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PRELIMIT EFFECTIVE POTENTIAL FROM LATTICE ¢} THEORY

By W. GARCZYNSK!

Institute of Theoretical Physics, University of Wrocltaw*
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An effective potential for lattice version of % theory is calculated in one-loop approxi-
mation. Lattices, both finite, are imposed in momentum and in the position spaces. De-
pendence on the lattice constants is explicitly shown.

PACS numbers: 11.15.Ha

Our aim is to evaluate an effective potential for ¢} theory on a finite rectangular
lattice, both in momentum and position spaces. A theory is specified by the Lagrangian

L(x) = 3 (1+ A)0,¢(x)d*P(x)—% (m* + B)p*(x)— % (+C) f dxdx'dx"

M(x, x', X", X" YP(x)p(x")p(x" Yp(x""), 1
where A, B, C are renormalization constants, and M(x, x’, x"’, x'"’) is a known formfactor
3
[1], [2]. All the space-time variables x, x’, x"/, X'’ vary in a finite region # = ® %, where
u=0

4, is a segment on pu-th axis

B, ={x"s—3L, <x*<FLJ} )]
2n 2z
L,=— =Q2N,+Da, 24,=—=02N,+Db,, 3)
bﬂ afl
3
[me.=v. )
p=0
Similarly, momentum variables p vary within a finite region
3
a=Q®a, aq,={p"-4,<p"<A4,} &)
u=0
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The field ¢(x) interpolates between lattice values ¢(n) = ¢p(n°a,, n'a,, n*a,, n3a,) where
3
n* assume integer values 0, +1, ..., + N, e Z(N,), ® Z(N,) = Z(N). One has the expan-
#=0

sion

o(x) = H Y @(n)d,(x—na)e QC(a, b). 6)

u=0 ne? (N)

3
Here the function J,,(x—na) = [] 04,5,(x" —n"a,) plays a role of the Dirac d-function
p=0

adapted to the set QC(a, b) of quasipotential interpolaiing functions [3-5], specified
by spatial and reciprocal lattice constants a and b

a=(a%a',a, a%, b= (0" 5b% b%. (N
Next, we evaluate, in one-loop approximation the integral [6]

Z[J] = N~' | dge v L (ste1+7 - ) e—f? Wiy ®
In fact we follow the method applied to the local ¢4 and carry it over to the nonlocal case.
By the way, specific choice of the formfactor M ensures a complete equivalence of this
theory with a lattice field theory, (with so-called SLAC derivatives [7], [8]).
We estimate the functional Z[J] using classic stationary phase approximation [9],
and we get for the effective action

_ L S
FiF) = S[1+ 5 Trin s + ®
where
- owlJ
¢x) = 5 J([ )] Go(x) +hplx)+ .. (10)
and ¢y(x) solves the Landau-Ginzburg equation for a stationary point
S'[$o] (V) +J(x) = 0 (1)

or
(O —mH)po(x)— __[dx dx"'dx"""M(x, x', x"', x'"Vo(XVPo(X' NVpo(x"" )+ J(x) = 0 (12)
and
K[¢](x, ») = (@—mHd(x—y) — ;j‘dX'dX"M(x, ¥, %' XY )p(x""). (13)
One finds the effective potential V,(¢) in usual way

I'T¢] = —Veald) f dx ¢ — constant, (14)
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The renormalization constants B, C are determined by requirements that m and 2 should
be physical parameters

Vi @)lg=o = m?, (15)
VE(@)p=0 = 2. (16)

One gets from it the results
3

ihTT b, A
=21l L im an
P

#=0
3

ihTT b, 342
=2 | 2 oo (18)
-l p

n=0

The constant 4 does not contribute to the considered first order approximation in h.
In this way we find the desired expression for the prelimit effective potential

Ag?

3 R,
Ver(9) = 3 m*¢™ + %‘ﬁ“ %H ;_;‘ Z Init- pzfmz
u=0 4
Pre i \?
2 2
+ pz_mz +z pz_mz + o (19)
where
p = mb = (m°by, m*b,, m*b,, m*b,); m* € Z(N,). 20

1t is surprising perhaps that the result does not depend on the formfactor M. It comes
about due to its special property of all the formfactors which appear in the quasicontinual
formulation of a field theory (conf. {1}, [2]

fdx,M(xy, ..., x) = M(x;, ..., X,_y), n > 3,
§dx"M(x, x',x"") = 6,,(x—x"),
fdx'd, (x—x") =L 1

The effective potential does however depend on the constants ¢ and b. Performing the ther-
modynamic limit & — 0 we get

ip?
A ih { dp
lim V(@) = L m?*¢*+ — ¢*— — | —= |In\1— 5
bl-o (@) =z m°¢ Py ¢ 2 | 2 n pr—m?
)»¢2 ;.¢2 2
2 2
+ 5 3\ | + - (22)




528

Momenta of integrations vary here within the sets
T
~A, <pr<A,=—, pu=0,123 (23)
ay
Now, we remove the spatial lattice by performing the limit @ — 0 and we obtain in this way
242 A 4
lim im Vg(¢) = T m*¢p*+ — ¢*,
a=0 b—0 4'
}'¢2 }‘¢2 Ad)z 2
1h d dp 2 2 2

nl\l— + +
(27‘[) p2 _ m2 p2 - m2 p2 _ mz/

[SE

Foo (24)

Performing the Wick rotation and taking the integral yields the result

hm? i \? At
4 P
1111‘1) il_l;l;l) Va(d) = L m*p*+ d) @) {(H- 2m2> In (1+ 2m2)

) 3i¢?
2"1 (1+ Z:%)} + o (25)

Apparent singularity at m? = 0 can be removed by reparametrization of the theory.
Namely, defining the new coupling constant /,, by imposing normalization condition on
nonvanishing mass M # 0

VEM) = Ay (26)

and reexpressing £ by 4, one gets in the massless limit the Coleman-Weinberg result [10]

; 2
fim lim lim V. 4(¢) = T o+ 2f56 = d)‘( ¢ 235—> + v

m2=+0 a=0 b—0 M?

Our main result consists of the formula (19) for prelimit value of the potential. It contains
a more detailed information about the system than the Coleman-Weinberg limiting formula

@2n, [11, 12}
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