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ALGEBRAIC CONSTRUCTION OF THE EFFECTIVE MASS
MATRIX FOR LEPTONS AND QUARKS
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An algebra of some "pseudo-annihilation” and *pseudo-creation’ operators is found
which generates an exponentially rising spectrum bounded from below. In terms of these
operators an effective mass matrix is constructed for leptons and quarks in consistency with
their observed rising mass spectra and decreasing generation mixing in the case of quarks.

PACS numbers: 12.10.-g, 12.90.+b

The phenomenon of lepton and quark generations appears nowaday as a genuine
puzzle of the fundamental physical research. In particular, the rapidly rising lepton and
quark mass spectra accompanied by the decreasing Cabibbo-Kobayashi-Maskawa mixing
of quarks [I] is a theoretical key problem to be solved, though its solution is generally
believed to lie beyond the standard model.

Sometimes, the proper solution of a physical problem is suggested by finding an
adequate formal description of the physical phenomenon involved. Having in mind such
a possibility we propose in this note an algebraic formalism to describe the effective mass
matrix for leptons and quarks.

Our formalism is based on the “pseudo-annihilation’ and “pseudo-creation’ operators,
a and at, defined by the commutation relation [2]

aat—Aata = 1, €]

where A2 > 1 is a dimensionless constant. This relation can be also rewritten as [a, a*]
= 14(42—1arta. Note that a and a* become the usual Bose annihilation and creation
operators if A2 — 1.

Making use of operators a and a* defined in Eq. (1) we can exactly solve the eigenvalue
equation

Nip) = N,ny, <nnd =1 (n=0,1,2,..) )
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for the Hermitian operator N = a*a (we anticipate that the spectrum of N is discrete).
In fact, Egs. (1) and (2) imply

Na*in) = (A*N,+1a"ind,
, 1
Na'n) = — (N,—Daln}. 3)
/.
Hence, we can conclude that [3]
atlnd = VAN, +1 in+1>,

and = VN, n—-1) 4
and
N,yy = 42N, +1. (5)

Defining |0> through the condition ¢|0> = 0 which gives N, == 0 and then solving the
spectral recurrence equation (5) we obtain the following spectrum for N:
N, =

N (6)

PR | 0 for n=0,
1+A24+ ... +A"2 for n>=>1.

-1
Since A% > 1, it is an exponentially raising spectrum N, ~ exp (2nln A)+const, where

»

i = /A2 > 1. To give a numerical example: with A = 4 we have N, =0, 1, 17,273, ...
forn=0,1,2,3,.... In the limit of 42 — 1 we get N, = n. Note that the spectrum (6)
also satisfies the three-term recurrence formula

Nps2—=Nypyy = lz(Nn-Pl—Nu) Y

which is less informative than the two-term recurrence equation (5) (equivalent to the
spectrum (6) if N, = 0).
Now, define the Hermitian operator

M = m0+Q)N, (8)

where m, > 0 and o > 0 are mass-dimensional constants. For the eigenvalues m,
(n=20,1,2,..) of M we get from Egs. (5), (6) and (7) the formulae

M,y — My = A2(m,—my)+ o, 9)
A1
My = Mo+ 53— (10)
and
Mlysy=Mysy = 2y, —my), (11)

respectively. Let us try to apply these formulae describing an exponentially rising spectrum
m, ~ exp (2n In 1)+ const to the observed lepton and quark mass spectra.
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In the case of charged leptons, identifying mq, m,, m, with m,, m,, m,, respectively,
we reproduce these masses by means of Eq. (10) with

_ 1/2
u) ~ 3.99. (12)

o =m,—m, ~105Mev, 1=
m,—m,

Then, the hypothetical next charged lepton (call it “‘®”) is predicted at the mass m, = m,
~ 28.5 GeV.

In the case of neutrinos, the degeneracy m, = mm,, if it appears, implies '’ = 0
and hence the mass degeneracy of all neutrinos (and so no neutrino oscillations).

In the case of up quarks, putting m,, m,, m, equal to m, = 0, m, ~ 1.5 GeV, m,
respectively, we get

_ 1/2 1/2
o™ = m,—m, ~ 1.5 GeV, ;ﬁ(u) = M ~ m, -1 . (13)
my—m, 1.5 GeV

Hence, taking as the top quark mass

m, ~ 25 GeV, 30 GeV, 35 GeV, 40 GeV, 45 GeV (14)
we obtain
AW~ 4, 44, 47, 51, 5.4, (15)
respectively. The hypothetical next up quark (call it “h™) is predicted at my, = m,
~ 390 GeV, 570 GeV, 780 GeV, 1000 GeV, 1300 GeV, respectively.

Finally, in the case of down quarks, where m,, m,, m, are equal to my ~ 0, m,,
my = 5 GeV, respectively, we have

1/2 < 1/2
—m, 5 GeV
o =m—m; ~m, i9= (mb m) ~ ( © —1) . (16)

my—my my

If we make the conjecture that 2™ ~ /¥, then from Egs. (13) and (16) we have m,: m,
~ my:m, and so taking m, as given in Eq. (14) we obtain

o'® = mg ~ 0.3 GeV, 0.25 GeV, 0.21 GeV, 0.19 GeV, 0.17 GeV, {an

respectively. The hypothetical next down quark (call it “f) is then predicted at m; = m;
~ 84 GeV, 100 GeV, 110 GeV, 130 GeV, 150 GeV.

Note that tor A™ =~ 2 ~ 3.5 there would be m, ~20GeV and w'® ~m,
~ 0.38 GeV, thus o™ :w@® ~4:1 ~ Q™% 0% with 0™ = 2/3 and Q¥ = —1/3
being the electric charges of the up and down quarks. Such a low value of m, is, however,
experimentally excluded. For a more realistic value m, ~ 40 GeV we have o™ : @
~ 8:1 (when A ~ i®), The former ratio 4:1, it it were true, might be a signal that the
internal Coulomb interaction of some sort is responsible for mass differences between up
and down quarks, Though this 1atio seems to be considerably higher, it is still natural to
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expect that such a Coulomb interaction is a kind of driving torce [4] in producing mass
differences between ups and downs, since the electric charge is the only visible quantum
number which distinguishes up and down feirmions.

The above discussion shows that the observed mass spectra of leptons and quarks
can be reproduccd by the mass operator of the form: (8), separately for each of four fermion
recurrences (v, v,, Vo), (€, B, 7) and (u, ¢, t), (d, s, b). We will treat the operator M given
in Eq. (8) as the zero-order approximation to the more accurate mass operator that,
beside the term N = a*a, includes lineai terms in a and a*. Such a perturbed Hermitian
mass operator can be written as

MF = my+o[ata+gata’)+ig'(a—a*)+g*+g'?], (18)

where g and g’ are dimensionless real “coupling constants”. Here, the term w(g?+g'?)
is added in order to cancel the g*+g'? correction to mq for n = 0 (cf. Eq. (22)). Note that
M - M*® when a - a+g—ig'. In Eq. (18) cnly the ig’ term is able to violate CP conserva-
tion, so cne can try tc assume that jg| > [g’/. Then. in the next-to-zero-order perturbative
approach to the operator (18) the ig’ and g’? terms can be neglected. Notice that replacing
ig’ by g'ys we get from Eq. (18) a non-Hermitian mass operator conserving CP (which
becomes a Hermitian operator when multiplied by f = y°). In this paper we shall use the
Hermitiar: version (18).

In the » representation defined in Eq. (2) the operator (18) is given by the matrix
MP = (ML), where

My, = [m,+(g*+ g Hw)é, .,

+(g+ig )N Ny Oy ey +(8=18)0 VNys1 8yt (19)

with m, = mo+w@N,, N,u; = A2N,+1 and N, = (A*"—1)/(4*—1). Denoting the eigen-
values and eigens®ates of M¥ by m? and n)f (n = 0, 1, 2, ...), respectively, we can write

'IUTMPUInY = mts,,, ndF = Und, (20)

where U is a unitary operator.

If only three generations n = 0, 1, 2 are relevant, the mass matrix given by Eq. (19)
takes the form

mo+(g®+g' o, (g+ighw, 0
M = [(g—ighw, m+(g2+g o,  (g+ighoViZ+1], 3)
0, (g—igDo Vit +1, my+(gf+gHo

where m, = my+w and m; = m,+w(4i?+1). Note that the mass matrix (21) is not of the
Fritsch type [S]. Ncte also that applying this mass matrix to up and down quarks the cor-
responding M™P and M@P are of the Stech type [6] if A = AP, g™ = g@ and g = 0
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(and [m,+ (@™ +g™ ™ and [my+ (g9 +g Y )]l are treated as extra terms).
When the terms with g’ are neglected, the next-to-zero-order perturbative approach to the
matrix (21) with respect to g gives

me = my—g’w
2
mt = m, - ET(D ) .
A r+go+0(g") (22)
2 2
w(A*+1
A Py
and
~ 2 ~
5 g
1-1g% g -
78 b4 ;2 Vi1
AR EEN | Vit+i1
U=|-g =28 —— 85— +0(g*org’). (23)
_gi_ —g@ 1-1g° }i'*:l
G S S

If O(g) = O(l//) then the omitted higher-order terms on the right-hand side of Egs. (22)
and (23) (and, in consequence, also of Eq. (24)) are still smaller by order O(g?) than the
highest-order terms written down explicitly when /2231 and 1//A2+1 are replaced by
A+1/(22) and 1/4—1/(24%), respectively (the analogical remark pertains also to Eq. (33)
discussed later on).

The explicit foim (23) of the U matrix which diagonalizes the mass matrix (21) enables
us to calculate the Kobayashi-Maskawa guark generation mixing matrix [7] which can be
written as ¥V = UMW~ U®, where U™ and U'® are the U matrices tor up and down quark
recurrences u, ¢, t and d, s, b, respectively. A simple calculation gives V = (V) (0’ =0, 1,2
=u,ctand n=20,1,2=d,s, b) with

d
@_ o = _y,

Voo = 1"% V021a Vor = ¢
Vi = 1—3 (V& + V),

(@2 /@2, g
Vi9ier Va4

a .
Via = 89 T8 e = Tl @4
1 12
Vyp =1—3 Vias
)2 S@z @2
()} (d)\A +1 g

Vor = === = Vet VoV
RN TOD S ¥ N CE 20 Vo1"12
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where V,, = V5, if u 2 d. These formulae are valid up to O(g* o1 g3) «erms. Comparing
Eq. (24) with the usual form of the Kobayashi-Maskawa matrix {7, 8]
€15 —54C3, =553
V’ = Sch, 616263-*82538"5, cl6233+5203el6 (25)
5152, clszc3+czs3e“’, cls2s3--czc3e”

where ¢; = cos 0;and s5; = sin 6, (i = 1, 2, 3) (and 6 = = because in our case the V matrix
is real, while ¥,, > 0 with ¢; = 1+ 0(g?)), we deduce that

St = Vies S3=83=Via 8= Vo/Vie. 3= Vo:/Vor (26)

with V,,, as given in Eq. (24). It is not difficult to see that if A = 2 and in addition
1g™ —g@® = 1/A™ (what will appear to be the case at least in a good approximation),
the Kobayashi-Maskawa matrix V given by Eq. (24) is of the Wolfenstein form [9].

Since experimentally V,, = —s,¢5 = sin §, >~ +0.23, we have in Eq. (24) the input
g™ —g¥] ~ 0.23. Then, in the case of A® ~ i¥ and m, ~ 30 GeV, 35 GeV, 40 GeV,
respectively, we get from Egs. (24) and (13)

Voul = [Viol @ 0.23, Voo =097, V,, =097, V,, ~10,
Vi, = 1V, ~0.054, 0.050, 0.046,
Wzt Vaol =~ 0.012, 0.011, 0.011 @n

and
WVo2—Vaol >0, (28)

the last relation being true if we tentatively put [g"] ~ [g'¥| (i.e., g™ ~ —g¥ ~ F0.12).
It is so because with A™ ~ A9

Vort+ Vo = —(g—g)V,,,

; ) 4 @ m.
Vor—Vao > —(g"W+8 )(1“2 ” )Vu (29)
t
due to Egs. (24) and (13). Then
Voal > {Vae] = 0.0062, 0.0057, 0.0053, (30)
respectively. Thus, taking m, ~ 3040 GeV we obtain the estimation
0.97, 0.23, 0.0062--0.0053
IV~ 10.23, 0.97, 0.054 -0.046 |, 3D

0.0062-0.0053, 0.054-0.046, 1.0

while from the experiment [8, 10, 11] we have

0.9705 to 0.9770, 0.21 to 0.24, 0 to 0.014
Vi=1021 to 0.24, 0.971 to 0.973, 0.036 to 0.070]. (32)
0 to 0.024, 0.036 to 0.069, 0.997 to 0.999
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Note that numerically |g™ —g¥| ~ 1/A™ since g™ —g®} ~ 0.23 and 1//™ ~ 0.23
—0.20, the latter for A" ~ 4.4~ 5 (corresponding to m, ~ 30-40 GeV). Thus, one may
speculate that g™ = I{A™ and g = I{V/A@ with I$Y = —I$Y = 1/2, which gives
—sinf, = g —g@® = 1™ ~ 0.23-0.20 if A =, ~44-5 (corresponding to
m, ~ 30-40 GeV).

We can see from our estimation (31) that in consistency with the experimental data
(32) the quark gene:ation mixing decreases with the increasing quantum numbern = 0, 1, 2
labelling the quark generation. Such a consequence of the mass operator (18) is true also
for any higher number of quark generations, ng = n,,,+1> 3(wherern =0, 1,2, ..., n.)
because the mass separation |m,,,—m,! increases in the perturbative denominators for
our perturbed operator M* = M+gw(a+a")+g*w where M = my+wa+ta. Of course,
this effective mass operator MF, if taken at its face value, implies an infinite number of
generations n=0,1,2,....

In our preliminary calculations of the Kobayashi-Maskawa matrix we neglected in the
mass operator (18) the terms with ig’ responsible for CP violation. In a more accurate
approach including CP-nonconservation effects these terms must be taken into account.
Then, if we assume tentatively that O(g) = O(g’), we get the Kobayashi-Maskawa matiix
in the form corresj)onding directly to the convenient parametrization proposed by
Gronau and Schechter [12]. But two complex “‘coupling constants” G™ = g™ + g™ and
G = g¥ 1 g9 make our discussion more involved. In this case, in Eq. (22) the constant
GG* = g?+g'? substitutes the constant g2, while Eq. (24) is replaced by

Voo = 1=1 Vo 1 —i Im (G™*G?), V,, = GP-G™ = —V},,

l(u)2 x(d)Z

Vi 707 1)

Vig = 1__1_”/0112_1 1V1212+i Im G(u)*G‘d)) -
2 2

Vi®7 1 NAOES
Vi = G @2 -G® IO Vi (33)

A1 VA2
V2, = 1—%IV,2}2+iIm(G‘“’*G‘°’)\/ 1y

}_(3)2 2\6)2 >
. G(u)l G(u)G(d) /A(d)2+1 G(d)2 N V* _
02 = \“/W - 2@z + AT e = —Vyot¥oiVis

where V,, = V3, if u & d. Here, |G~ G| ~ 0.23. The phase which is invariant with
respect to the rephasing transformations of the quark up-down fields [12] is in our case

@ = arg Vo +arg Vi, —arg Vo,. (34

Its nonzero value is responsible for CP violation [11]. Note that if the ratio G™® : G is real
then @ = 0 as it can be seen from Eq. (33). If A = A and tentatively G = — G¥*
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then ¢ = arc tan [(g¥/g) (A2 — /(A2 4+ 1)], thus |@! ~ 42°-43° when A™ ~ 445
and 1gY"] ~ g (in this case we never obtain [@] = 90° since g™ = — g % 0 as here
Isin 6] = ;g(“’ (") ~ 0.23). In particular, one may speculate that G = (I“‘)+ iEY™)2)/ 3
and G® = (1“”+15Y“‘>/2)//1‘d’ with I§) = —I{Y = 1/2 and Y™ = Y® = 1/3, which gives
—sin 0, = G —G@ = 1/ ~0.23-0.20 if i™ =9 ~ 445 (corresponding to
m, ~ 30-40 GeV) and — ¢ = arc tan [(&/3) (A2 — 1)/(A2 4 1)] ~ 17°-18°, 42°-43°, T0°
when the parameter £ = 1, 3, 9, respectively. Eventually, if our mass matrices (21) for up
and down quarks are of the Stech type [6]i.e., if AV = A9 g™ = o and g™ = (, then
@ = —arc tan [(g9/gY) (W2~ 1)], thus ¢! ~ 87°-88° when /) ~ 4.4-5 and g9}
~ g™’ (in this case, keeping in V,., Eq. (33), only the leading terms in 1/ one gets
ip. = 90).

Finally, we would like to point out that if A= 2 and m, = 0 = m, our mass
mattix (21) implies the relation

0, Vots 0
M®F pfDP 1 —
T R T V’* s 09 V \/A(U)z + 1
m, my, PIOCEE RS o
0, Vo Vi%%+1, 0

' §G(u)]2—- EG(d)§2
S b (35)

where ¥, = G*Y—G™ and 1 is a 3 x 3 unit matrix. Thus, since numerically |V, | ~ 1/A®
(if m, ~ 3040 GeV), the right-hand side of Eq. (35) is O(}V,,{2) with |[¥,,|®> = sin? 6,
=~ 0.053, what was observed recently by Frampton and Jarlskog [13]. They also have
shown that in the standard model, where the right-handed fermions are singlets of the
electroweak group, the mass matrix may be taken to be Hermitian without loss of
generality.

In conclusion, we can claim that as far as three quark generations are concerned the
mass operator of the up or down quark recurrence can be represented in a satisfactory
way by the algebraic Hermitian operator (18),

M? = my+w(a*a+Ga+G*a* +GG*) = my+w(a* +G)(a+G*), (36)

where aa*— 2a*a =1 and possibly G = g+ig’' = €/} with C®—C® =1 and
AW = ;@ <5 while 0" ~ m, ~ 1.5GeV and o'¥ ~ m,. If the relationship G = C//
holds, we get [sin 6, ~ 0.23—0.20 for i = ¥ ~ 4.4-5. More infoimation on the
complex constants C™ and C'® is to be gained from PC nonconservation effects (tentatively
C® = —CW¥) For ;™ = i(® ~ 4451 we obtain m, ~ 30-40 GeV and m, ~ 0.25-
~0.19 GeV when m, ~ 5 GeV and predict the hypothetical up and down quarks of the
fourth generation at 570-1000 GeV and 100-130 GeV, respectively. In the case of lepton
recurrences, the hypothetical charged lepton of the fourth generation is predicted at
28.5 GeV.

1 am indebted to P. Minkowski for an interesting discussion.
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