Vol. B17 (1986) ACTA PHYSICA POLONICA No 7

ON THE PHYSICAL MEANING OF THE GALILEAN
SPACE-TIME COORDINATES

By E. Kapru$cik
Department of Theoretical Physics, Institute of Nuclear Physics, Cracow®
{ Received January 29, 1986)

An operational definition of the Galilean space-time coordinates is discussed. It is
shown that the fifth coordinate has a deep physical meaning.
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1. Introduction

The space-time coordinates, like any physical quantity, should possess their own
operational definitions. This evident fact has found its realization only in the case of
relativistic physics, where such operational definitions were given by Einstein in 1905 [1].
In the case of non-relativistic or Galilean physics it is usually assumed that the space
coordinates are provided by sticks and that there is no need to synchronize the clocks. A little
thought shows, however, that sticks cannot provide any closed operational definition of
space coordinates because in order to read the indications of the ends of the sticks we always
need light signals, and they are not present in the Galilean world. Similarly, as we shall
show below, it is not true that the non-relativistic clocks do not need synchronization.

The aim of the present paper is to discuss the operational meaning of the Galilean
space-time coordinates. We shall closely follow the Einsteinian way of defining rejativistic
space-time coordinates and therefore we start our considerations by recalling briefly its main
points.

According to Einstein [1], a coordinate frame is defined as an arrangement of synchro-
nized clocks which represent the elementary events. The clocks are mutually synchronized
by the exchange of light signals executed by an arbitrary observer equipped with a clock
and instruments which emit and detect light pulses. If 7', is the reading of the observer’s
clock when the instrument emits a light pulse towards a given tested clock and T, is the
reading of the same observer’s clock when the light pulse after being reflected at the posi-
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tion of the tested clock returns to the instrument, then at the moment of reflection of the
light pulse the tested clock should show the time 7 which satisfies the synchronization condi-
tion

T-T, =T,-T. (1.1)

It is, of course, assumed that the light pulse received at the tested clock is immediately
reflected in the direction from which it came.
In addition to the time T, the diatance to the tested clock is defined as being equal to

- o(T—T))

X ,
2

(1.2)

where ¢ is an universal constant equ4l to the velocity of light in vacuum. The numbers
T and X together with the angles of the direction of the emitted light pulse provide the space-
-time coordinates for all elementary events. Since the readings T; and T, depend on the
observer, the space-time coordinates provided by (1.1) and (1.2) are specific to the given
observer. A different observer will use other coordinates, which according to the Einstein
relativity principle are related by the Poincaré transformations. '

In the case when the Einstein relativity principle is replaced by the corresponding
Galilean one, the procedure needs some modification. The main reason for such a modifica-
tion comes from the lack of uhiversal light signals in the Galilean world. Any signal used
to synchronize clocks must move with a velocity which depends on the reference system
and the problem of the operational meaning of the space-time coordinates used in non-
-relativistic physics needs clarification. A satisfactory solution of this problem is necessary
for the closeness of the Galilean physics.

2. General properties of coordinate system

Before going into details of the Galilean space-time coordinates, we shall define
the general notion of space-time manifolds. Generalizing the Einsteinian way of defining
the space-time coordinates we shall say that the notion of space-tim. is specified provided
we know:

1) the class of observers,

2) the class of elementary events,

3) the class of signals used to communicate between the observers and elementary events,
4) the interaction of the signals used with the elementary events.

In the case of Einstein, the class of observers coincides with the class of elementary
events and these consist of clock with light emitters, detectors and reflecting mirrors. As
communication signals between the events and observers the relativistic physics uses light
pulses with their universal velocity of travelling and with the laws of geometric optics to
describe the interaction of signals with the elementary events.

It is clear that this Einsteinian realization of the general requirements in items 1 to 4
determines the classical character of thé notion of space-time manifolds. In our discussion
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of Galilean space-time coordinates we shall still stay within this classicalf framework. But
we shall also see a way of passing to the quaritum notion of space-time, which in the world
of elementary particles is more adequate than the commonly used classical notion.

3. The Galilean space-time coordinates

~ Itis clear that in the case of the Galilean world we cannot use the Einsteinian opera-~
tional way of defining the space-time coordinates. As we have already mentioned, this is
connected with the difference in the classes of signals used in the Einstein and Galilean
cases. As a consequence we must modify the synchronization condition (1.1) The only
possible generalization of this condition which has a clear intuitive meaning is of the
form

T—T, = A(T,-T), G3.1)

where A is some yet unknown constant.

The Einsteinian condition (1.1) is a particular case of our condition (3.1) corresponding
to the choice 4 = 1. Physically, condition (3.1) means that the time of the signal’s
travel from the observer 1o the given elementary event is in general not equal to the time
of the return travel. As a weakér synchronization condition for all clocks we adopt the
proportionality of these two times.

In principle, we may have two possible cases. In the first case the proportionality
coefficient 4 does not depend on the observer chosen while in the second case it depends
on the observer, In order to distinguish these two cases let us first define the distance
from the observer to the event through the formula

X = B(T,-T)), (3.2

where again B is a constant which may or may not depend on the observer. The velocity
of the signal which travels uniformly from the observer to the given tested event is equal to

o=B—"C, (3.3)

while the velocity of the returning signal is given by
¢, = B(1+A). (3:4)
From (3.3) and (3.4) we get

4=2 and B= 52 (35

. c
In the case when th: constant 4 does not depend on the observer the ratio f therefore
S - N 1 .
does not depend on the observer, cither. But the only signals for which such ratio may be
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constant in Nature are precisely the light signals and this case thus implies 4 = 1. We see
therefore that apart from the Einsteinian case the constants which participate in the con-
struction of space-time coordinates always depend on the observer who performs the con-
struction. This is, in particular, true for the Galilean space-time coordinates.

Using all the preceding formulas we get

¢, T, +e¢c,T.
]ﬂ = 141 242

¢ +es (3.6)
CyCy
X = T,—T, 3.
- 2% (-1 &)

as our operational definitions for the space and time coordinates. Clearly in the case of
¢, = ¢, the formulas (3.6) and (3.7) reduce to the corresponding formulas of the Einsteinian
case.

In spite of the fact that (3.6) and (3.7) define the space-time coordinates in terms of
exactly the same data as it happens in the Einstein case, there is a fundamental difference
between our Galilean case and the Einsteinian one. The difference lies in the fact that the
constants ¢, and ¢, in our case depend on the observer. More exactly, if a second observer
moves uniformly with a velocity » with respect to the observer who uses the constants
¢, and c,, then in the Galilean case the second observer must use the constants

¢y =c¢,—v
and
¢ = ¢y . (3.8)

Similarly, if the first observer emits the signal at T, and receives it back at T, then the abso-
lute character of the Galilean time implies that the second observer must emit the signal at

T = LT, (3.9)
Cl—'v
and receives it back at
T =-2 1, (3.10)
02*‘0

provided that at 7 = 0 both observers were at the same position. Even if we have mani-
pulated our experimental equipment in such a way that ¢; = c,, we see from (3.8) that this
condition may be satisfied only for one observer. But from (3.8) it follows that

¢ +ch = c;+ey (3.11)

and this invariant is a reminiscence of the invariant light velocity ¢ of the relativistic case.
Now we are ready to discuss the essential point of difference between the Galilean
and Einsteinian cases. The two cases are exactly the same in spirit but differ in complete-
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ness. The Einsteinian case needs only on: fundamental constant ¢ while the Galilean case
must use two relative constants ¢j and c,. These two constants form the invariant (3,11)
but they may be different for different signals. Each Galilean observer therefore needs one
additional control parameter in order to know the individual velocities ¢, and c¢,. Other-
wise he cannot exclude the possibility that for some events he used different ¢, and c,
than for others. Without the additional control parameter any Galilean coordination will
be non-unique and may lead to confusion in the space-time ordering of events. This is
a highly undesirable situation and in order to avoid it we must admit-the role of the control
parameter as a tool which organizes our space-time orientation.

There is, of course, the question how to choose the needed control parameter. In order
to answer this question let us observe that in addition to (3.11) we have two other invariants
at our disposal

e, Ty

oy = —— 3.12
1= v (3.12)
and
¢, T,
=—", 3.13
oy e tcs (3.13)

In terms of these invariants the formulas (3.6) and (3.7) take the form
T = “1 +a2 (3.14)
X = claz'ﬂ'cZal.

From these formulas and (3.11) we see that we have already exploited all independent
linear combinations formed from ¢, and ¢, with invariant coefficients. Our control param-
eter should therefore be at least a quadratic function of ¢, and ¢,. The most convenient
combination is the following

0 = 3 (cluy+c3ay), 3.15)

which under the Galilean passage to the moving observer transforms according to the rule
00 =0—-vX+10°T (3.16)

familiar from the one-parameter central extension of the Galilei group.

The control parameter 6 for each elementary event is calculated exactly from the same
experimental data as the time variable T and the space distance. X. It should therefore
be quite clear that this variable has the same right to be called a space-time coordinate.
The only difference between 6 on the one hand and T'and X on the other lies in their roles
in our modelling of space-time orientation. The variable T" orders the time evolution of
events, the variable X determines. the distance from the observer to the event and the va-
riable § says what signals were used to form the variables 7 and X. In this way we come
to the slightly unexpected result that the Galilean space-time is not four-dimensional
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(7, X + angles) as the relativistic models say but five-dimensional (T, X + angles and ).
Of course, the variable 8 has been used in many Galilean theories but from now on it receives
a new status and a clear operational meaning as a variable as indispensable as the remaining
space-time - variables.

4. The quantum models of space-time

Until now, we have restricted our considerations to classical physics. Now we would
like to make a small step towards quantum physics. By this we mean the situation in which
we replace the class of events represented previously by classical clocks with classical
mirrors by the set of elementary particles. Correspondingly, we must also change the class
of signals used for communication and the description of the interaction of these signals
with the elementary particles. The signals by themselves should be elementary particles
in order to minimize the influence of the signals on the tested elementary events. Con-
sequently, we must admit a realistic picture of the interaction of signals with the events
and this definitely excludes the classical models of space-time. The signals behave in the
quantum-mechanical way and this means that it makes no sense to speak either of their
velocities or of a specific time of reflection at the tested event. The complete quantum theore-
tical description then need a fundamental revision of the classical notion of localization
and so on.

.In order to retain as much as possible of the classical models of space-time we adopt
an infermediate point of view which we have called a small step toward quantum physics.
The merit of this step consists in retaining from the classical notion the assumption that
for each elementary event there exists a number T which may still be treated as the time
of reflection of the signal received by the event. Since we measure only T, and T, experimen-
tally, we do not enter into any contradiction. Only in the case of classical physics may
the number T really be independently measured and we cannot speculate in the way pre-
sented here. In the case of microparticles the number T is a number obtained from the
formula (3.6) and there is no way of putting a classical clock on the microparticle. But
we know that in the microworld the interaction of any elementary particle used as a commu-
nication signal with the elementary particle to which we would like to ascribe a position
is such that for identically prepared tested elementary particles we can get different values
of the time T, for the same time 7;. We have no way of knowing the mechanism of this
process a priori, because that is the task of the quantum theory to be constructed on the
basis of the model of space-time In order to have a logical possibility to ascribe the same
value of T to identically prepared (in the sense of location in space) elementary particles
we must admit that in the synchronization condition (3.1) the coefficient 4 for each observer
is not a constant but a variable which has a range of values. The uncertainty in the value
of A4 is the reflection of the physical uncertainty principle which makes it impossible to
measure the exact value of the position of quantum objects. If 4 and consequently B, has
no definite value then also the constants ¢, and ¢, become dispersed and cannot be treated
as velocities of the signals. They are now the quantities which serve to fix the space-time
coordnates. Since the quantities ¢, and ¢, may have different values for identically prepared
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events the control parameter may also be different for events localized at the same position.
In this way the variable 8 takes the role of a variable responsible for the quantum character
of events. In the classical world all events liec on the plane

. 123 + Cy—Cy

X=0
> 3 4.1

because the quantities ¢, and ¢, have definite values. In the quantum case the events are
represented not on a plane in the five-dimensional space-time manifold but are spread
over the whol: five-dimensional manifold. This is a very important point for the whole
quantum physics. In our approach the quantum phenomena are connected with the fluctua-
tion in the variable @ which for the case of classical physics had only an auxiliary character.
This lays the foundation for the point of view advocated in Refs [2] and [3], where it was
shown that by ascribing a wave function defined over the five-dimensional Galilean space-
-time to any object, we may formulate in a consistent way a Galilean gauge theory and find
a formulation of wave mechanics which, from the methodological point of view, is as general
as the Maxwell macroscopic electrodynamics is for all electromagnetic phenomena. In
particular, the new formulation .of wave mechanics does not use the Planck constant
as a primary constant defining the quantum character of phenomena and allows us to
introduce more general quantum materials.
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