Vol. B17 (1986) ACTA PHYSICA POLONICA No 7

DYNAMICAL CONSTRAINTS VERSUS HAMILTONIAN
SYMMETRY

By MaALGORZATA KiIMEK
Institute of Theoretical Physics, University of Wroclaw*
( Received July 31, 1985)

In the paper we consider the relationship between supersymmetric transformation
of Hamiltonian and its dynamical constraints for some models of supersymmetiic field
theory. It is found that requirement of invariance of canonical Hamiltonian under global
supeisymmetry generates dynamical constraints of the model. For our examples, it is an
alternative way to obtain the constraints (besides the Dirac-Bergmann algorithm). On the
other hand, we have showed the invariance of these models on the surface of dynamical
constraints,

PACS numbers: 11.10.Ef

1. Introduction

Supersymmetric Lagrangians of field theory are singular. The occurrence of constraints
results, among others, from the existence of fermionic fields in representations of super-
symmetry. It is possible to quantize the Hamiltonians of supersymmetric models with the
use of Dirac-Bergmann method (1):

— when passing to phase space, we get the primary constraints,

— secondary constraints will be calculated from Poisson brackets of primary con-
straints and of primary Hamiltonian,

— we reckon Dirac brackets in relation to the first and second class constraints and
pass to quantum Dirac brackets.

Another method of quantization of models with constraints is the Fradkm-Vkaowsky
method of functional quantization (2).

Both methods of quantization require knowledge of the primary and secondary con-
straints. The examination of several supersymmetric models revealed the existence of a rela-
tion between the properties of Hamiltonian symmetry and theé form of constraints. We
start with a canonical Hamiltonian H = H(g,, ¢;, 7,) with density # = ¢;m;— & (where
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&% — Lagrangian density of a certain action invariant under global supersymmetry). At
first, we treat all fields, velocities of fields and momenta as independent variables. Then,
we investigate supersymmetric variation of Hamiltonian density (su-sy transformations
of ficlds and velocities are known). The requirement of invariance of Hamiltonian under
supersymmetry implies condition §3¢ ~ 3s-div and the same relations between fields,
velocities of fields, momenta and variations of momenta. We have calculated them step
by step with an assumption that relations obtained in each stage are preserved under su-sy
transformation. It appears that these relations coineide with the dynamical constraints
of the model, our assumption being now a preserving of dynamical surface with respect
to transformations of supersymmetry. In Chapters 2 and 3, two models are dealt with,
namely: a chiral model and a supersymmetric extension of free electromagnetic model.
The dynamical constraints of these models (obtained in the first stage of Dirac-Bergmann
quantization) are generated by the requirement of Hamiltonian invariance under transfor-
mation of global supersymmetry.

Chapter 4 contains the analysis of this relation for the s-QED, model. This model is
invariant under su-sy transformations on-shell. Hence, the canonical Hamiltonian has
a non-zero variation on the surface of dynamical constraints. Generation of dynamical
constraints takes place here on the assumption that the variation of canonjcal Hamiltonian
density is independent of the field velocities and accelerations. Hamiltonian of chiral model
in superfield formulation is examined in Chapter 5.

2. Supersymmetric Hamiltonian of chiral model

We shall begin with a simple example, namely, with a massive chiral Lagrangian with
interaction (3). The chiral superfield contains scalar fields 4 and F, pseudoscalar ones B
and G and a Majorana spinor y,. The Lagrangian density is the following:

&L = —10,A0"A—% 8,B"B—~ ?waw;ﬁ —G2+m<AF+BG-— —ww)

+ gF(A*—B*)+2gGAB—igip(A—ysB)y. Q.1
The action obtained from this density is invariant under transformation of global super-

symmetry, i.e. variation of density (2.1) is a total divergence. Being acquainted with the
transformations of component fields (see Appendix A) we can calculate this variation:

i i
0L = — > y%y*00(0,A+758,B)y+ 2 {7°00(F ~75G)y

+im{y°0o(A —ysB)p+igly®dop(A* — B*) - 2igly°y 0o wAB+ 3s-div. (2.2)
Now, the transformation of a canonical Hamiltonian density is- considered:

H = (Oopmi— <, 2.3)
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where
¢, = (A, B, y,, F, G).
We shall get the variation of Hamiltonian density in the form:
0 = (0oF)onp+(0,G)0m + (0o A)0m 4+ (0o B)omg+ (Oop)om
+il(np—7sm6)00 8 p+il(m4+575) 0% +(800,4) '
~ (00, B)ysP"+(BeF){m+(36G) 75T~ L. (2.4)

After integration with respect to the spatial variables, the Hamiltonian density (2.3) gives

the Hamiltonian H = { d3xs#(x). It can be inferred from the form of density variation

(2.4) that the transformation of supersymmetry gives a non-vanishing variation of Hamilton-

ian. Assumption 0H = { implies appearance of the constraints on the conjugate mo-

menta and the fields. We shall get an explicit expressions by assuming 8¢ = 3s-div.
Now, we shall rewrite the expression for variation of density as follows:

OH = (ao¢;)Xi+(a(2)¢j)}’j+3S'diV, (2,5)
where

Y, = —ily°me—ilysy°ng
i
Y= —-my°C+ 7 P07

. i i
Xy = n+il8(np—ysnc)— L(ma+ysma)— 5 [y’ T(A+ysB)+ — [°(F—75G)
+im{y°(4—ysB)+igly®(4* — B*)~2igly’y; AB

~ i N :
Xy = ony—8n— U Fy—imly*y—2igly pd +2igliysyB

i
Xp = énp+{n+ > Py (2.6)
To make 357 a total spatial divergence, all the coefficients (2.6) must vanish. It turns out
that this requirement generates constraints of chiral model:

i
Y,=Y;=0, o= —2—(@)0)" (=® — conjugate momentum to ¢,),
Y'p=0, TCF=7rG=07

X, =0, Ty = —3%4, ng = —0°B,
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F+mA+g(4*—B*) =0,
G+mB+2gAB = 0,
X, =0=Xp, (T +m)yp+2g(A—ysB)yp = 0,
Xp=0, onp = 0,
Xe =0, ong = 0.

We see that the constraints generated by the requirement of Hamiltonian invariance under
global supersymmetry coincide with the dynamical constraints.

3. Supersymmetric Hamiltonian of extended electromagnetic model
A procedure similar to the one adopted in the previous chapter is followed here.
The Lagrangian density has the form:
i
PLow = —2ff™+ > 20Ai+% D?, (3.1)

where
S = 0,V,—0,V,.

It is interesting to notice that this model does not represent a full supersymmetric extension
of electromagnetic field. To make the fields (V,, 4,, D) form su-sy multiplet it is necessary
to apply the Lorentz gauge condition which, together with the equation of motion of field
A, reckons this submultiplet as a separate representation -of supersymmetry. It reduces
the number of independent components of field ¥, which satisfy the condition:

| v, = 0. (3.2
Using transformations of the fields of the multiplet (see Appendix A), the variation of
Lagrangian density is obtained in the form:

5L m = — -2’—z:v°vsaow—% G %zvkaozf°"+ 3s-div. (.3)

Let us write the canonical Hamiltonian density of the extended electromagnetic field:
H = (Oop)ri—Lem Where @, = (V,, 4, D). (34)
Transformation of this density looks as follows:
0 = (0oD)0mp+(8oV,)0m" +(0pA)0m— (0T ysA)my
+ily (8" —i(00,V ,)6" T~ i(0p D) Y57 — 0L ¢rn. (3.5)
Let us write it in the form:

0 = (0oD)X p+ 0oV ) X"+ (BoA)X 1+ (O3V) Y* +(034) Y, + 3s-div, (3.6)
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Y, = iﬂnC?°?s
Y* = ine® —ily*A

, ' i i
X, = én—in*ly,—ioymplytys — '2“DZ'P075"‘% VL™ + —;—Z—f’%k

X* = dn" —id,mo" — L E™y°o, 15" — %Zﬁwn

i .
Xp = onp+mys{+ L Lypsi. (CN))

Now, we make all the coefficients (3.7) equal to zero. In such a way the variation of
Hamiltonian density becomes a total spatial divergence and we get a canonical Hamiltonian
invariant under supersymmetry transformation. This requirement generates the constraints:

Yl = 0,
Yk - 0,
XJ. = 0,
X, =0,
Xo = 0,
XD = 0’

fp = O,
i
= — > o, (z* — conjugate momentum 1,)

z° =0, (z* — conjugate momentum to V)
nk - f’)k,

D =0, equations of motion of ficlds D, A
di =0,

on° =0,

57tD = 0-

It is easy to see from the form of Lagrangian density that the obtained constraints.
and the form of conjugate momenta are identical to the dynamical constraints and the
momenta of the model. It is interesting to observe that the condition of invariance under-
supersymmetry does not reckon the constraint n° = 0. This condition will be obtained
after complementation of the transformations by the gauge transformation of field ¥,. In
fact, Lagrangian density is invariant under gauge transformation of photon field:

8V, = 0,9. (3.8)

The variation of Hamiltonian density undergoes alternation:

(6+8)H = 05 +(050,9)n" +(8,V ,)on" = 8¢
+(8o) X, +(059) Y, +(8oV, )", (3.9)-
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Additional coefficients have the tollowing form:
X¢ = 3;7:“, 5,;5" = 0,
Y, = —n° 7z° = 0. (3.10)

It was shown in the supersymmetric extension of free electromagnetic model that the appli-
cation of the condition of invariance under transformation of supersymmetry and the gauge
transformation generates all the conjugate canonical momenta and all the dynamical
constraints of the model respectively.

4. The properties of symmetry of Hamiltonian of s-QED model versus dynamical constraints

Supersymmetric electrodynamics is a combination of the models examined earlier,
namely, the massive chiral superfield and the extension of electromagnetic field. The term
describing the interaction is added to the free massive chiral Lagrangian and to the free
Lagrangian of electromagnetic field. It contains a part describing the interaction of the
matter-current j* with the photon ficld ¥, as well as the terms improving the properties
of the complete Lagrangian under supersymmetry transformation. The action is invariant
on the surface containing the equations of motion of auxiliary fields F;, G; and the fer-
mionic fields y,. The following fields are built in the model:

a) matter — two chiral multiplets (4, B, v, i, G), i = 1,2,

b) electromagnetic field-multiplet (V,, 4,, D). Lagrangian density of s-QED has the
form (4):

i
L =L+ > idi+1D?

DM

1
+7
i

[D,A4;D*A;+D,B,D*B;+i{,8y,+ F} + G} + m(24;F,+2B,G,+ §;p")]

1

+A(A;1+75B)p2—A(Ar+75By)y, + (4B, — By A;)D+ip,y,9, V" 4.1
where
D“Al = 3“141 -+ V“Az D#Az - a“Az’— V“Al.

Supersymmetric transformation of Lagrangian density (for transformations of component
fields see Appendix A) looks as follows:

8L = 5 1y%y"06(0,A4:+750,B))yp; +im{y°8,(A,— ysB)w;

i i .
+ “:'2‘ f?oao(Fi'")’sGt)'l’i" ) C}’o?saoAD“%‘ :a*'y°aoxakv,

- —; Tp0odf " + ily%p5B0AC + L6 doxV, + 35 —div 4.2)

+linear combination of equations of motion of fields F;, G, v,
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where
C=AB,—B4,, x=(4:+7ysB)y,—(4d:+7sB2)y;.
Hamiltonian density of the s-QED model is:
H = 0ot~ L ot~ L em— L iare 4.3
The variation of canonical Hamiltonian density can be formulated in the following form:
8H = (Bo@)Xi+(B5p)Y;+iV,LP[(A1—vsBORy, — (U, =1sB)Ry; ] (44)
+linear combination of equations of motion of F;, G,,

where Rtpi = Ry;—iy°0,vy, and R represents the operator of equation of motion (see Appen-
dix A). ' _

The explicit form of coefficients X;, ¥; has been obtained from the form of transforma-
tions of component fields (they were included in Appendix A). We shall apply the condition
of independence of fields velocities and accelerations to the variation of Hamiltonian
density: :

8 ~ iV, Iy (A~ ?53 DRy, —(4;—y5B)Ry, ]+ 3s-div. @.s)

The coefficients X;, Y; are thus equal to zero. We obtain the constraints of the model:

- a i — a
ij = YB, = 0’ n;= - E(W‘,yo) »
i
=0, e L,
le 0, Tg, 'ﬂ'Gj = O,
Yl = 0, Tp = O,
X, =0, =0, = —f%

D+A132_Bl‘42 = 0,

X,, =0, my, = D°4;, 7z, = D°B,,
Fj+md; = Gj+mB; = 0,

Xy, =0, ifA+y =0,

X4, =Xp,=0, Ry; =0,

Xp, =0, ong, = 0,

Xg, =0, ong, = 0,

X, =0, onp = 0,

= 0, 67[0 = 0.
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The constraints obtained are identical to the dynamical constraints of supersymmetric
electrodynamics resulting from Dirac-Bergmann algorithm. However, the condition of
conservation of zero momentum =n° in time was not obtained in this way.

2
n° = " —j°+V° ¥ (47 +BY). (4.6)
i=0

To accomplish this aim it is necessary to complement the transformations of field V, by
a gauge transformation:

8V, = 8,9 4.7)

The action of s-QED model is invariant on-shell under transformation (4.7) and the varia-
tion of Hamiltonian density looks as follows:

2
3 = 3,[p(j"~V* 3 (A2+B2)]+(0o0,9)n" +(B,V,)on"
i=1

= @Z,+(0oP)X o +(059) Y, +(0oV,)X* + 3s-div. 4.8)

The explicit form of coefficients is:

Y, =1°=0, 4.9)
2
X, = 67" —j°+V° ¥ (4}+B}) ~ 0,
i=1
2
Z, = 0,[j°—V° X (A2 +BhH] ~ 0. (4.10)

i=1

The condition (4.10) ensures the conservation of constraints (4.9) in the time. This
was checked while examining the constraints by means of Dirac-Bergmann method. Since
the constraints 7% = 0 and 7° = 0 can be brought algebraically to first-class con-
straints, gauge condition should be introduced. There is some ambiguity here. The
following condition in the s-QED can be adopted:

Vo = 0. .11

It ensures the simultaneous generation of all dynamical constraints during supersymmetric
transformation of all the fields and gauge transformation of field V,:

oV, = ily,A+0,9. (4.12)

5. The Hamiltonian of chiral multiplet in superfield formulation

In the previous chapters, the constraints of a number of supersymmetric models of
field theory were examined by means of component technique. Now, we shall deal with
our first example i.e. the free chiral model in superfield formulation. Apart from chiral
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superfield ¢ and antichiral ¢+, two new multiplets, IT and I, will be introduced. They are
general superfields and we shall get to know their components by applying the condition
of invariance of the superficld Hamiltonian under supersymmetry transformation. The
calculations were carried out in the formalism of the two-component Weyl spinors. All
formulas and denotations are included in Appendix B.

The density of initial Lagrangian has the form:

% = L (D°D*D,+D;D*DV9¢* lp=smo = — Py AP A* +3 V' PP +L FF*.  (5.1)
Note: In formula (5.1), the measure & (D°D?D,+D,D?*Ds) = Z was used to make the

Lagrangian density dependent only on first derivatives of fields. Dynamical constraints
and conjugate momenta of the model can be easily calculated from the form of density:

TCF=-‘0, ﬂF‘=09
. 1 _0,-a . _ _1 _.0.4a
Ty = —7 0geP Ty = —304Y,
0 o
n, = —p A¥, Tge = —p A,
np =4 F* =0, T =%F=0. (5.2

The supersymmetric transformation of Lagrangian density looks as follows:
0L = (eQ+80)Z¢d" ig=p=0 = (eD+ED)Z¢p¢ " lg=5-0
= 1 (D D*+E DD 1. )$$* lo=s-o- (5.3)
After passing to the components of superfields we get:
8L =} (— 2 P s PP A+ &P T F + 26 P T P A+ E Py F). (5.4)
Now, let us build the density of canonical Hamiltonian:

H = Z(IP+1¢" — ¢ )lp=7-0 (5.5)

where
ZN$lomg-o = ZIA—} D;D* DIy, ~% DD I piA+% DI p ;" + £ D*IIF
ZI$* lgugao = ZITA*+L D*D°D,ITip; —1 D*D°M 3 A*+ % DI p 2 7 + 1 D*ITF*.
From the formula (5.5) one can conclude which components of multiplets IT and 7 contain

conjugate momenta. They will be coefficients at the field velocities (we preserve the con-
vention that field velocities are multiplied from the right by conjugate momenta). Hence
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we get:
n, = —% 02D DT|,_5 Mo = =1 6% DD 550,
T, = —% G&Baﬂ|o=a=0a n, = —% G&Daﬁ|a=6=o- (5.6)

The variation of Hamiltonian equals zero when its independent parts 6, H and 8,H vanish.
Therefore, we can examine transformations ¢Q and #0 separately. Both increments of
density take the following form:

5, = L& ,:(2D,DIIy* + D*IIF + D*D°IIA
—2D,11 g 4* + D*I 5 +DZD“HA*+2w,,p”“A* _F),

o =1 s“pm(zp,,u P44+ DIy +D*D°IIA
+2DPD[ip;+ DIIF* + D*D*ITA* —2ip; 74 A — F*y"). (5.7

In the previous sections of the paper we employed the method of making the coefficients
at the field velocities and accelerations as well as at time-derivatives of momenta, equal
zero. Now, we can make use of the same method. Thus we can get the components of multi-
plets IT and JT and the constraints of the model. The components of superfields IT and IT are
the following:

BaIHo =0 = {178 Daﬁ|o=5=o = 'Pa»

D*D°Mlgasmo = F=A*,  D'D°Mlgasa0 = F*A, (5.8)
D’Mig-z-0 = F*, D*Mlpegeg = F,’

DzDaﬂ|9=6=o =0, Dzﬁuﬁla=6=o = I;m'l’a’

D*Dlpopuo = — PP, D*D*Mlpmse0 =
Simultaneously, equations of motion were obtained:
F=0, F*=0,
Fy=0, Fp=0,
d4 =0, [J4*=0. 5.9
Constraints for the components of multiplets IT and [T are conserved in time. It results
from the condition of Hamiltonian invariance under global supersymmetry:
0oD2I = 8,F* ~ 0, 8,D*I = 8,F ~ 0,
8,D*DI = 0, 6,D* DI ~ 0. (5.10)

On the surface of constraints (5.8)—(5.10), chiral Hamiltonian is invariant under super-
symmetry transformation, i.e. the increment of its density is a total spatial divergence.
It is interesting to notice that the components of fields (5.8) give correct expressions for
conjugate momenta. Having applied the formulas (5.8)-(5.10), the part of Hamiltonian
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which contains multiplets IT and I7 takes the form:
ZHPlgosee ~ ZIA+AI,+§II;,
Zﬁ¢+l0=é=o ~ ZITA* + A*Lp+ 9711, (5.11)

The components ZII and ZIT were not obtained by the conditions §,6¢ = 3s-div, 5,5¢
= 3s-div. Now we can assume:

ZMgageo ~ 0, ZHl|geg=0 ~ 0.

On such an assumption we shall get the Hamiltonian in component form. The superficld
formulation confirms the conclusions from Chapter 2. In addition we obtained equations
of motion of the scalar fields 4 and 4* as well as the conservation of secondary constraints
in time and the expressions for higher components of superfields IT and I1.

6. Conclusions

The aim of this paper was to investigate, on the basis of a few examples, the relation
between the dynamical constraints and the invariance of a canonical Hamiltonian under
global supersymmetry.

First, we calculated the conjugate momenta and the dynamical constraints according
to the Dirac-Bergmann algorithm. We considered two models with Lagrangians invariant
off-shell, i.e. the chiral model and the supersymmetric extension of the electromagnetic
field. We discovered that in both of these cases an equivalence takes place:

(*) fulfilled dynamical constraints <> su-sy invariance of Hamiltonian (+ gauge invar-
iance for electromagnetic model)

Then, we checked the supersymmetric extension of electrodynamics. Lagrangian of this
model gives an action which is invariant on the surface of equations of motion. All the
calculations conducted revealed that the generation of dynamical constraints takes place
by applying the requirement that variation of Hamiltonian density is independent of velo-
cities and accelerations of fields. In Chapter 5, on the example of chiral model, we showed
that the component Hamiltonian can be obtained from the superfiecld Hamiltonian.

It is possible that for the models of ¥ = 1 supersymmetry, which are invariant under
supersymmetry off the surface of the equations of motion, the equivalence (#) is generally
fulfilled. This possibility will be the subject of our future research.

APPENDIX A

The su-sy transformations of components of chiral superfield (Chapter 2) are of the
form:
04 = ily, OB = ilysy,

oy = 3,(4—ysBY{+(F+75G),
O6F = ildy, 6G = ilys8y.
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The su-sy transformations of components of electromagnetic multiplet (Chapters 3, 4) are:

oV, = ily,A,
oL = — icanvau‘/v_ys‘:D’
6D = — iza’ysl.

The su-sy transformations of matter fields (Chapter 4) are given by the formulae:
04; = [y, OB, = {ysy,
oy = —(Fi+ysG)—id(4;+ysB)L,
OF; = i8y;, 06G; = ilys;dvy,

I

The su-sy transformations of components of multiplet contragradient to electromagnetic
multiplet (Chapter 4) are:

6C = {ysx,
63 = (M+ysN)—iy*(j, +750,0)¢,
j, = il0,, 0" +ily, A,
where the components of multiplet'are dependent on matter-fields
C = A4,B,—B,A,,
X = (A1+ysBIy,— (4, +7sB))y;,
Ju = A15pA2+B13uBz‘i¢1Yqua
M = —A,F,+A,F,+B,G,—B,G,, N = —A4,G,—B,F,+A4,G,+B,F,,
X = (Fy=75G)py—(Fo—=75G)py — (A, —7sB)Tp, +i(A, =75By) 0.
The explicit forms of the coefficients X;, ¥; are (Chapter 5):
Y,, = iny° =3 {0V s
Yy, = i?'fi?'o')’s _%Z')’s(')’o)z'l’i

Y, =— iﬂF,Z)’o - i”G,Z')’s'Yo

Yy

k

i
—ine® + 7 Ey*a

Y, = i”nz'yo'}’s
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: i i _
X,y = on—in"ly,—idmply*ys—% W™y~ 5 D0%ps —iCly%ps— >
X, = 0m;—{(m4,+757p)+ iZ’}'kak(”F, —9sT)+3 Iy°8(4; +y5B)

i ,
+ > Ly (Fi—v5G) +imly°(A4;—ysB;) — 6"L(4, +7sB)V°+0"{(A, +75B,)V°

Xy, = —on*—igma™ +ila® g +% 0,Lc™°A
Xy, = —61°—iGuna** + 3' ¢éa
X4, = 0ma+idmy*{+3 008 p,— imy y,+ 0" Ty°ysAB, — 20y y5AB,

—i6"La®y,V,+i6 L%y, V,

i
Xp, = 0np,—m{+ EZyozpi
: i
X6, = 57?6,‘”:?5(‘ ?ZYO)’S%

i \
Xp = onp—mnys{— 5 C'}’O)’s"--

The equations of motion of fields v; (Chapter 5) are:
Ry, = (i8 +m)yp, — (A, +v5B)A+iy,VFy, = 0,

R'l/)z = (i5+m)w2 +(A1 +?5Bl))."—i'y”V”1p1 = 0.

APPENDIX B

The properties of covariant derivatives D,, D;:
{Dy, Di} = Pois
[D,, D*] = 27.:D%,
[D;, D*] = —2p,:D".

The properties of ¢* matrices:

- 01 0 —i 1 0
" = 1 2 _ 3 _
*=1,0), o —(1 0), ¢ _(i 0), o (0 _1),
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a.paa = aaﬁ u. cﬂ
" = (1’ —E)’
Tr[o*a] = =2¢*", n=(—, +, +, +).

The denotations of components:
— for chiral superfield ¢, D;¢ = 0,

¢la=§=o = A4,
Da¢i9=§=(} = Y
D2¢‘o=§=o = F,

— for antichiral Superfield ¢+, D+ =
¢+io=6=o = 4%,

Di¢+19=§=0 = Pq»
‘ ﬁz‘i’Jr‘a=4T)=o = F*.
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