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Peculiarities of fermions on a lattice are reviewed with emphasis on Wilson’s method
and its relation to the decoupling problem of heavy fermions.

PACS numbers: 11.15.Ha

1. Naive fermions

The fermion part of a euclidean gauge theory action reads in the continuum

S = — [ dx[Py,(9,—igA)p+Pmy], (1)

where y, = yI. To put this action on the lattice x, = m,a, m, = 0, £1, £2, ..., a = lat-
tice distance, one may try a lattice derivative

1
0,(x) = — [y(x+a,) = p(x)], @

where a;, = a(1000), a, = a(0100), etc. For the free fermion theory this leads to

1
§=- Z — [POx+a,) = PO p()] = Z Px)mp(x), &

L

where X, = a*Z,. This form is not hermitian. In euclidean space we adopt a heuristic
rule for hermitian conjugation: Take the part involving only spatial indices and use the
Minkowski space rules to find the hermitian conjugate. The conjugate of the part with
time like indices then follows by covariance. For example, (B 7m%2)’ = —B2Vm¥is
m = 1,2,3, hence by covariance (P,7.y:)! = —Psyap;. Similarly, @92)" = Py,
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@il ple)t = —Balv 1w, @rsv)t = —Porysvs, @iysy)’ = —Poyvsws (s
= —9,7,73Y4). Taking the hermitian part of (3) leads to

1
5= Z 7 [P 9 +a,) = i+, ULx)w()]

X,n

= 2 P(x)mp(x), 4
where we have also written a U(l) lattice gauge field

U,(x) = exp [—igad,(x)]. 5)

An action that is hermitian by these rules appears to give reasonable Feynman rules such
that contact terms (the regularization dependent polynominal parts) of one loop diagrams
have the correct reality properties in the continuum limit. On the lattice therefore, a hermi-
tian action is a necessary (but not sufficient) condition for a positive transfermatrix. (If it
can be defined, the transfermatrix T is related to the hamiltonian H by a relation of the
typical form: T = exp (—2aH)).

Let us now look at some of the “Feynman rules” implied by the action (4). The
fermion propagator in momentum space is given by

1 -1 7
S(k)=<g iyu—‘-z—sinaku+m) , —;<ku<

n

. (6)

Q1

For |k,| < n/a this reduces to the usual covariant form i¥ +m. However, the sine functions
in (6) have zeros also near k, = n/a and for ak, near any of the 16 four vectors n, (mod 27)
given by

noe = (0000),
n, = (n000), (0r00), (0070), (0007),
n,y = (nn00), (n0n0), ..., (00nx),
Ty = (ann0), (nn0n), (nOnn), (Onnn),
Ty234 = (AANT), (@)
the propagator 1s relatively large. We put

1
k, = " T4, +D, sinak, = cosm,, sinap, = ksinap,. (8)

Then, for ¢ — 0 the propagator gets a continuum form

S(k) ~ (ivapu+m) ™, €))
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with gamma matrices
o =COS TV, = Y, (10)

which are unitarily equivalent to the original y,. The theory has a particle interpretation
near each of the 16 points n, of the Brillouin zone, with physical momentum p, related
to the wave vector k, by (8). One naive lattice Dirac field describes 16 continuum Dirac
fields — this phenomenon is sometimes called “species doubling”. We shall refer to the
particles or fields with n, # 0 as the species doublers.

It is easy to make the unitary equivalence of the 7: explicit [1]:

74 = Siy.S4 (1
Seo =1, Sa, = i%¥ss S, = SeSh, €lC. (12)

foon

The spinors u(p) and v(p) of the ordinary particles and antiparticles are related to those
of the species doublers by

u(p) = Stu(p), v4(p) = Sho(p). (13)

The interactions of these particles with the gauge field are described by the vertex
functions (Fig. 1) which follow from the action (4)

r,= —igy,cosya(k+l),, (14)
where a suitable choice of phases has been made. For ak, al — 7, this gives
ry= —igys = —igSky,S4 (15

and using the spinors (13) brings the expressions for scattering amplitudes etc. into standard
form. Fig. 2 shows some examples. All objects in momentum space may be taken periodic
with period 2n/a. This also holds for momentum conservation at the vertices. In the tree
graph continuum limit we have to take the external fermion fields wave vectors k of order
n4/a, a - 0. External gauge field wave vectors have to be chosen of order 0. Then the inter-
nal gauge field momenta are of order 0 or n/a (mod 2n/a). In the latter case the amplitude
vanishes as @ — 0 because the gauge field propagator vanishes for momenta of order 1/a.
Hence processes such as Fig. 1b vanish for 4 # B. The pair creation process 4 +A4 > B+B
in Fig. 2b is not suppressed as a — 0 because the gauge field momentum is 0 mod 2n/a.
So we cannot ignore the species doublers as they can be produced in pairs in the tree graph
approximation and they certainly contribute in vacuum polarization type loop diagrams.

e

(Q) (b)

Fig. 1. Three point vertex. In (b), k ~ 74/a, [ ~ np/a and the gauge field momentum is <{{=/a
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(a) (b)

Fig. 2. Elementary tree graph scattering processes in the continuum limit

According to (15) all particles have the same vector coupling g. This is not so for axial
vector gauge field couplings. Suppose we insert in (4) a U(1), axial vector lattice gauge
field

Uu(x) = exp [—igsysA(x)]. (16)
Then we find instead of (15) the vertex function
Tys = —igsyays = —igsQsSky,rsSa an
Qf = +1, T4 = T, Mo, Ty234s
= =1, W= Ty My (18)
Hence, there are 8 Dirac fields with axial vector charge Qs = +1 and 8 with Qs = —1:
Z: 05 =0. 19

In the continuum formulation we know that a gauge field theory with fermions and axial
vector couplings has to be “‘anomaly free” in order to maintain gauge invariance. For
a U(1), theory this means that there has to be more than one fermion and the sum of the
axial vector charges has to vanish. On the lattice gauge invariance can be incorporated
exactly and consistency with the continuum formulation is achieved by the presence of the
species doublers. The anomalies can be calculated from the famous triangle diagram (Fig. 3):
it is exactly zero in the naive lattice U(1), theory because of (19) (all particles have the
same mass).

5 5

(a) (b)

Fig. 3. Triangle diagrams: (a) Vector-Vector-Axial vector and (b) Vector-Vector-Pseudoscalar. On the
lattice there are more diagrams (cf. [1]), not shown here
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2. Nielson-Ninomya theorem

The fact that axial charges + and — occur in equal numbers in the naive U(l),
gauge theory suggests that there is an equal number of left and right handed particles.
Suppose we use only righthanded fields yy = Pgy, Pr = 9Py,

Py =z(1+y5), PL=7(1-y5), (20)

in (4), with m = 0. This leads to a propagator

1
S™Hk) = Z iy, " sin ak, 5 (1+7s). @n

n

Near the particle poles we find, using (8) and (12),
STHK) ~ ivipu 3 (L+ys) = Shiz §(1£75)S,, (22)

where the + signs are as in (18): so this theory describes 8 right handed and 8 left handed
Weyl fields. The + signs in (22) are related to the slopes of the sine function near its zero’s,
which are both positive and negative. This may be interpreted as being due to the periodicity
of momentum space (Fig. 4). Nielson and Ninomya have proved a beautiful theorem (NN
theorem), which states that under such cherished conditions as hermiticity, locality and
transiation invariance the lattice theory always has an equal number of left and right
handed fermion particles, in each charge sector of Hilbert space [2, 3]. They used a hamilto-
nian description for free fermions with continuous time and a lattice in space.

(@) (b} (<)

Fig. 4. Periodicity of the gradient function on the 1-torus T': (a) sine function, (b) a periodic function
leading to more particles, (¢) a jump corresponding to a non-local gradient function in position space

The NN theorem is based on topological arguments. A simple version [4] in the
euclidean formulation makes use of the Poincaré-Hopf index theorem [5]. Suppose we
let! sin k, — F,(k) in (21). This corresponds to a general translation invariant effective
action of the form

— X Pt (17— (), @3

Xs ¥t

F k) =Y e ™ F (x). 24)

! In this section we use lattice units g = 1.
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Hermiticity requires F,(x) = F,(—x)*, ie. F(k) is real. Locality means that F,(x)
approaches zero reasonably fast as x| — oo. This implies certain properties for F,(k).
We shall assume that F,(x) is such that F, (k) is smooth (i.e. has continuous derivatives
of arbitrary order). If F,(k) has a zero then the theory contains a Weyl field. The zero’s
of F,(k) should be isolated and of first order for a decent particle interpretation: near
a zero at k = k,

F (k) ~ F,(k—Fk),+O0((k—k)*, (25)
where the coefficients F,, form a matrix F with det F # 0. We may write
F = OP, (26)

with O an orthogonal matrix and P a symmetric positive matrix. The matrix O can be
absorbed in a similarity transformation,

Yu(l'*'vs)ouv = S—x?u(l'{"':'ys)S& (27)
A=detO = +1 (28)
(for A = 1, S'is a rotation exp {¢,,[y,, 1]}, for A = —1 S can be written as the product

of y, and a rotation). Near k = k the propagator is equivalent to
. P, .
Stk) ~ —i ?7(1+4v5), 29

p, = P (k—k),. (30)

A non-trivial P,, cannot be absorbed in a redefinition of the gamma matrices. All we can
do 1s absorb det P in a wave function renormalization.

The propagator (29) corresponds to a left (4 = —1) or right (4 = + 1) handed Weyl
field, provided we interpret p, = P, (k—k), as the physical momentum. Now 4 is the
index of the vector field F, (k) at the zero k = k (the degree of the mapping F,/|F
= 0,,p,/.pi onto §*). The Poincaré-Hopf index theorem states that the global sum of the
indices equals the Euler characteristic y¢ of the manifold. This is zero for the momentum
space torus T%: L4 = y¢(T*) = 0. Hence there are necessarily as many left as right handed
Weyl fields in the continuum limit.

Suppose we introduce interactions with a U(l) gauge field. Then the particles may
scatter and translation invariance guarantees wave vector conservation (mod 2n): Zy, ..k,
= Ziniiak,, in particular £k, = Z;k,. For the particle momenta this implies (cf. (30))
Z,P;,‘ Py = ZiP;v‘p,,, which is equivalent to ordinary momentum conservation X;p, = Z;p,
only if all the P,, are identical (including possible P,,’s for the gauge particle). We have
to choose the action such that this is the case. Symmetries of the action should guarantee
that all P,, are identical to all orders in the loop expansion. (It is easy to violate these
requirements; consider e.g. a gradient operator with a nearest and next-nearest neighbor
interaction; Ref. [6] gives another example).
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The action (23) has a global U(1) invariance which serves to distinguish particles from
antiparticles. Extension to more general invariance groups is more or less [3] straight-
forward. We take F, (k) to commute with the invariance transformations. Then there has
to be an equal number of left and right handed particles (transforming in an irreducible
representation (irrep) say, r), and similarly for the antiparticles (transforming in an irrep
r*). These conclusions do not hold if here is no symmetry at the level of the action (*‘on the
lattice™), but only at the level of particles (continuum limit). For example, suppose we take
two actions of the form (23) with two different functions F, (k) having one coinciding zero
with A = —1 and each having one more non-coinciding zero with A = +1. Then the
continuum limit describes one left handed SU(2) doublet field and two right handed singlet
fields. However, with no symmetry at the level of the action it seems impossible to formulate
gauge invariance,

The NN theorem has been interpreted as a no-go theorem for putting the weak interac-
tions on the lattice. One argument was, that the lattice always implied a right handed
neutrino (assuming neutrinos to be massless). However, the right handed neutrino may
decouple in the continuum limit. A better argument was that any gauge field would always
couple equally to left and right handed Weyl fields. However, this argument assumed that
we use all the particles suggested by the zeros of the gradient function F,(k), use all the
species doublers. This is not necessary as they can be given an arbitrary large mass. This
is what Wilson’s fermion method does.

3. Wilson’s fermion method

Three fermion methods have been used to reduce the number of fermions: Wilson’s
method [7], the staggered fermion method [8], and the non-local method [9]. Here we shall
only describe Wilson’s method.

The heuristic idea is to add aré,$0,y to the naive fermion action (2), (3). Since this
term is proportional to the lattice distance a it vanishes in the continuum limit for the wanted
particles which have a finite J,. However, for the species doublers ¢, = O(l/a) and the
term is of order r/a. It leads to a mass of order r/a for the species doublers such that they
do not really exist as particles. The mass terms in the lattice action can be written in the
form (aM = 1/ Kwiison)

Smass = - z IP(X)A[’(/)(X)

+ 2% Z [BOU () p(x+a,)+ P(x+a,)Ul(x)p(x)], (31)

where the gauge field U, has been inserted in the second term (called the Wilson mass
term) to make it gauge invariant. The free fermion propagator is now given by

1
S7(k) = g iy, — sin aku+M-—£ _S_ cos ak,. (32)
o “
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Putting k, = p, and letting g — 0 leads to the continuum form i 7 +m, provided we choose
M as

M=41 tm (33)
a

With this choice the mass parameters of the species doublers are of order 1/a:

M- % Z cos my, = m+ -:—;- Z(l—cos T4,) 34)
® [

We see from (33) that the ordinary mass parameter M is of order 1/a in the continuum
limit. The value 4r/a can be understood from (31) as the value, where S, vanishes, for
a zero momentum ¥ field and a free gauge field U, — 1. In the coupled theory the fluctua-
tions of the U,’s reduces the effective r value, suggesting that in the continuum limit we
must let aM approach a critical value aM_,

M — M(r, g), (35)

with aM, < 4r for g% # 0. A one loop calculation of the fermion self energy verifies this.
In the Feynman gauge [1]

=g {0 i(Na™! +ox(Nm+oy(r)ig

1
- Zl; de[m +1 (1 =x)ig] In [a®(xm? +x(1 —x)pz)]} +0(a), 36)
o

S™Yp) = M—4dra~ ' +ig+X(p). 37

Here the ¢’s are numbers depending on r but not on m which contain all the lattice artifacts:
For example, ¢,(0) = 0, 5,(1) = 0.326 [10, 28]. The expression (36) for 2 shows that
there is an O(a~') mass divergence in addition to the usual logarithmic divergence. This
O(a') divergence determines M.,

aM, = 4r—g’e,(r)+0(g*). (38)

The bare fermion mass which can be compared with the usual one in the continuum theory
is identified as

m= M-—M/r, g). 39)

We see furthermore from (36) that all r-dependence can be absorbed in renormalization.
The physics depends only on g and m (or rather, on the renormalized gz and my).
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4. QCD

The asymptotic freedom of QCD implies that the bare gauge coupling g — 0 in the
continuum limit. In other words: the critical value of g is zero, g, = 0. Similarly aM, = 4r
+0(g?) = 4r, the free field value. It is possible to define an M (r, g) as the value where
the pseudoscalar mesons become massless, for any g (even strong coupling), but we shall
not elaborate on this here.

In QCD with N; flavors M can be a matrix of the form

M = M P +M}P;, M, = N;xN;matrix. (40)

There is no a priori reason not to generalize r to a matrix R of the same form as (40).
By a chiral transformation we can bring R into positive diagonal form, R = diag (ry, ..., ry,).
Under this transformation M keeps its general form (40). Note that on the lattice the path
integral measure is invariant under chiral U(N;) x U(N;) transformations. This is different
from the continuum lore where such transformations may induce a #-parameter through
a jacobian factor [11]. How does the 0-parameter arise in this lattice theory?

As mentioned above, in taking the continuum limit aM has to approach a critical form
aM,, which will be positive and diagonal (eM, = 4R+ O(g?)). The difference m = MM,
plays the role of the quark mass matrix which may still be of the form (40). To find the
# parameter one considers the fermion determinant

expTrin(D+M—-W) =expTrIn(D+m+M,—W), (41)

for a smooth external gauge field configuration. Here we have written the fermion action
Sy as —Pp(D+M— W)y, PWy being a shorthand form for the Wilson mass term in (31).
Let ¥V be a chiral transformation which diagonalizes m,

VmV = m, = positive diagonal, “42)
V=VWVP.+WPy, ¥V =ViP +ViP, 43)

with unitary ¥ and V. Then
Trin(D+m+M,—W) = Trin [D+my+ V(M —-W)V]. (44)

The question is really, how does the fermion determinant depend on ¥? It is easiest to
calculate the change of (44) under a change 6V of V:

Tr [V(M .~ W)V + V(M. —W)sV] [D+myg+V (M.~ W)V] L. (45)

This expression leads to the infinite sum of diagrams in Fig. 5. The crucial point is now
that the factor M~ W in the numerator of (45) suppresses the region where m, has any
influence. In the continuum limit we may as well set my = 0, in (45). (M, — W leads only
vertices which vanish in the classical continuum limit (e.g. ra—*Z (1 —cos ak,) and which
therefore need a fermion loop momentum of order a~! > m, to give non-vanishing contribu-
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2 2
1

Fig. 5. Diagrams for the fermion determinant in an external gauge field

tions to (45)). With my; = 0, (45) can be rewritten as
Tr [V V(M —W)(D+M . —W) 1 45VV Y D+ M, ~W) (M.~ W)]
= Tr(V oV P = Vad Ve VYys(M,— W) (D+M —W) ™, (46)

where the last form uses the fact that D, M_ and W are all flavor diagonal, and the cyclic
property of the trace in space-time (including Dirac indices). Denoting the latter trace
by Tr*, we have the result [I, 12, 13]

Ty (M ~W)(D+M,—W) ' ~Q, a-0, “n
where @ is the topological charge

0 = | dxq(x), (48)
1
q(x) = = J AXEy05 T F o F . (49)

Note that (47) is independent of value of the r parameters [1] (as long as they are non-zero),
i.e. (47) is a multiple of the identity in flavor space. It follows that the coefficient of O is
given by

Trf (VoV 1= VoV 1) = S Indet VgV~ = id arg det 1y, (50)

where Tr® is the trace in flavor space. Integrating 8V finally gives the result
expTrin(D+m+ M, —W) ~expifQexpTrin(D+myg+M W), (51)
6 = arg det my, (52)

as in the continuum theory. On the lattice the f-parameter arises from the mis-match
between M and M..

The expression (47) is related to the divergence of the axial vector currents. The axial
vector Ward-Takahashi (WT) identities follow from the response to position dependent
chiral transformations,

(O, AL=DL+iff 5 Jysp+iP 5 Aysny =0, (53
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where the n’s are sources which allow for the construction of any WT identity and the ; 4,
are the flavor generators. On the lattice [1, 14]

AX(3) = — FCOMDs 3 LU, (Ip(e+a,) +he., (54)
DA(x) = B)ips{s dw MYp(x)

- zia Z {[P(x)iys 3 AU X)p(x+a,)+hc]+[x = x—a,l}. (55)

The chiral symmetry breaking consists of two terms, corresponding to the two mass terms
in the action (31). The two terms are dimension 4 operators (recall that M = O(a™')) so
the chiral symmetry breaking appears to be strong. However, in the continuum limit the
two terms cancel, except when there are anomalies in the continuum. This is verified in
one loop diagrams [1]. It is natural to write

D(x) = P(x)iys{3 ias myp(x)+ DF(X)e, (56)
DA(x). = D2(x)|y=n, (explicit M dependence in (35)). 1))

In the continuum limit (4, oc 1)
DE(x)e ~ uoltr 5 40)24(x), a— 0, (5%

with g the topological charge density given in (49). For example, for the triangle diagrams
in Fig. 3 one finds that 4%(x) and $(x)iys 1 A,9(x) lead to finite well defined vertex functions
as a —» 0 which are identical to the continuum forms with vector gauge invariance imposed.
These expressions are therefore independent of r. It follows that D:(x)c also has to have
an r-independent limit which is precisely the anomaly in the WT identity of the continuum.
This is verified by explicit calculation. For a # 0, D2(x), vanishes on-shell. Off-shell it only
generates contact terms, such as, for example, the non-abelian flavor anomaly in the VVA
vertex function [1].

5. Dynamical symmetry breaking

When all mass terms are sent to zero (i.e. M — 0 and r — 0) there is ample evidence
that the theory undergoes dynamical symmetry breaking, from strong coupling calcula-
tions as well as computer simulations of the {({py) indicator. The symmetry that is
actually present for M = r = 0is U(4N,) x U(4Ny) [15, 16] and it is dynamically broken
to the diagonal subgroup U(4N,), with 16N? corresponding to Nambu-Goldstone (NG)
bosons. Increasing r from 0 to 1 and keeping at the same time M = M(r, g) one finds
[7, 14, 15] at strong coupling that N7 — 1 NG bosons remain massless (the flavor non-singlet
pseudo scalar mesons), 1 NG boson becomes massive (the flavor singlet pseudo scalar
meson), 3Nf2 become massive vector mesons (the “doimant” Goldstone bosons [17]),
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and 12N? get an infinite mass (as r - 1). Furthermore
m2 ~ Cm = C(M~M), (59)

for small m.

Although this is all very nice, there still remains a crucial question to be answered:
is chiral SU(N;) x SU(N;) symmetry realized non-linearly in the effective action of QCD?
The answer is negative [15] at strong coupling g — 20, but should hopefully be positive
in the true continuum limit which is at g — 0. At the moment all we have to support this
conjecture is the evidence mentioned above from weak coupling perturbation theory,
that chiral symmetry is restored in the continuum limit.

6. Decoupling

The species doublers of the naive lattice fermion theory never really appear in Wilson’s
formulation as their mass parameters m+2nrat, n = 1, 2, 3, 4 (cf. (34)) are of order of the
cut off. Indeed, the r-dependence can be absorbed completely in the renormalization pro-
cedure. It is instructive, however, to understand some of the peculiarities of Wilson’s
fermion method by first keeping the species doublers and sending their masses to infinity
after taking the continuum limit. This can be accomplished by putting [1, 18]

r=ra, (60)

with 7 some mass, which leads to finite masses for the species doutlers:
my=m+2nr, n=0,1,..,4. (61)

Letting r — oo after @ — 0 leads to a decoupling problem: can fermions be decoupled by
making them infinitely heavy, such that they have no effect on the remaining particles?
In a vector gauge theory the answer appears to be yes provided we make some adaptive
renormalizations [19]. Some effects of the decoupling particles cannot and need not be
absorbed in renormalization: these are related to the anomalies in the WT identities. For
example, the axial vector divergence D§ leads to a vertex function in Fig. 3 given by (in
case of flavor symmetry)

2mly(p, 4) = Y Q52m, L™ (p, 4, m) +0(a), (62)
A

with ') the standard continuum form given by
2m, Ii(p, q, my)
1 1—-x
1 2m}
= i;;i Euvqapqqa dx dy (63)

J T mi+y(l=»p*+2xypg+x(1—x)q>’
0 0

and the Q% given by (18). There is no anomaly in (62) which is consistent with the fact
(19) that the Q% sum up to zero. For r — o0, m4(n, # 0) » o and the contributions of
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the species doublers go over into a finite polynomial which is precisely the anomaly, because
zmg# 0 Qg = - la

1
2mE (P, Dy o = 2mIS™(p, g, m)— 577 BuveoPello (64)

Decoupling of heavy fermions is much less easy to discuss in theories where the fermion
masses m are generated by Yukawa couplings G to Higgs fields ¢, m = G{(¢), as in the
theory of electroweak interactions [20, 21]. The basic problem can be seen from Fig. 6:
For m — co we need G —» o since {¢) (which determines the weak vector masses) is to
remain finite in perturbation theory. Since the fermion-Higgs couplings are also proportio-
nal to G this implies strong self couplings among the Higgs fields. The problem can no
longer be analyzed within weak coupling perturbation theory.

Fig. 6. Diagrams for the induced Higgs couplings due to a heavy fermion, G — 0. There is also a contribu-~
tion with external gauge field lines

7. Glashow-Weinberg-Salam (GWS) theory

At the time that the connection between species doubling and the triangle anomaly
was cleared up, a lattice regularization of the GWS theory, which is equivalent to the contin-
uum formulation in perturbation theory, did not seem possible, since decoupling was not
supposed to hold. In the GWS theory, fermion masses are generated by Yukawa couplings
to the Higgs field. The same can be done for the Wilson mass term. We can give the species
doublers an infinite mass by putting the Yukawa couplings to infinity. This implies a strongly
interacting Higgs sector, out of reach of perturbation theory.

A related problem concerns the cancellation of anomalies. One can put only quarks
or only leptons on the lattice in a manifestly gauge invariant way. The standard continuum
formulation requires complete families of both quarks and leptons, in order to cancel the
anomalies. How could a lattice theory of the electroweak interactions with leptons only,
say, ever have a satisfactory continuum limit if that limit is not anomaly free?

Recently, this latter obstruction has been removed in the continuum theory : decoupling
of a fermion from an anomaly free set in the GWS theory induces so-called Wess-Zumino
terms and Goldstone-Wilczek currents in the effective Higgs couplings, which cancel all
anomalies of the remaining fermions [21). Hence, a GWS theory with only leptons does not



544

seem to be impossible. A problem could be that the theory after decoupling is not renormali-
zable by the usual powes counting arguments. However, experience with the lattice regulari-
zation has taught us not to shy away from so-called nonrenormalizable models. For example
non-linear g-models may in the continuum limit simply lead to free field theories [22].
Let us now first review the continuum formulation of the quark or lepton part of the GWS
action.

The theory for quarks or leptons can be formulated in terms of » left handed doublet
i

fields (:ﬁlz‘) and » right handed singlets yg,, wae k = 1, 2, ..., n; n is the number of families.
L/x

The fermion part of the action can be written as

=Sy = PuDryn+ @rlszé"Pék + Ipéleziwlz(k

+ GuPrfyr+ Gibueva+ Gu Pud v+ G Paiwt vie (05)
where
3
D, =vy,0,—igA,~ig' 3 V\B), A, =Y A3 1. (66)
m=1
Dy? = y(0,~ig' $ Y&?B,), Ya =Y. +1, Yg =Y -1, (67)

and ¢ is the Higgs doublet with hypercharge Y, = 1,

_ ¢! s ‘PZ . 68
@ (992)5 @ (_(pl) ( )

In (65) a standard form is chosen where there is no family mixing in the gradient part of
the action. We can put the Yukawa couplings in a suitable standard form by a change
of variables which preserves the form of the gradient part,

Yu ~ Woav,  Pu— ll—Jqulk,
v = Waid wei's B~ Bri” PR (69)
such that, in matrix notation,
G' - WIG'W!, G* - WIG*W. (70)
Convernient standard forms are such that
G! = D = diagonal, G? = P = hermitian, @)
or vice-versa,
G'=P, G?=D, (72)

with only n?—n+1 free parameters in P and with all eigenvalues of P and D > 0.

In the unitary gauge
{0 ~_ (@
w—(g, m-@) ‘ (73)
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the Yukawa couplings can be written in the form

e G ! +5°G ),  yi? = Pp'?,  §L7 = §lPy, (74)
R R R L
where the Dirac fields are constructed out of the L and R fields in the usual way. Dynamical
symmetry breakdown leads in this gauge in the tree graph approximation to the fermion
mass matrix

+1
m = goG, @ =<e(x), G= <g’ 22> (75)

For the leptons one may choose the standard form (72) (g = v, v, ...; ¥f = e, 4, ...)
and for quarks the form (71) (y{ = u, c, ...; we =d, s, ...). For example, for n = 3 a possible
form for P is

a b ¢
P=|b d e], a,b,cd,f real (76)
c et f

The diagonalization of P introduces the generalized Cabbibo matrix in the gauge field
couplings. If the neutrinos are massless, G' = P = 0 for the leptons. Then the right handed
neutrinos decouple.

We can attempt to transcribe this theory to the lattice using Wilson’s fermion method
to get rid of the species doublers. The D parts are straightforward. Using matrix notation
for all indices except space-time:

PDy - Z 2% [P, Uu(x)p(x +a,) = p(x+a)y Uk x)wpx)], (77
i

Uy = Uy Pr+UurPy, (78)

Uy = exp[—ia(gd,+g 7 y.BJ] (79)

Ug =exp(—iag' + YzB,), Yr=Yi+(l+1)+¥2L(1—1y). (80)

For the quarks we have to multiply U, by the SU(3) color matrix field. The Yukawa cou-
plings in (65) can be transcribed as

¥ #(x) [$(x)GPr+ G ()P Ip(x), (81)

_ o @ _(G' 0
(’é_(ﬂpf‘ ¢:>’ G”(O GZ)' €2)

with
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Since §;(x)¢(x) and ¢¥(x)p (x) are SU(2) singlets, we can invent a gauge invariant hermitian
Wilson mass term as follows,

—3 % [P)$(x)Gw U m(X)Prp(x +a,) + H(x +a,) Ul(x)GhT(x) PLy(x)

+P(x+a,)9(x +a,)Gw Ul (x) Prp(x) + Px)U o ()G PN (x + a, )P y(x+a,)].  (83)

Without loss of generality Gy can be chosen in the standard form (71, 72)

Do P O
Gw-(o P)w or Gw—<0 D)w' (84)

A suitable Higgs part of the action is easily constructed:

1
S¢ = 5;1 Z tr [d)f(x)UuL(x)qﬁ(x+a")U,tR(x)+h-C-]

-3 Z [(;8—2 +6> tr $Hx)P(x) + 4 tr (¢*(x)¢(-¥))2] , (85)

x

where now the parameter Y, in U, g is set equal to 1. In the classical continuum limit
(85) reduces to the usual form

Sy ~ — [ ax[(D,@)'D,p+o9 e+ i(gte)’], (86)

D = (8,—igd,—ig' % By)e. (87)

The action for the gauge fields can be taken in the usual standard form. An interesting
possibility is that the SU(2) and U(1) gauge fields can be combined into a U(2) field, such
that det U,(x) plays the role of the U(1) gauge field. On the lattice the U(2) theory may be
different from the SU(2) x U(1) theory. The model (77)-(84) was constructed some time
ago and is referred to in [14]. It is constructed independently in [23]. The generation of
Wilson mass terms by Yukawa couplings with a Higgs field is discussed before in [18].

In the tree graph approximation the continuum limit of this lattice model is straight-
forward. The fermion masses follow from the Yukawa couplings (81), (83), by substituting
¢ = gol, 0o ~ 250 GeV, which leads to mass terms of the form (31), (60), with

r = Gw@o- (88)

Hence the continuum mass matrix is given by m = (G—4Gy)go, While the masses of the
species doublers are given by m+2Gy0o, ..., m+8Gy,, analogous to (61). Removing
the species doublers can be done by letting Gy — o (i.e. in the standard representation
(71, 72) all eigenvalues — o), keeping m and g, fixed (since my and m, are of order g,
in the tree graph approximation). This implies that also G = 4Gy +m/g, — oo, while
G*™ = G—4Gy = mjg, stays fixed. Once the continuum limit is taken, the dependence
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on Gy, drops out and G*°™ may be put into the standard form (71, 72). Further diagonaliza-
tion leads to the generalized Cabbibo matrix; G may be identified with the Yukawa
coupling matrix in the continuum,

In the tree graph approximation the lattice theory is equivalent to the continuum
theory with fermion decoupling. In higher orders the theory is nonrenormalizable by conti-
nuum standards, as mentioned earlier. Hopefully, a nonperturbative tieatment can make
sense out of the lattice model.

Above, the continuum limit was taken while keeping the species doublers. Subsequently
the latter were removed by sending their Yukawa couplings to infinity. We can then appeal
to results in the continuum formulation such as the appearance of Wess-Zumino and Gold-
stone-Wilczek terms in the effective Higgs action. However, it is more in the spirit of
Wilson’s fermion method never to have to deal with the species doublers, by giving them
masses of order 1/a and removing them in the process of taking the continuvm limit,
This can be done, for instance, by choosing Gy, such, that for every a the lowest energy £
of the species doublers (as calculated from the large time behavior of the fermion propa-
gators) is fixed as E = const/a. Or we could require {P(x)p(x)GyUr(x)p(x+a,))+c.c.
= const/a*, since the expectation value of the Wilson mass term density should be of
order a4,

Another approach could be to use the decomposition

o=V, V=1 detV =1, (89)
define
2o = <> (90)
and require
Gwgo = —, R’ in standard form with eigenvalues of order o°. ©n
a

It seems a plausible assumption that (91) leads to an E of order 1/a. Experience with QCD
suggests that
M’ = Gg, 92)

has to approach a critical value M/ «c R'/a and that the difference m’ = M’ — M, may
be interpreted as the bare fermion mass matrix. The physical fermion masses vanish as
m' — 0 (by definition of M,).

8. Radially frozen Higgs field

It may be awkward to have to compute first g, and then tune Gy, accordingly. A drastic
way of avoiding this problem is to “freeze” g(x), which can be done by tuning the bare
Higgs selfcoupling parameters in (85) (A — o0, —a/24 fixed), such that

o(x) = o, 93)

where we are still free to choose g, as we wish.
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Let us rewrite the Yukawa couplings in the fermion action, using the notations
(89)-(92):
Sp* = = LB [VOM Pt MV (x)PJy(x)

+ Zl-a 2 P [VEORUw(x)Pr+ U (OR'VH(x + a,)Puly(x +3,)

+P(x+a,) [V(x+a )R Ul(x)Pr + Ufa(x)R'V(x)PL]p(x)}. (%4)

In the unitary gauge, V(x) — 1, this action has the same form as the mass terms of the
action (31) (except for the generalization r — matrix R’). The tesidual gauge invariance
corresponds to QED (x QCD in case of quarks). The physically relevant parameters of
the theory are g, g, M’ and x = a?¢2 (R’ is supposed to be irrelevant). The parameter
k determines the strength of the nearest neighbor coupling in the radially frozen Higgs
field action

Sy = fz Z Itr [Vf(x)Uu,_(x)V(x + a“)UZR(x)+h.c.], (95)
X.H

which follows from (85), (89), (93). In taking the continuum limit, if it exists, we may
think of g, g’ and x as determining the vector boson masses my, and mz, and M’ as determin-
ing the fermion masses.

It is not clear yet how to do this. Simulations of the SU(2) Higgs model without
fermions [24] suggest that in the Higgs phase, for a given g, there will be a x,(g) where
amy, is minimal, but non-zero. Presumably, to reach amy — 0, g has to approach a critical
value g, and ¥ — x, = k,(g.). Perhaps g, = 0 and . = 0.37 is the critical value of the
nonlinear SU(2) x SU(2) sigma model. In the full GWS theory the situation may be similar,
although the value of k. can be strongly influenced by the presence of fesmions. Then g'/g
can be chosen to fix the ratio ni,/my and m’ = M’ — M can be chosen to fix the fermion/my,
mass ratios. The mass of the Higgs particle would be a prediction of the theory. Simula-
tions with non-radially frozen Higgs models suggest that the physics may be independent
of 4, in which case we might as well use the more economical radially frozen model where
A > 0.

Assuming that a continuum limit exists, can we say something about the effect of the
electroweak interactions on the quarks, in particular, about the QCD 6#-parameter?
Let us use the framework of a simple mean field approximation, where the SU(2) x U(1)
gauge fields in the action are replaced by a selfconsistent mean field value. Since the action
is gauge invariant, we can do this in any gauge we like, for example the unitary gauge,
supplemented by a suitable gauge condition on the electromagnetic field. We assume, of
course, that the system is in the electromagnetic Coulomb phase. Hence, in the action we
replace V(x) — 1 and approximate

U (SUR) x U(D) = uy, (96)
R R
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where u; and wg are matrix functions in flavor space depending on the parameters g, g’
and «, as well as on the matrices M’, R’ and 1;. The QCD action may be transformed into
a form where we can recognize the M and R matrices and in general there will be a mismatch
between M and M. (oc R) with a correspouding induced @-parameter.

However, suppose we choose M’ in the standard form (71) as well, such that it com-
mutes with R’ (recall that the latter has already taken in the standard form (71), without loss
of generality) and with ;. With such a choice one expects v and u; to have the commuting
standard form too. A simple wave function transformation y g — 4l &'>% g, PLr =
PLrirs/ > now brings the D part of the QCD in action in normalized form and we recognize

M = M'(ugu)” "%, R = R'(ugug HV2. (97)

It follows that M and M_ have the standard form and M’ may be chosen such
that m = M — M_ has the standard form as well (m positive). Consequently det m is positive
and the -parameter is zero. The essential point is that once M’ and R’ are chosen in
commuting standard forms, § will come out zero. Apart from the requirement that u; and
ug are positive, no special tuning of g and g’ is required. This seems to be different in the
continuum theory where it appears that 0 has to be adjusted order by order in perturbation
theory [25].

9. Electroweak currents

Another implication of the lattice GWS model is a definite prescription for the electro-
weak current operators in lattice QCD. Within lattice QCD there are several ways to define
vector and axial vector currents [1, 14], which appear to be equivalent at weak but not at
strong coupling [26]. The currents are defined by the coefficients linear in g4, and g'B,
in the fermionic part of the GWS action, with ¢ — gg1. Taking R’ = r1 for simplicity
(at lowest order in g’ and g) one finds that the currents for W,,i have the V— A form, with
A% given by (54) and ¥V} by the analogous form

Vi(x) = i—[w(x)y”).,U“(x)w(x+a,,)+h.c.], (98)

where U,(x) is the QCD gauge field. These vector currents are not conserved on the lattice
although they become conserved in the continuum limit {1, 26]. For the electromagnetic
current one finds the form

() = 2 [ = 5(x) (= 7,)QU ()p(x +4,)

+§(x+a,) (r+7,)QUI)¥X)], 99)

with Q the quark charge matrix. This current is exactly conserved on the lattice, which
is related to the presence of the r-dependent terms in (99). Finally the current for Z, is
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given by
Jo(x) = Vi(x)— A5(x)—sin® Oyjin(x), (100)

as might be expected. Hence, as mentioned in [14], both V* and V* = j* (0 — T Ag) ars
used by the electroweak interactions.

10. Conclusion

The lattice regularization has been stimulating in investigating the foundations of
quantum field theory, especially in the case of fermions. It appears that the Nielson-
-Ninomya theorem is applicable to any regularization using a compactifiable momentum
space. The anomalies appear as remnants of the unavoidable explicit symmetry breaking
of the regularization. The properties of Wilson’s fermion method may be investigated
from the point of view of heavy fermion decoupling, which is an important physical problem
in the continuum approach as well.

For the GWS theory the lattice formulation suggests that anomaly cancellation between
quarks and leptons is not necessary and that no awkward tuning is required for keeping
the induced f-parameter in QCD equal to zero. If correct, these properties may have
implications for model building.

Part of this review is based on work some time ago in which conversations with
L. H. Karsten and M. Veltman were very helpful. J. C. Vink contributed with discussions
on the O-parameter of QCD. I would like to thank the organizers of the Cracow School
of Physics for their invitation and warm hospitality. This work is financially supported
by the “Stichting voor Fundamenteel Onderzoek der Materie (FOM)”,
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