;
components of # to a homogeneous quadratic map on the linear reduced space:

r(F(x+h)— #(x)) = m, o Ro I (F(x+h)—x) for x e slice.

All together this gives us

FoF Y (x+h) = [;; k] (h) = [;1’;]2 1, ](h).

To finish the proof in this case, choose (g, p) to be any symplectic coordinates on the
symplectic subspace IT,(ker #' o J) = ker #' ~ ker # - J. Note that ¢’ is a linear iso-
morphism on the isotropic subspace IT,{(ker #' o J) = Im #'*.

If p = #(x)is not invariant, let G, be its stabilizer subgroup. Let 73 be the orthogonal
projection onto g;*, and let #, = ;- ¢. Consider the set M = {#, = 0}. By the
implicit function theorem, M is a manifold, and it is G,-invariant by equivariance and
the Ad* invariance of the metric on g*. If ker #(v) = T, M is symplectic and J-invariant
for each y e M, then we can apply the previous case to the G, action on M. (In the fleld
theory case, we assume that all the subspaces in the argument have closed orthogonal
complements and that there are canonical coordinates cn M in which the moment #; is
quadratic.) Since a slice for the G, action on M is a slice for the G action on P, this gives
the result in the general case.

It remains to show that ker #5(y) is J-invariant and therefore symplectic at each
ye M. Now let all derivatives be evaluated at y. It is obvious that ker #’ C ker #3.
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Also #£3(#'*(6,) = 0, because

(I (F*GD), 6> = <F*@), F'*(6)> = 0

by (4.2). Conversely, suppose #5(v) = 0. Then #'(v) = &;+¢&, €6, where &, egy N Go»
v= #0O),and & g N g,- By the splitting (2.4) applied to the G, action, thereis a {; g,
so that #'(#'*({,)) = &,. By the discussion of (4.1) applied to the G, action, there is
a {3€6; N g, so that #'*(,) is in the third summand in (4.1) and #'(#'¥),)) = &,.
Thus v— #"*({)— F *((,) e ker #’, and

ker #3 = ker ' @ #'%(g,) = ker £’ nker #'oJ & I F'¥g,) ® F£7(9,) (4.6)

using (4.1) applied to the G, action. By the equivariance of the G, action, J o #'*(g,)
C ker #'; this fact combined with (4.6) shows that ker #} is J-invariant. ll

Remark. Actually in the field theory case it is not necessary for the entire momentum
map to be quadratic; it suffices for the components corresponding to the symmetry sub-
group to be quadratic. For example, this proof can be applied to the vacuum Einstein
equations at a solution with only spacelike symmetries. For the nonquadratic, infinite
dimensional case, this proof may also be applicable if the action admits some (not necessarily
affine) slice and the equivariant Darboux lemma can be made to work.

This paper is based on lectures given at the Autumnal School of Theoretical Physics,
sponsored by the Institute of Physics of the Silesian University, Katowice, in Szczyrk
in September, 1983. I would like to thank the Institute and the organizers of the School for
inviting me and providing the opportunity of presenting these talks.
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