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Quantum theory of the gauge field with nonvanishing classical source is formulated
in a way free of the gauge-choosing ambiguity. The special example of constant non Abelian
classical field is considered in more detail. The tree propagators and one-loop action are
explicitly calculated for this case.
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1. Introduction

One may think that classical fields and/or currents in quantum gauge theory are of
two-fold interest. The direct interest comes from problems where a part of physical system
is treated as independent (heavy) source while the rest of it is quantal and subject to the
influence of the classical field produced by the first part. This way of acting is of help in
model building with QCD when, for instance, quarks are sometimes considered as heavy
sources. On the other hand the classical, c-numerical fields and currents are inherent
to the very formulation of the quantum gauge field theory already in vacuum as the function-
al argument of the generating functionals of the Green functions (Z(J)) or the irreducible
vertex functions (I"(4)). v

The way the external field or current are introduced into the quantum gauge theory
is burdened by the dependence on the gauge-fixing conditions, although the so-called
background gauges [1, 2] provide that after the gauge condition is fixed the effective action
I'(4) is invariant under the gauge transformation of its argument A. Still I'(4), and what
is more, the spectrum of particles in external field is sensitive to the choice of the gauge
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condition made. This is the consequence of the fact that the theory is independent of this
choice only on the mass shell of asymptotic states in the vacuum, which are, however,
modified by the presence of external field. The modified mass shell lacks the choice-of-
-gauge invariance. The only hitherto known exception to this situation is provided by the
special case of external field which is exactly sourceless [3, 4], i.e. satisfies the equation
oI'/6A = 0. The simplest case of such field is the so-called Abelian covariantly constant
classical field A; = A4,n°, where 4, is a Minkowskian vector, A, = F,,x,,,, F,, = const
and the constant vector n® lies in the isotopic space 5], which is sourceless aiready in the
tree approximation 4S,/04;, = 0, where S, is the classical (tree) action, as well as exactly.
This fact is one of the reasons why the Abelian field was first to receive attention as external
field in field theoretical calculations. The oneloop effective action was calculated in [6] and
its gauge independence was explicitly demonstrated. A number of other results concerning
the gauge field spectra and tachyonic instabilities are also obtained by now (see, for instance
[7, 8] and references quoted therein). On the other hand another example of external field
Al =67, 4. =0,i=1,2,3; a=1,2,3, which also gives tise to constant electric and
magnetic field strengths is less studied, partially because it is not source-free and the results
of calculations are drastically dependent on the gauge chosen. The recent attempt of cal-
culating some of the spectra of gluon in external field of this class [9] is affected by the
choice of the gauge. The other hitherto done calculations with these fields are those of
Refs [10, 11] which deal with the fermion-loop contribution into effective action that do
not suffer from the above ambiguity.

In the present paper we get rid of the restriction 6I'/04; = 0 and develop a general
scheme of quantization which may be applied to the case of external fields with nonzero
sources with the result that the quantum theory with the external field does not imply
choosing the gauge condition and is hence unambiguous both on and off the mass shell.
In particular the mass shell of asymptotic particles modified by the presence of the external
field becomes unambiguous too. We deal with the Yang-Mills SU(2) theory but it seems
certain that the main ideas may be extended to other gauge theories including gravitation.

Our starting point is the idea that adding external current, although it is not itself
a dynamical variable, to a degenerate dynamical system changes considerably its Hamilto-
nian structure, namely it removes the degeneracy. Therefore it looks more consistent to
quantize the gauge system with the external current included rather than to follow the
usual way when the latter is added as (small or large) perturbation after the quantization
has been performed and thus the starting position of the perturbation theory has been
fixed. Quantum mechanical experience teaches as a lesson that when the perturbation
removes degeneracy the initial functions should be prepared in accord with the perturba-
tion to act. Th> quantization and construction of the perturbation theory following this
philosophy is performed in the present paper.

In case when the external current has vanishing fourth component J; = 0, to which
type the current creating the above non-Abelian constant field belongs, the inclusion of
it into the gauge field Hamiltonian does not affect the Poisson bracket 1elations between
the generators of the infinitesimal gauge transformations (constraints) but makes the latter
Poisson-non-commuting with the Hamiltonian. This is not unexpected since the external
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current violates the gauge invariance. The result of the Poisson-commuting of the Hamilto-
nian with the constraints is just the covariant derivative V4J5(x) that should be equated
to zero for self-consistency [12] thus producing the secondary constraints as conditions
the field variables hidden in the covariant derivative V4’ must obey during the functional
integration. It is clear from the above discussion that the number of degrees of freedom
remains the same as in the usual gauge theory. Now the quantization is straightforward.
It effectively reduces to using the covariant derivative of the external current in place
where usually the gauge condition stands [13], this time however without any arbitrariness
left. This remark allows us to straightforwardly extend well established results of the quan-
tum gauge theory to our case. These developments are presented in Section 2 for arbitrary
external space-like current J;. By adding a new arbitrary small c-numerical current jj to the
fixed current J, we build a generating functional Z(J, j) whose j-derivatives at j = 0 give
Green functions in the presence of the external current J. The diagrammatic technique
of this Furry picture includes vertices with the external field propagators of the ghosts
which serve the determinant bound for normalizing the §-function of the secondary con-
straints 6(V;"J ») and the propagator of the gauge field against the background of the external
current. In Section 3 the special example of external current is studied. Namely, we take
the current that is produced by applying the covariant derivative operator to the field
strength of the non-Abelian constant classical gauge field discussed above. With this exter-
nal field we calculate the vertices and the propagators needed for the perturbative expan-
sions, explicitly. Special atention is paid to finding the Green function of the Yang-Mills
field in the external non-Abelian constant field, to which end a 12 x 12 matrix has been
diagonalized in Section 3. Some results of this section concerning the structure of the Green
function and the gluonic modes go beyond the scope of the tree approximation considered
and remain valid for the exact propagator of the gluon in the external field, with the inclu-
sion of finite temperature, as well. It is notable that among the 3 x4 = 12 eigenvectors
of the operator, whose inversion is the Green function, only 6 correspond to propagating
modes in the sense that the corresponding dispersion equations have solutions expressing
the frequencies in terms of spatial momenta. (We shall sometimes refer to this situation
by saying that some modes have and some have not the mass shell.) It is only on this modi-
fied mass shell that the propagating modes satisfy the initial and secondary constraints
and this allows them to be the asymptotic states of the problem. This situation is in full
correspondence with the statement made above on the basis of the Hamiltonian analysis
that the number of degrees of freedom is the same as in the usual SU(2) gauge theory.
For the latter case it is also known that only 6 three-dimensionally transversal (we refer
to the Coulomb gauge) modes supply poles to the propagator while the others do not.
The situation is analogous also to what happens in QED with external magnetic field,
where it was noted by one of the present authors [14] that out of the three photonic eigen-
modes, at least within the one-loop polarization operator, only two modes have the mass
shell like jn the case free of the magnetic field. Therefore the quantum electrodynamics
with external magnetic field is another example of the situation when the principle of con-
servation of the number of degrees of freedom holds. (The counterexample is also known.
It is the gauge field with external current which has solely the fourth component. Kiskis
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[15] showed that in this case there are more degrees of freedom than in the source-free
case. The philosophy of the quantization program claimed in [15} has much in common
with ours. We shall argue in Section 2, however, that at least as far as Euclidean formula-
tion is concerned the above Kiskis’ statement may be avoided by using proper time Hamilto-
nian formalism.) We study in Section 3 also the spectrum of the propagating eigenmodes
and classify the modes according to the eigenvalues of the symmetry operator of the external
field problem.

In Section 4 the additional current j is put equal to zero and the effective action is
defined as a Legendre transform of the vacuum-vacuum. tramsition amplitude Z(J) in
the presence of external current J. We discuss in what sense I'(4) and Z(J) may be used
as generating functionals in the vacuum when differentiated with respect to their arguments.

It is shown that Z(J) is covariant and I'(4) is invariant under the gauge transforma-
tions of their arguments.

For the constant non-Abelian classical field the effective one-loop action is calculated.
It has an imaginary part responsible for instability of the external field against creation
of positive helicity tachyons seen from the study of the spectrum made in Section 3 (cf. the
instability of the Abelian classical field [7, 8]).

2. General canonical formalism and path-integral quantization with external current
Let
L = — GG+, .1)

be the Lagrangian density of the SU(2) Yang-Mills field V; interacting with the 4-point-
~dependent external curient Jj such that

Je=0. 2.2)
(The Lorentz-covariant generalization of the prusent canonical formalism will be also given
later on in this section.) Here
G, = 8,Vi—0,Vi+ge VIV, (2.3)
The covariant derivative is

VP = 9,6%+gV®; (2.4

the indices run the values: it = 1, 2, 3, 4; 4, b, ¢ = 1, 2, 3 and quantities with two super-
scripts are defined as V* = &*®V, etc. The fourth components of the vectors are purely
imaginary.
After introducing the three momenta (the latin subscripts span the 3-dimepsional
subspace i,k =1,2,3)
iE; = Gg, 2.5)
canonically conjugate to the fields ¥ via the Poisson brackets

{EX), VP D} xomyo = —0ud™0%(x~) (2:6)
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the system under consideration may be as usually equivalently presented by the Lagrangian
density [16]

&L = iE{0, Vi —W(Ey, Vi) +iViC(Ey, V3), 2.7
where V§ play the role of the three Lagrange multipliers, C* are the three constraints
C* = VZE} (2.8)
and the Hamiltonian density A = h,+h, consists of two parts: A, is the usual Hamiltonian
ho(Ew» Vi) = 5 (E*+B7) (2.9)
and h, represents interaction with the external source
hy = —JZVy. (2.10)
In (2.9)
Bf = &G} (2.11)
and
B* = B®B!, E? = EXE. (2.12)

The Poisson bracket relations between the constraints (2.8) retain being those for generators
of infinitesimal gauge canonical transformations

{C*(X), C°(D)}sgmys = ECX)(x—y) (2.13)

while the constraints (2.8) no longer Poisson commute with the Hamiltonian

{F %, COsempe = LS B CONhagmre = ~VETD). (214)

Equation (2.14) tells that the gauge transformation generators C° do not conserve to the
extent the external current is present which violates the gauge symmetry. The consistency
of the Hamiltonian description requires according to Dirac [12] that Eq. (2.14) should
‘be treated as secondary constraints. To see this let us write the equation of motion for the
constraints C°:

34C°(x) = {C°(3), § h(NA Y} ximya+ [ A9V () {CH%), CO) }xmye (2.15)
When taken together with the equations
C%E, V) = VZ®Ep = 0, (2.16)

which follow from the differentiation of (2.7) over the Lagrange multipliers ¥ we see that
with (2.13), (2.14) taken into account Eq. (2.15) leads to the necessary condition

VeJp =0, .17

which in a way restores the gauge invariance violated by the interaction with external
current. The secondary constraints thus appeared

VD) = Viy = (00™ + ge™ V)HJI(x) (2.18)
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depend only on canonical coordinates ¥ (and not on the conjugate momenta Ef) which
are to be found from Eq. (2.17) provided the current J; is fixed as it is assumed. Note that
in the case of Abelian gauge theory the functions (2.18) cannot serve as constraints and
Eq. (2.17) degenerate merely to relations expressing the external current conservation.

The secondary constraints as depending upon coordinates alone Poisson commute
with one another:

), XD} xamye = 0. (2.19)

Calculate now the Poisson brackets between the primary (2.8) and secondary (2.18) con-
straints:

MP(x, y) = {0 C(X)}xamys = TV 1i=p (X~ )
= g3 ()0 — TNV ()" + TV xs= 58 (x — ). (2.20)

We are interested whether the determinant of (2.20) is nonzero if (2.17) is fulfilled. We do
not know the general proof of this fact. In Section 4 however, we shall calculate
Det M®(x, y) for the case when J§ is constant and ¥} in (2.20) coincides with the field
A5, A5 = 0 whose classical equations of motion have J; as their source

VeGE, = —J8 .21
|- 2 4

so that (2.17) is guaranteed. (In (2.21) the barred quantities are the same as (2.3), (2.4)
but with ¥, replaced by A4,.) This determinant is nonzero. The reversibility of (2.20) for
other ¥ may be proved by expansion about the point ¥,/ = Aj. This proof is in fact
contained in the perturbation theory of Section 3. We believe that for large differences
Vi—Aj; and for nonconstant J, the operator (2.20) may happen to be irreversible rather
as exception than a rule. From now on we take the inequality

Det M%(x, y) # 0 (2.22)

for granted. Then Egs. (2.17) and (2.16) are enough to exclude three pairs of canonical
variables out of the nine pairs (V§, Ej) involved initially in (2.7). Nine minus three makes
six degrees of freedom — the same as in the usual gauge theory. We do not solve the problem
of explicit exclusion of the redundant degrees of freedom from the Hamiltonian although
this problem looks worth studying. Instead, we shall exclude them only implicitly by intro-
ducing the é-function into the continual integral the way it is usually done in the quantum
gauge theory. Indeed, we must point out unless this is already clear, that the secondary
constraints (2.18) possess every property of a gauge fixing condition of the ordinary theory
(we mean (2.13), (2.19), (2.22)), although in our case there is no freedom left in changing
them. Therefore for the vacuum to vacuum transition amplitude in the presence of ‘the
external current J, subject to the condition (2.2) we have the following continual integral
representation

Z(J) = <0is10>
= N7 fexp { § d*x[ % GG+ LV}
[I;I S(Vi’ )] - [[1 Det M,] [T aviix), (2.23)
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where the operator M$°(x, y) is given by (2.20), and N is a normalization factor. It is defined
as the same integral as (2.23) but with the term JJV, omitted from the exponeutial. Then
N does not depend on Jj, since any change in J as being at the most a transition to another
gauge may be gauged out by appropriate change of the integration variable. (This state-
ment along with another is explained more accurately in Section 4.) Therefore the normal-
ization implies that <0]|S(0){0> = 1.

Representing det M; as the continual integral over the Grassmanian ghost field
variables C° C*

[1Det M; = fexp { | CAx)MS(x, y)C*(y)d*xd*y} [] dCdC (2.24)

(we have introduced 6(x, —y,) inside the definition of M%(x, ) in the integrand in (2.24))
and using the Fourier representation of the continual d-functior

(VTR = § exp { | 2°)VE(x)Tg(x)d*x} [ d2°(x) (2.25)

we may obtain another representation of (2.23) as an integral over the fields Ve C°, C
and A% ’ '

We are in a position to discuss now the covariant generalization of the above
constraints. It is certain that the Lorentz-covariant constraint condition

VeI =0 (2.17a)

and the corresponding determinant might be easily achieved by using the known trick
of expanding the unity [16] (see Section 4). We find it more instructive to derive the covar-
iant scheme in the Hamiltonian-like fashion [17]. Suppose the three 4-currents Jy(x),
a=1, 2, 3 are all space-like in every spatial point x. Define the proper-time 4-vector
S,(x) as satisfying the three equations

JAx)S,(x) = 0. (2.26)

The vector S, is arbitrary-length time-like vector. We may repeat the previous consideration
of this section using the direction S, in place of the time. The latin subscripts above in
this section now should be understood as referring to the space-like hyperplane orthogonal
to ’S,,(x) in the Minkowskian space, while the subscript 4 now denotes the projection onto-
S,. The covariant form of canonical quantization is therefore achieved if the scalar products.
TV, Vicdi, JiVi® are replaced by JaVe, VoCJS, JVi, respectively, in (2.20, 23-25). In
the rest of this paper we shall be working in that covariant way. For the Euclidean field
theory the above procedure solves the problem of covariant quantization with external
current. On the contrary in Minkowskian field theory, our solution directly serves only
the case of space-like external current. If at least one of the four-vectors Jy, a = 1, 2, 3
is time-like (and this is just the case considered by Kiskis [15]) the vector S, solving Eq.
(2.26) is space-like¢. If one rejects the idea of using Hamiltonian formalism to describe
evolution along a space-like direction our method does not apply to this case and one is left.
with the statement of Ref. [15] that there are only four constraints instead of the six con~
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straints (2.8) and (2.19). In that case, however, we aie facing the situation when a super-
luminal Lorentz transformation that changes a space-like external current into time-like
may be responsible for changing the number of degrees of freedom. Also if we follow the
statement of [15] literally we must conclude that the number of degrees ot freedom increases
after some quarks in the quantum system are nailed to become classical sources. Choosing
the inadmissibility of this situation as a physical requirement on the quantization postulates
one should accept our procedure both for space- and time-like external currents. We also
believe that the same prescriptions of quantization may be derived using the generalized
Hamiltonian description of Ref. [17].

In Section 4 we continue the general study of Eq. (2.23) as a generating functional of
the Green functions and of its Legendre transform. Now we proceed with deriving the
perturbation expansion in external field, the so-called Furry picture.

Let us define a generating functional Z(J, j, ], #) of the Green functions of the gauge
fields ¥ and the ghosts C% C” in the presence of the external currents Jy so that
Z(J,0,0,0) = 1. To this end we define the new integration variable

vl = V-4l .27

where A}, is the classical field defined as a solution to the equation (2.21) and add to the
action the interactions with new sources jy, #°, f*

Ja@utn"C*+C', (2:28)

n° and 7* being Grassmanian., Then, taking into account that V4°J; = 0 we obtain

.+ - 1 a 77a a a 5
ZJ,j,n,n) = Z_(—J) - exp J{—% G“VG"v+J“A"}d4x
- J exp { | [@2()DL' (%, p)ps(»dy +jcgn+ Ay
+§ Cx)Dg*® (x, Y)C*(W)d*y +1C+Cn— L1 ]d*x} - T1 dqadC‘dCdA,. (2.29)

where £, collects the terms of higher than second power in the integration arguments

2
C 8 ac,.c g ai ac
& int = — [ gq’n (x)J bcb(x)+ (Vub(Pv)‘puc‘pv 4 ¢ub<p€(pu ‘P::l (230)
and
D, (x, y) = (VaV25,,+28Gm — Vi Vo (x— )

_,0j6; ,Gopd’z

» 2.
VIV ly - @30

DG(x, y) = gIMVE(S*(x—y) = MP(X, Y) v-a. (232)

Remind that the bars over V and G imply that A is substituted for ¥ into them.
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The generating functional (2.29) creates the diagrammatic technique of the Furry
picture. The Structure of the vertices is determined by the three- and four-linear terms
collected in %, (2.30). It may be specialized for time- and space-independent field 4;
and current J; as following. The three-gluon vertex for the g-fields with the sets of quantum
numbers (v, ¢, 7), (i, d, 9), (o, b, p), where v, u, o are Minkowski space indices, ¢, d, b
are isotopic ones and r, g, p are 4-momenta, is

I;btdvfr = 5 { 5”[1-(1)”_ u)sbdc + AZ( akb adc + sakceadlr)]

+ 8, [i(g, — 1a)E™+ AS(e™ 6™ + ™™ )]

+8,,[i(p, — )" + Ay (™6™ + ™) ]}0(q + p+ 7). (2.33)
The gluon-ghost vertex is
ree = —ge™Jis(p+q+r), 2.34)

where (@, p) and (c, r) are the antighost and ghost isotropic index and momentum, respec-
tively, while the quantum numbers (u, 4, g) belong to the field @;(g). The four-gluon vertex
is the same as in the theory without external field:

uavo = [ bsscd(5 6mzaav) + sﬁbss ca(éwéve - 6;1\"5@)

+ 898,400 — 0,4e0) 10(P+q +7 +5), (2.35)

where the quantum numbers of gluons are grouped as (¢, a, p), (v, b, q), (0, d, r), (o, ¢, 5).
To find the vector (gluon) and ghost field propagators one needs to calculate the Gaus-

sian integral into which Eq. (2.29) converts when %, is dropped from it.
Performing the integrations subsequently over ¢, 4, C, C we have

Zo(j, 7, 1) = exp | [F2x)DE(x, y)F0) ~ (D%, yIn(y)]d*xd*y. (2.36)

Here the propagators of the gluon Div(x, y)-and of the ghost DE(x, y) are defined as opera-
tors inverse to (2.31), (2.32), respectively

(VEVD8,,+28G2 — ViV D%, y) = 676,84 (x—y), (2.37)
gl (X)L DE(x, y) = 6“6*(x—y) (2.38)

and j® stands for the projection of the c-numerical current j on the covariantly transversal
direction

JUx) = jux)—gT3(x) § DE(x, yIVija(y)d*y. (2.39)
It satisfies the covariant conservation condition
Vi =0 (2.40)
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The Furry perturbational diagrams are defined by the differentiation over j, #,  of
the functional Z, (2.36).

Some further general statements concerning the properties of asymptotic states of the
quantum Yang-Mills field against the background of external field may be found in the
last part of Section 3.

3. Green functions of the Yang-Mills field and of ghosts in external constant non-Abelian
field

In this section we are dealing with the special non-Abelian classical field which in
a special Lorentz frame and a special gauge has the form

AZ 1/2
A = 6; (—3—) , Ai=0, (3.1)
where 67 is a Kronecker symbol and
A* = A4S (3.2)

Equation (2.21) with this field becomes
VG, = —Ji = —%g’4%4;, (3.3)

The current J; obviously belongs to the space-like class. With the field (3.1) we are going
to solve the equations for the gluonic and ghost propagators (2.37) (2.38) and calculate
the corresponding determinants, in other words to find explicitly all the quantities met in
(2.36).

As a matter of fact we solve the Fuclidean analogs of (2.37) and (2.38) and later repro-
duce the results related to the Minkowskian space by analytical continuation.

The differential operator (2.31) after making the Fourier transform becomes a 12 x 12
matrix whose inversion reduces to its diagonalization. To perform it in a covariant way
let us first describe a convenient basis. Define an Euclidean unit length vector u, as

U, = L., e ALALAY T AT, (3.4)

where ¢,,, is the completely antisymmetrical unit tensor in Euclidean space-time. The
vector u, has the meaning of Euclidean “4-velocity” of the frame in which the classical
field has its fourth component zero. We call this frame special. Also 45, = 0. Let p, be
the four-momentum of the gluon, i.e. the Fourier variable conjugate to (x,—y,). Call

g, the vector
2 42\1/2
g°A
4 = P,,( ) (3.5)

3

and define the unit 4-vector [, orthogonal to u,

I, = (q,~xu,)/K, (3.6)
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where
Kk =qu, K=23(pdAip,AY)"*g?4% 3.D

The square of u, (3.4) is unity. In the special system u, = 1, 4; = 0 and the invariants

x and K become
2 42\ —1/2 . 2 42\ —1/2
g°4 § g A
K= P4< 3 ) , K= (@pH"? (—3—> . (3.8)

In the 2-dimensional subspace orthogonal to u, and I, we may choose arbitrarily a basis
of two unit vectors n,(1) and n,(2) such that n(1)n,(2) = n,(Du, = n,(u, = n,(1)l,
= n,)l, = 0, ni(1) = nﬁ(2) = 1. We shall be using, however, the combinations

1
Nz
The arbitrariness in choosing these two basic vectors is due to the “combined rotatio-
nal symmetry” of the problem and will be discussed below after the expression for the

propagator is obtained. In the isotopic space we may define one unit vector dependent on
the characteristic vectors of the problem

+ _
ng, =

(D)L in,(2). (3.9)

2\1/2
B = q,4, / [K (‘%) ] (3.10)

and two unit vectors orthogonal to it and between themselves which are dependent on the
basic vectors n; chosen above

AZ -1/2
o (5 i on
nﬁ_nﬁ_ = fla_ﬂa_ = ﬂ':tﬂa = 0, 11:.11“_ = I (3'12)

By taking all possible products of the Euclidean vectors (3.4), (3.6), (3.9) by the isotopic
vectors (3.10), (3.11) we define a basis of 12 orthonormalized vectors with the scalar product
(X)*Y; = (X, Y). The matrix representation of the Fourier-transformed operator Dt
(2.31) in this basis is a direct sum of 5 matrix blocks of the dimensions 3x3,3x3,1x1,
1x1, 4x4. The first two are

—(g*+1) oK+1 oK
2A2
B§}>(a)=-g—3—- oK+1 —(@+D+K* (K—o)x , (.13)
oK (K—o)x —(q2+2)+2ch+k:2

co=1-1,ij=1,23.
The second two are
2 42

3

B®(¢) = [—¢*+20K] - & =1, -1 (3.14)
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and the fifth one is

—(®?+3+2K) -1 —(K+2) —K

Bg3)=32A2_ -1 —(g*+3-2K) K-2 K

5= B e w2 , (3.15)
(K+2) (K-2) (¢*+2-K*» Kx
—K K Kk —(¢*+2-x?)

ij=1,2,34.
Here BP(), i,j = 1,2, 3 are the matrix elements of D,,'* between the vectors

ni(L, ) = (ng 8% L%, wan), i=1,2,3; (3.16)
BI(—1) = (ni(—1, i))*D1"n(—1, ),

where
ng(=1,0) =, p% L%, um?), i=123; 3.17)
B G) = (nEM)*DR it
and finally
B = (ni(3, ))*D,' “(n3(3, ),
where

ni(3, i) = (n 0%, nyn%, LB% u,p°). (3.18)

All the other matrix elements are zero. Therefore the diagonalization and inversion of
D,;‘“" reduces to those of these matrix blocks. Let the twelve eigenvectors of D;,,“"
expanded as linear combinations of the corresponding basic vectors be

3

9is. 0) = 3, ai(o)m(o, i), (3.19)
; 1

Pu(r) = ,-;1 a3, 1), (3.20)

WD = ngn, (3.21)

&(—1) = nn%, (3.22)

where nj(o, i), n,(3,j) are defined as (3.16-18). Here
D' ?¢Ys, 0) = Tgi(s,0), o=+£1, s=12,3 (3.23)
DL W) = Tyi(r), T =1,2,34, (3.249)

2 42

D;10) = £5 (20K —g)E40), o= 1. (3.25)
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The 12 eigenvalues 75, v" and (g24?%/3) (+2K— g*) are functions of the invariants «, K, g>.
The coefficients of the expansions (3.19), (3.20) are themselves eigenvectors of the matrices
(3.13), (3.15), respectively, with the same eigenvalues

3
P B{P(o)aj(o) = 75ai(0), o= #1, s=1,23, (3.26)
. 4 ‘
Y BPa}=ra, r=1,234 (3.27)
i=1 '

The two ¢ = +1 sets of three homogeneous equations (3.26) have each three solutions
(=123
ai(0) = ox(A;—2)[F, (3.28)

a3(0) = ok[ (6K —1)i5+2]/F,

a3(0) = [(4)* —(K* ~ D)4, ~20K]| #,

where
AL = +q°+ 2 (3 29)
< 12 .

are three (for each ¢ = +1) solutions of the cubic equation

A2 —(q*+2+26K)A2+20K(q> + 1)1, +44* = 0. (3.30)

3
The factor & in (3.28) is chosen so as to normalize the eigenvectors (3.28) as X aj(0)ai(c) = 1
=

which simultaneously implies the normalization of (3.19)
Y (@is, o) *gis, 0) = 1. (3.31)
B.a

The three solutions of (3.30) are real in the Euclidean region since they aie related through
(3.29) to the eigenvalues of the Hermitian matrix (3.13). They can be described as follows

2 = L@+ 20K+ 1)]+ei[— 0, +(Q2+ P

—e2[Q,+(Q2+ PO * ] (3.32)
where
e =8l =1,
3 ,
& = (e3)* = & = (&3)* = —3+i ‘/7 (3.33)
and

54Q, = —2¢°+6(cK —2)g* +6(2K* + 0K +14)q*
—16(cK+1)>+ 360K (cK +1),
9P, = —g*+2(6K—2)q*—4(cK +1)*+66K. (3.34)
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In the Buclidean region the discriminant P3+ Q2 is negative. Analogously, the set of four
equations (3.27) has the four solutions (r = 1,2, 3, 4)

a = (A2 424, —4K*—8+4K)x/¥,
ay = (—A2—2A,+4K*+8+4K)x/¥,
ay = [-22-44+4K*+1)]xK /%,
af = [— 23 +(K2—2)A2 +8(K2 + DA, —4K* (K% +3)]/4, (3.35)

where the normalizing factor ¢ supplies the vectors &} (3.35) and yj(r) (3.20) with unit
lengths

IIM:.

(@) = Y (WMo = 1, (3.36)

a

The quantities A, are four solutions,of the quartic equation
P +2—-gHA3—4(g® +2+K>i?
+4[(K?+1)q* +2K*]A+16x* = 0, (3.37)

which are related to the elgenvalues of B’ and D,;'** as (cf. (3.29))

2A2
T, = g—3- (A —q*+2). (3.38)

The quantities 4, as well as 7, are real in Euclidean space since the matrix B{)’ (3.15) is
Hermitian there. The solutions of the quartic equation (3.37) are given as follows

i g?—A-2 L1 q2—4—2 2_4 B(A+2—g*)—4(¢*(K*+1)+2K?> }1/2
r 4 X3 2\ A ,
(3.39)
where
A = +{8B+(2—g*)*+16(g*+K*+2)}'/?,
= ~3(@*+K*+2)+{—-Q+(Q*+ P} P+ {— 0—(Q*+P3)'*}'/* (3.40)
and

540 = 2(9K*-10)q°—(36K*—48K?*+318)q*
—(168K* + 348K +1248)¢> + (16K° + 564K* + 1776K* + 128)
9P = —(3K2%+T7)q*—(8K*+58)q> —4(K* +2)* +60K>. (341

Here all the arguments of the square roots are positive in Euclidean space.
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Now we are in a position to write finally the diagonal momentum representation for
the gluonic Green function in the external field (3.1), obeying equation (2.37), as the sum
of propagators of 12 individual eigenmodes:

3
et _ (9505, 0))* 9105, 9)
w : B—-q*-2

e=t1 s=1
(wa(r)*¥i(r) + (EH0))*E(0)) (g2 A%\ ™!
A—qg*>=2 20K —g* 3 '
+1

r= o=

+ (3.42)

Here the ten eigenvectors ¢y(s, 6), y,(r) are defined through the substitution of (3.34),
(3.41) into (3.28), (3.35) and then into (3.19), (3.20) wherein the basic vectors ni(s, i),
n(3, j) are given by (3.16), (3.17), (3.18) in terms of the vectors defined by (3.6), (3.9),
(3.10), (3.11). The eigenvectors £, (o) are given by (3.21), (3.22). The denominators in (3.42)
are the eigenvalues 75, 7,, 20K —¢>. The quantities 1, 4, in them are determined by (3.34),
(3.41) as functions of the scalars (3.7) built out of the gluon mcmentum and the external
field.

Another, nondiagonal form of the gluon propagator is given in Appendix.

Note that among the eigenvalues of D.!'* (2.31) none is identically zero. This cor-
responds to the fact discussed in the previous section that the degeneracy is removed from
the Lagrangian already by introducing the external non-Abelian field: the operator (2.31)
is free of zero-modes although it does not contain any subsidiary condition inm it.

The operator (2.31) commutes with a rotation in the plane orthogonal to the 4-vectors
u, (3.4) and /, (3.6) (in the special frame this is a rotation around the spatial part of the
gluon momentum p) supplemented by the rotation by the same angle in the isotopic space
around $° (3.10). (We call this combined rotatlon about the momentum). This statement
follows from the invariance of the external field (3 1) under the combined rotations around
any direction and the fact that the gluon momentum is the only characteristic vector of the
problem apart from the external field. In the isotopic space this vector specializes the
direction f°. It seems that there is no other operation commuting with (2.31). Therefore
we may expect that the eigenvectors (3.19)—(3.22) of (2.31) are also eigenvectors of the
combined rotation and may be labelled by its eigenvalues. This is really the case. The
vectois gi(s, 6) (3.19) acquire the factor e~ "%, under the action of the combined rotation
around the momentum by the angle 6, since every i vector ny(o, ) (3.16), (3.17) does.
The vectors y,(r), (3.20) remain invariant under the combined rotation, whereas £;(+1)
(3.21), (3.22) acquire the factor e¥3%,

Call the infinitesimal combined rotation around p and §° the projection of combined
spin onto the direction of motion (combined helicity) and denote it as L. Then

Loi(s, £1) = Fo(s, £1),
LE(£1) = F2E(£1),
Lyy(r) = 0.
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The combined spin is a product of two spin-one representations of the two SO(3) groups
one of which is for the usual and the other for isotopical 3-dimensional rotations. As the
eigenvectors are multiplied by ¢'P*** when going back to the configuration space we see that
the effect of combined rotation around the momentum by the angle § may be compensated
by the space and/or time evolution. Therefore (virtual) eigenmodes corresponding to the
eigenvectors &5(+1) are left or right circularly polarized, i.e. their field vector rotates
simultaneously and with the same angular speed in the plane orthogonal to p in the configu-
ration space and in the plane orthogonal to f° in the isotopic space. The eigenvectors
@4(o, s) rotate twice as fast while y,(r) do not rotate. All the common eigenvectors (3.19)-
—(3.22) of (2.31) and of the combined helicity L have different eigenvalues of (2.31) for
different eigenvalues of L. This means, in particular, that a sort of Faraday effect is present
for which the inequalities 7} # 1, 2K—¢° # —2K—¢g? are responsible. The Faraday
effect comes from the Onsager relation DL,'*(4) = D;,'**(— A) and the fact that (2.31)
contains an odd part with respect to the external field (it must be also odd with respect
to the momentum). Note, that this is not the case in quantum electrodynamics with external
magnetic field [14] where the latter enters into the polarization operator only in even
combinations as long as there is the charge symmetty and the Furry theorem holds. There-
fore in QED with external field among the eigenmodes propagating along the latter (in
QED this is the only direction for which the helicity conserves while in our present problem
the combined helicity conserves for every direction of propagation) there are two transverse
circularly polarized waves with different dispersion laws only when the charge nonsymmetric
background like plasma of electrons and positrons with nonzero net charge is introduced [18].

Note that different eigenvalues of (2.31) may correspond to one eigenvalue of L.

The whole contents of the preceding paragraph is based solely on the symmetry of the
problem and will remain therefore true if radiational corrections are taken into account
in the equation (2.37) for the gluon Green function. If we take (3.42) as the representation
for the exact gluon propagator in the external field (3.1) then the representations (3.19)-
—(3.22) for the eigenvectors are again valid but the coefficients a;(s), 4} in them, as well
as the eigenvalues 15, 7", 20k —¢? as being approximation-dependent quantities will be
different, although subject to algebraical equations of the same power. Also the splitting
of the inverse Green function operator into two 3 x 3, one 4 x4 and two 1 x 1 blocks, like
above, is also an exact fact because this operator as being combined-rotation-invariant
may have nonvanishing matrix elements only if sandwiched between the states of the same
combined helicity, i.e. selected within one and the same set among the sets (3.17)—(3.18),
"(3.21), (3.22). The situation does not change either if one places the same system
into a hot gluonic thermostat at rest in the special frame. Then the vector of 4-velocity
of the thermostat which should be used in forming the tensorial structure of the inverse
Green function operator [18, 19] coincides with u, Eq. (3.4) and theiefore cannot add any-
thing new to this structure,

We proceed now with studying the spectra of gluonic eigenmodes in the external
field (3.1). These should be found as poles in (3.42) from the twelve dispersion equations

B—g?=2=0, s=1,2,3, o=zl (3.43)
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;Lr_qz_z = 03 r= 1, 29 3: 43 (344)
26K—p* =0, o= +1. (3.45)

Substituting (3.43), (3.44) into the equations for A7, 4, (3.30), (3.37) respectively, we find
with the use of (3.7)

20K
T 2-0K

xz

K%, o= +1, (3.46)

k? = —3+(4K*+9)""*-K>. (3.47)
Remind that in the special frame —x? and K? are the (normalized) Minkowskian frequency
and spatial momentum squared. The dispersion equations (3.45)-(3.47) are at the same
time the conditions of the vanishing of the determinants of the matrices (3.13)-(3.15) as
well as of the denominators in the nondiagonal representation of the propagator given in
Appendix. It is remarkable that we have found only one solution (3.46) for the three equa-
tions (3.43). It corresponds to s = 1 in (3.32). For the other two values s = 2,3 (3.43)
does not have solutions. Analogously, the two values (3.47) are solutions of Eq. (3.44)
for 4, in (3.39) with coinciding signs in (3.39) and (3.40). For the other two expressions
(3.39) the dispersion equation (3.44) has no solutions.

We conclude that out of the 12 eigen modes only 6 have the mass shell and provide
poles for the corresponding terms of the propagator (3.42). We call them propagating modes.
For the other six modes the dispersion equations (3.43)-(3.45) have no solutions and their
cortesponding propagators, among the 12 terms of (3.42), have no poles. We call them
confined modes. They have the features of the so-called quark-virton states of Ref. [20].
Contrary to [20], however, their propagators are not entire functions of momenta character-
istic. of Efimov’s nonlocal theory [21]. Instead, the denominators in the propagators of the
confined modes may have branching points in the complex plane of frequency squared
(this is clear from Eqgs. (3.32), (3.39) but no zeros anywhere on the first sheet. Unfortu-
nately, however, the Green functions for some of the propagating modes have forbidden
complex poles in the first sheet, corresponding to the instability of external field so common
in the non-Abelian theory. We shall discuss this point later.

Note that if one added a “gauge fixing term” to the Yang-Mills action (e.g. in such
a way as to create a factor (1 —a) in front of V4°Vs’ in the operator (2.31)) all the 12 modes
would become propagating [23]. It may be demonstrated that when o tends to zero six
solutions of the dispersion equations (3.43), (3.44) giving x as a function of K escape to
infinitely remote region (cf. [21]). (We must stress once again however that no such term
associated with the background gauge, should be added. The consistent quantization
procedute of Section 2 implies uniquely that « = 0. This is our principal finding which
provides the unambiguity of the Green functions and the spectra). The number of propagat-
ing modes found is in accord with the fact derived in the previous section from the canonical
formalism that the number of polarizational degrees of freedom in the case with external
space-like current is the same as without, i.e. equals six. Four of the propagating modes
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have their combined helicities equal to L = +2 (3.45), L = +1 (3.46) and two have
L =0 (347).

The propagating modes, taken along with the background external field, must obey
the constraint equation (2.17a) at least on the mass shell because it must be tulfilled for the
in and out states. The fulfillment of the constraint equation is provided by the following
consideration whose generality goes beyond the example of the external field (3.1) under
consideration. From the gauge invariance of the Yang-Mills action

So = —% | G4,Gad*x (3.48)
it follows that
] 8S, 828, 38,
0=— V% = V(x) ————— +g&e™* 8 (x—y). (3.49
6V:’(y)( x () 5V,f(x)) *O) svecoavioy T8 avpen S T G4

Restricting (3.49) onto the external field V, = 4, and using (2.31), (2.21) we get
V(XD (%, y) = —gJ(x)8 (x— ). (3.50)

Now, acting by V4 on the both sides of the equations (3.23)—(3.25) (taken in the configura-
tion space) we have

gl h(x, i) = =1V Y(x, D), (3.51)

where ¥ stands for any of the eigeavectors of D,,'* ¥"i(i) = (¢i(s, 6), vi(r), £3(0)) and
7, for any of its eigenvalues 73, 7,, (20K—g?2). With the use of the identity Va'J, = 0 Eq.
(3.51) mdy be rewritten as

Vi = =tV (%, D), (3.52)
where the covariant derivative V3'(i) contains the field of the mode ¥"(x, i)
V(i) = 6%0,+ ge® Y (AS+ ¥ 5(x, 1)) (3.53)
We see that the constraint equations (2.17a) are satisfied either if

Vaby i(x, i) = 0 (3.54)
or if
7, = 0. (3.55)

The eigenvectors &(+1) (3.21), (3.22) satisfy the (momentum representation counterpart
of) Eq. (3.54) (and certainly annihilate the 1-h sides of Eqgs. (3.51), (3.52) as well). Therefore
the two propagating eigenmodes with combined helicities L = +2 obzy the constraints
“kinematically”, i.e. both on and off the mass shell. On the contrary, the other four
propagating modes satisfy the constraint equations (2.17a) only on the mass shell 7; = 0.
To make sure of this, note, first, that the vectors u,f° wu,n%, 1,° which participate in the
decompositions (3.19), (3.20) for the eigenvectors ¢y(s, 6) and y5(r) do not contribute
into the left-hand sides of (3.51) (3.52) when these eigenvectors are substituted there for
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¥*(x, i). The rest of the vectors (3.16)(3.18), however, do contribute and it may be shown
that the I-h sides of (3.51), (3.52) disappear only if ai(c) = a3(s) in (3.19) and 4] = d}
in (3.20). These relations with s = 1 and r = 1, 2 are fulfilled on the mass shells (3.46),
{3.47), respectively, and might be used as alternative to the dispersion equations.

Analogously, the constraint equations (2.8), when linearized about the external field
(3.1) take the form (in the special frame)

2V — 0,0, ¢ — g ALV 2+ 28 A0V " + g2 AP ALY = 0. (3.56)

Again this is fulfilled kinematically for the modes with the combined helicity L = +2
and only on the mass shell for the other propagating modes. To see this one must exploit
the relations kKaj = (K2 — 2K+ 2)a3 for the coefficients (3.28) and the relations al*? = a}'2,
Kxa3? = (K?+2)aj* for the coefficients (3.35) valid via the relations (3.46), (3.47), respec-
tively.

We conclude that all the asymptotic states in external field satisfy the coostraints
£2.17), (2.8) as they should.

Let us discuss now the spectra (3 45)-(3.47). 1t is seen from (3.8) that in the special

2 42 1/2
g 3 ) , where p,, is the frequency of the gluon. The solutions (3.45)—(3.47)

frame x = ip0<

of the dispersion equations express the fiequency in function of the spatial momentum
length p = /p;p; as follows

2 424\ 1/2
pé = pz_zap( 3 ) ’ G = il’ (3‘57)

2A2
20p (g )
2 2 3

Po=p — 2242\ , o=1%1, (3-58)
2(7) —pe
ngz 172
pe = p2+g2A2¢(3g2A2+4p2)”2(——3—) . (3.59)

The spectrum (3.57) belongs to the combined helicity +2 propagating wave with the
4-polarizations £;(+1) (3.21), (3.22). The spectrum (3.58) belongs to the combined helicity
+ 1 propagating wave with the 4-polarization ¢,(1, +1) (3.19). Equation (3.59) is the spec-
trum of the two combined helicity 0 waves »j (1,2) (3.20). All the spectra (3.57)—(3.59)
but one present zero rest masses pi(p = 0) = 0. The exception is (3.59) with the lower
sign. The rest mass for it is p3(0) = 2g242. We guess that the massive longitudinally polari-
zed branch of the spectrum belongs to the irreducible representation with total combined
spin equal to zero, while the pentiplet of the other massless branches form an irreducible
representation of combined spin equal to 2. Within the same irreducible representation
the rest masses must be degenerate since at p = 0 the whole space of the problem is com-
bined-rotationally isotropic, while the terms, odd in the field disappear from D,!'®* (2.32)
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making the problem left and right symmetric, too. Among the dispersion curves (3.57),
(3.58) there are ones for which the frequency squared is negative for some portions of the
p axis. This happens for (3.57) and (3.58) if ¢ = 1 in the interval 0 < p/(g242/3)'/? < 2.
The imaginary frequency solutions of dispersion equations as lying on the first sheet of the
complex plane are tachyons and indicate the instability of external field configuration,
the same as it is known for the Abelian external field (see [22], [7], [8] and references
therein). A difference with the latter case is in that the imaginary rest mass of the tachyons
(3.57), (3.58) is zero. 1t is notable that the combined-helicity-zero mode (3.59) is not tachy-
onic. This is quite natural since this mode has the same symmetry as the external field
(3.1) itself: they are both invariant under the combined rotation. On the contrary the
combined-helicity +2 and +1 modes (3.57), (3.58) are not invariant and the tachyonic
instability of the positive helicity modes when developed will lead the external field
configuration out of the class invariant under the combined rotations. We are facing here
the instability with respect to phase transition down to a state of lesser symmetry. A pro-
gram of finding this perhaps stable field configuration to whichb the initial external field
must develop via the tachyonic instability may be thought of along the same lines as that
of Refs. [22, 7]. Tt is also plausible that the initial symmetry is restored and the field configu-
ration done stable by heating [8].

The present problem, however, piesents an extra source of instability due to the non-
hermiticity of matrices (3.13), (3.15) atter going to Minkowskian matrics where x becomes
imaginary. Vanishing of the discriminants of equations (3.30), (3.37) gives rise to branching
points in the propagator which cannot be assigned to reascnable absorption processes.
This problem was discussed earlier in connection with QED at finite temperature and exter-
nal magnetic field [18].

We conclude this section by writing the solution of the equation (2.38) for the ghost
propagator with (3.1) as the external field. In momentum representation the operator
(2.32) has the form

gZAZ 2
Dg'® =2 (—-3—-) (26— ie**°B°K). (3.60)
Its inverse is
2 42\ —2 2 . ab
gA K 2iK
D¥ =1 5%~ B+ . 3.61
“( 3 ) ( PP e 3.61)

None of the three ghost modes have the mass shell.

4. Generating. Junctional and effective action

In this section we.abandon considering the perturbation expansion within the Furry
picture. Instead we shall study some general properties of the vacuum-to-vacuum transition
amplitude (2.23) viewed upon as a generating functional of Green functions both with
and without external field and of its Legendre transform. The latter fuunctional called
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effective action will be shown to depend only on gauge-invariant field combinations and
calculated within quasi-classical (one-loop) approximation.
The first remark about the generating functional (2.23)

Z(J) = <0IS(NI0> @.1n

is that since it may be looked at as a usual generating functional of the gluon Green func-
tions with the constraint (2.17a) considered as a special gauge-fixing condition it is clear
that all the J = 0 mass-shell results obtained with the use of these Green functions remain
unchanged as being gauge-independent.

Define the effective action I'(4) as Legendre transform of (4.1)

I(A4) = In Z(J)— | Jodzdx*, 4.2)

where J should be substituted as a function of 4 to be found from the relation

MHZ—-A"() 43
srax) “3)

The remarkable property of 45 (4.3) is thét it coincides with the continual average of the
field Vy:

Au(x) = Va(x)>
= Z—(I—J)J- Vi(x) exp {So + I J;:V,:'d‘*x} 3(VeJS) Det M, [ dVE(x). 4.9

Here S, is the Yang-Mills action (3.48).

To understand this suffices it to note that the functional Z(J) remains unchanged
when the current J;; is varied in the integrand of (2.23) in the postexponential factors alone.
Really, the variation of J in the postexponential factors changes the gauge condition (or
nothing at all) and this change (if any) may be compensated by appropriate gauge trans-
formation of the field ¥ considered as a change of the variable in the functional integral.
The Yang-Mills action (3.48) in (2.23) is gauge invariant and remains unaffected by this
change of variables. The term | JiV2d*x does not change either since its infinitesimal gauge
transformation calculated as the Poisson brackets (2.14) disappears on the space of the
functions ¥ restricted by the é-function in (2.23). Therefore the variational derivative
(4.3) acts as a matter of fact only on the exponential in the integrand of (2.23) and this
results in the statement (4.4). Let us derive this conclusion in a formal way which will
also serve to more formal understanding of the J-independence of the normalizing factor
N in (2.23) stated in Section 2.

As it is usual in such cases [16] consider the representation of the unity as an integral
over the gauge group with the invariant measure dw

1 = Det M} | §(Vi(w)J)do. 4.5
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Here V() is the covariant derivative (2.4) with the gauge-transformed field ¥ instead
of ¥, V(1) = V¥. Supposing that there is one and only one root of the s-function in
(4.5) w = Iit is straightforward to show that M; coincides with the operator (2.20).

M) = gliVi(x) = gVii(x)Jy = M,, (4.6)

where (2.17a) is meant to be fulfilled and has led to the vanishing of the commutator
between V and J in (4.6). We shall omit the prime over M; therefore.
Let us take now the infinitesimally varied current

J(x) = Ja(x)+0J5(x) 4.7

in place of J in the postexponential factors in (2.23), substitute the unity (4.5) into the
integrand (2.23) and make the change of variables ¥ — ¥°"". Then we obtain using the
gauge invariance of S,;, Det M, Det M,

1 o
N f f exp {So + J Jave ‘);:d‘*x}» 8(Va(w™")J;5) Det M.
« Det M ,8(VaT5)dw [ dV;. (4.8)

To find the matrix value of the gauge-group transformation w, as the root of the first
é-function in (4.8) whose difference t°6u” from unity is initiated by 6J; it is necessary to
look for it in the infinitesimal form
wo ! = I+1°u’(x), (4.9)
(Ve e = Ve+Vicsus, (4.10)

where 7° are the Pauli matrices. Then wg*

Voo LX) = — gJPVhu(x) + VEsJi(x) = O, 4.11)

or du must be found from the equation

where we have taken into account that V&J; = O as dictated by the second d-function
in (4.8) and omitted the second order terms.

The inhomogeneous equation (4.11) allows one to express ou” in terms of 6J; using
the operator inverse to (4.6) which exists due to (2.22). This gives the gauge transformation
induced by arbitrary small variation of the current. Note that the “transversal” variation
of the current §7J¢ subject to the condition V&’67J. = 0, wherein the field ¥, represents
all the fields obeying the condition V;”J,‘j = 0 does not change the postexponential factors
nor induce any gauge transformation therefore. The variation 6"J2 = Jidx, where o is
a number, is an example of transversal variation. The most general transversal variation
has the form of Eq. (2.39) with the bar dropped from over V in (2.39) and in the equation
(2.38) for Dg.

The term in the action responsible for the interaction with the current becomes after
the substitution of (4.10) and integration by parts equal to its primary value

[IAve T had s = [ Ievid*x+ [ JVasutd*x = [ Javidtx. (4.12)
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Now, the integration over dw turns (4.8) into (2.23) again. We see that the arbitrary varia-
tion of current (4.7) has not changed the postexponential factors in (2.23). This explains
why the differentiation of them has not contributed into (4.4) and also into the normaliza-
tion factor N. )

Consider now the second variational derivative ot Z with respect to the current.
To this end let us first take the continual average of equation (4.11) with the same weight and
the same factor (Z(J))~! as in (4.4) and then solve it for 5u°(x)/5J2(2) using the ghost Green
function defined as in (2.38) but this time with the average field (4.3) meant to be used
as AinV.

ou’ —
<5jg)) > f D, XIS (' — 2)d*x @13

Now, when differentiating (4.4) with respect to J(z) the contribution of the derivative
of the postexponential factors is obtained if one inseits
ou(x)
8J3(2)

(VT = Vi)

J,, o (4.14)

into the integrand of (4.8). After the functional integration of (4.14) we may use (4.13).
In this way the following equation is obtained which shows how the vacuum-to-vacuum
transition amplitude (4.1), (2.23) generates the two-point gluon Green functions which
appear as the functional average (VV) defined like in (4.4).

S’ InZ(J) _ SANx) _ 04)(2)
8IN2)JAx) oIz | 6Jx)

= (Vix)V(2)) — As(x)A%(z) = VZ(x) | DE(x, x )WV —2)d*x’.  (4.15)

If Eq. (4.15) is projected onto any transversal vector j3(z) or ji(x) of the form (2.39) the
last term in Eq. (4.15) disappears and it acquires the torm characteristic of the case when
the gauge condition is independent of the external field or current. This is the direct con-
sequence of the tact mentioned above that the transversal variation of the current does not
affect the postexponential factors in (4.4). As it is implied by (2.36) only this projection
is important for the total gluon Green function as long as the perturbational Furry picture
is concerned. So, to this extent, the last term in (4.15) is not essential.

The subspace supplementing the subspace spanned by ji(x) is formed by the vectors
J2. It follows from (2.39) that J§* = 0. Multiplying Eq. (4.15) by J4%(x) (or JZ*(2)) we get
the covariantly longitudinal projection of it:

6*In Z2(J)

i ) = W V@)

AYx)AY(2)) = VIP(x)8%(x — 2). (4.16)
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In the tree approximation (V¥ )— 44 = 0 and (4.15) turns into equation

04,(x)

W 5re

= Ji’Dp(x, 2) = V3 (x)6%(x —2), (4.162)

which follows from (3.50).

Equation (4.16) (also (4.16a) within its scope of validity) shows that under the assump-
tion that the term ({ V'V — 44)J in (4.16) disapp=ars when J — 0 the longitudinal projection
of the Green function 543(x)/6J3(2) is singular in this limit since the contact term V254(x — z)
in (4.16), (4.162) remains nonzero. The possibility of appearing singularities at the origin
J =0 or 4 =0 would be a manifestation of the infrared difficulties of the Yang-Mills
theory within the present context. They look the price to be paid for the explicit gauge
invariance (to be proved somewhat below) of the effective action, (For the case of sourceless
field A the gauge invariant effective action is known [6, 22] to contain logacithmic nonanalyt-
icity in 4. We shall see below in this section that this is also present in our case.) The origin
behaviour is important for studying the spontaneous symmetry breaking. For instance,
Eq. (4.4) allows that 4 do not disappear in the limit J — 0. Indeed, if J tends to zero remain-
ing “transversal”, e.g. if one takes a numerical factor « in front of J in (4.4) and makes
o — 0 then the postexponential factors in the integrand of (4.4) do not depend on «, the
limiting integrand “‘remembers’ the direction of the vector J. The average field 4 looks

{herefore nonzero and the spontaneous symmetry breakdown is likely to take place fixed
by the arbitrary direction J.

We now concentrate on the proof of the gauge invariance of the functional I'(A)
(4.2) and gauge covariance of Z(J) (4.1), (2.23).

Consider the transformation of the current

Jor® = (J)ar® = oJi%e ! 4.17)

performed by the gauge matrix w. According to (4.4) this causes the general gauge transfor-
mation of the average field (4.4)

A’ — (A" = Al +(0,0)0 " (4.18)

To see this let us take J® in place of J in (4.4) and pertorm the change of the integration
variables ¥ — V', The postexponential factors remain unchanged (this is where the gauge
condition (2.17a) works specifically), while the exponential acquires the factor
exp { § Tr[(8,(w)J;t°v~1]d*x} which is independent of the integration variable and is
cancelled by the analogous factor acquired by Z-! in (4.4). Hence the alteration in (4.4)
caused by the transformation (4.17) reduces to the transformation V;(x) - (V®), in the
integrand which leads to the gauge transtormation (4.18) of the whole integral (4.4) since
w is independent of the integration variable and may be taken outside of the integral
while Z-! cancels the integral appearing as a factor in the inhomogeneous part of the gauge
transformation. To prove the gauge invariance of I'(4) it remains to show that the right-
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-hand side of (4.2) is left invariant under (4.17). This is the case:
I(4°) = In Z(J®)— [ (J™)A(A)dx*
= In {Z(J) exp [ | Tr (Q,e)in0 ™ )]} - | @A) 5dx*
= In Z(J)— [ JhAzdx*. (4.19)

Simultaneously we have seen that under the transformation (4.17) the functional Z(J)
is not invariant but is an eigenfunctional:

Z(J®) = exp { | Tr [(8,w)J 0w~ 1]d*x}Z(J). (4.20)

The statement proved above about the gauge invariance of the effective action I' implies

that it depends upon gauge invariant combinations of the field A like the strength tensor

squared and its derivatives. This may serve as a source of the Ward identities, one of them
is just

v

04,

=0, (4.21)

where the bar means that the classical field A is taken inside the covariant derivative. If taken
together with the usual relation I'/64; = — J}, which follows from (4.2), (4.3) the equation
(4.21) implies also that

Vi, = 0. (4.22)

We now proceed with calculation of the effective action I'(4) (4.2) within the one-
-loop approximation. This reduces, as usually, to calculating Z(J) within the same approxi-
mation and to substituting J; as expressed in terms of its classical field subject to (2.21)
into it. The tree plus one-loop expression Z; for Z(J) (4.1) may be obtained by Gaussian
integration in (2.29) with &,,, = j = n = #f = 0 and the normalizing factor Z-! replaced
by N-! in it.

iDet DC-i 1111'2

Z,(J) = Ny 'exp { Jd“x(~% GG+ AL }m———llllz .

(4.23)
Note, that the ghost determinant appears to the power 1/2 unlike what the determinant
of M did in (2.23) since the i-integration has produced |Det Dg*|~!/2, The normalizing
factor Ng ! deserves a special discussion. The normalizing factor defined in (2.23) as inde-
pendent of the current J cannot be expanded in powers of the Planck constant at least

as far as the integration over Vis performed first and the stationary phase point V¢ = 1* = 0
2

is dealt with, since the operator is degenerate in this point. Therefore, for the

—_—
Visvy
present purposes of the loop-expansion another definition of N-! in (2.23) should be adop-
ted: N is the J — 0 limit of the same integral as in (2.23). Beyond the stationary phase

expansion the new and old definitions are equivalent. With the new definition of the normal-
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izing factor its tree plus one-loop approximation N, provides that (4.23) is normalized
as Z,(0) = 1. Now the substitution of (4.23) into (4.2) gives for the tree S, plus one-loop
S, effective action

1 |Det Dg!|"/?

where the normalization N, ' implies that S$,(0) = 0.

Our task now is to calculate the logarithm in the r-h side of (4.24) for 4 given as (3.1).
After calculating the determinants of the matrices (3.13)-(3.15) and of the ghost matrix
(3.60) which is equal to

2 42\ 6
16 (g: ) (4—K?) (4.25)

we find for S,(4) the expiession in which the contributions of all the six modes having
the mass shell are clearly distinguishable while those of the other modes have been can-
celled out not without help of the ghost determinant (4.25)

VT 1 2va’
S A= — —— 1 — 2 +
1( ) 2(2”)4 " {NO 0'1,10_11,0'3 [(p U~ 26’1(1)

x (p? +3a%+06,a V4v* +94%) (p2~—263va)]} d*p, (4.26)

0'1, 02, 0'3 = il.
The integration is performed over the Euclidean space-time, V7 i- the four-volume and.the
notations are used

a = (g24%*3)'?, v =ak, 4.27)

where Kis given by (3.7) o1 (3.8). In the special frame v is the length of the spatial momentum
v = (p?)!/2. Th= integral (4.26) is calculated by differentiating over a2, using the dimensjonal
regularization and then integrating back over a? within the limits (0, a?). Near the value
of the dimension n = 4 the effective Lagrangian defined as & VT = S, has the structure

2A2 2 2A2 R ZAZ 2
@, = y(g : ) In (g : )+ (g 4) +X(g2 4% (4.28)
n—

The diverging part (n—4)-! is absorbed through the renormalization of the charge
g, = gZ-! and the field 4, = ZA into the tree Lagrangian %, which for our constant field
(3.1) is

Lo = —1g%4". (4.29)
The renormalized charge g, is fixed in the arbitrary normalization point 4, = A4, by the
condition

d* Re &
dA* |,
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while the condition
i’y
dA® |4=0

=0 (4.31)

is fulfilled for (4.28) owing to the explicit gauge invariance of the dimensional regularization
used (a term 4? could not be expressed in terms of the field strength tensor G4, without
using the nonanalytical operation of taking the squate root: g(4;)* = 3 v(G3,)?). The
condition (4.30) makes the calculation of the Re X and the real constant R unnecessary
unless we are interested in the renormalization factor Z. The constant Y is calculated to be

Yo 28 5 5 9
T 322 3272 322% 1672

4.32)

Here the sequence of the terms corresponds to the subsequent contributions of the bracketed
factors in (4.26) from left to right, in other words, the two combined-helicity + 1 massless
modes taken together contribute as 28, the massive and massless modes of combined
helicity 0 contribute as —5 and so do the two massless combined helicity +2 modes.
Finally:

4 44 2
g. A A
Re ¥l = Lo+, = -t g4+ ——In— .
OTE T TO AT e A2 (433)
or, in terms of the renormalized field strength (G},)?* = 2(B})?
25g7\ . 3l (Gw)®
R$=—lG"v2(1+ >+ =5 (G%)? In 22 .
< 4 ( ) ) 16752 647'52 ( yv) n (GS,,V)Z (4 34)

The imaginary part of the constant X is finite and may be calculated either within the di-
mensional regularization scheme or directly as a contribution of the tachyonic modes
integrated over v within the interval (0, 2a) and over p, within the regions of negativity
of the arguments of the first and third logarithms in (4.25) (6, = 6, = 1)

2
4 44 1/2
grAr 2 2K 2
Im%, = -~ —- |} K°dK<{| — —K 2K — K*)/2
m Ly <2n)’j {(2—K TRK-K

0

L (10234192 , . . gl
* - T B4 TGt 4

The first term in (4.35) represents the contribution of the combined helicity 1 tachyonic
mode and the second of the combined helicity 2.

The convex properties of the curve Re .#(G?) (4.34) are like those of the Heisenberg-
-Euler effective Lagrangian in quantum electrodynamics and not like in case [6, 23] of
Abelian classical field in non-Abelian quantum field theory.

The imaginary part (4.35) cannot be removed by renormalization unless we admit the
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complex bare coupling constant and determines the probability (per unit time and volume)
of the decay of the external field (3.1) via developing the tachyons of positive combined
helicity.

5. Conclusion

In this paper we weie dealing mainly with the case when the external current and its
field are nonzero. It would be also of interest to learn how to use the above procedure of
uniquely prescribed gauge to build gauge-unambiguous perturbation theory for the vacuum
case J — 0. In doing so we shall meet the singularities in propagators at J — 0, which
property we have handled successfully in calculating the effective action (4.24).

Also of interest it would be to modify the Furry picture developed above to cover the
unstable classical fields to which class our example (3.1) just belongs. The point is that in
the case of unstable fields the condition Z(J, 0, 0) = 1 traditionally used to normalize
the generating functional of the Furry diagrams does not go since the probability for
the external-field-containing vacuum to remain the vacuum is less than unity. For this
case the procedure [24] developed in quantum electrodynamics with external field creating
electron-positron pairs should be applied.

The authors are deeply indebted to E. S. Fradkin and 1. A. Batalin for very helpful
and encouraging interest in the work. The authors also acknowledge having profited from
discussions with R. E. Kallosh, I. V. Tvutin, M. A. Vasiliev, and B. L. Voronov.

APPENDIX

Here we present a nondiagonal expression for the gluon propagator different from
(3.42) obtaired by inversing the matrix blocks (3.13), (3.14), (3.15). It is independent of the
vectors nf, n% which depend on an arbitrary choice and does not include solving the cubic
and quartic cquations.

To exclude the arbitrary vectors we used the telations (to avoid misunderstanding
we must stress that they cannot be excluded from the eigenvectors (3.19)—(3.22), only from
the tensors)

vh =it =5 (& ATV —iph AL 1,802, (A1)
8 = nin = 5 (& A2V +ip)AL— 1,602, (A2)
W,y = By, = nyny = 3 (3 AT ANSP - i AL 1,1, (A3)
P =" = nint = 3 (6" +ip—pB). (A.9)

The solution of equation (2.37) for the propagator is given in the momentum space as

5
Dj, = !Zl Db, (A.5)
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where [/ labels the matrices obtained by inversion of the blocks as follows: I = 1, 2 denotes
the inversion of B*)(+1) (3.14), I = 3, 4 denotes the inversion of B{}’(+1) (3.13) and
I =5 corresponds to the inversion of B{}’ (3.15), respectively.

Diy(D) = (a1 +aly™ +a55™),, +(auBB° + a5F™ + agy)w,,
+(ay™ + a7+ as BB ,L, + (a1 + a1 7% + a3, 8B u,
~(ay3p° ﬁb+a'14}’"b+al15')7ah) (w1, +1,u,)
—ai(vivy +ﬁ;‘.ﬁi’) - a:.'l(lyﬁb oy +1,68%})
+a5(u 00+ u,fo) — ay (LS vy +1,6° )
+a’20(1.¢,,13"v‘:+uv 6,':)+a'21(v‘,’!&ﬁb +l,,ﬂ"'¢'53)
— ag (v, B+ u, Bo0) — ays (T B+ 1,80 — a(Fpu, B +u, B0%). (A.6)
Now we list the sets of 24 coefficients a, for each I = 1,2,3,4,5
a.l=1:

2 42\ —1
A
a; =(_..q2+2K)_1(g3 ) , a: =0 if n #2’

2A2
a? = —(g*+2K)~* (g :

-1
), a2=0 if n#£S5. A7

@t = [g"+2(1-K)}/4;,

a; = [(1-K)*(¢*+2)+2K]/4;,

ais = —k[(K—1)q*+2K]/4s,

ai; = [(1-K)q* -2]/4s, (A.8)
ajs = kq°/4s,

alo = [(¢*+2)*—(K*+2)q*+2)—2K]/4s,

2A.2
3.0 if 1,7,10,14,17,18, A = [(K—2)g*+4K] (%
an 1 n# s 1 1V, > ) s 3 [( )q 3 »

ai =[¢*+2(1+K)]/4,,
gz = [1+K)* (¢*+2)-3K]/4,,
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ats = —k[(1+K)q*+2K]/4,,
ate = [(1+K)q*-2]/4,,
ago = _KqZ/Aata

aty = [(a*+2)*~(K*+2) (¢” +2)+2K]/4,,

at =0 if n#4,811,1519,20, 4, = —[(K+2)q>+4K] (g?z),
a3 = [—A2—4i+4(K>+2)]/4s,

ag = [~A*—4i+4(K*+2)]/4;s,

a; = [-K*?*—4(1+KHA-4(1—-K?) (K*+2)]/4s,

ai, = [ 23 +(K*—-2)A* +8(K*+1)A—4K*(K* 4-3)]/4s,

aiy = Kxk[A®+4A—4(K?+1)]/45,

ais = [—A*+4(K*+2))/4s, (A.9)
a3, = [KA24+2KA—4(K —1) (K> +2)]/4s,

a3, = —x[A*+22—4(K>~K+2)]/ds,
aly = [KA2+2Ki—4(K+1) (K*+2)]/4s,
ajs = —k[A*+21—4(K>*+K+2))/4s,

a> =0 if n#£3,6,912, 13,16,21,22,23,24, 1= g*+2;

2 42
45 = 4[A%+20—4(K?+2)] (g; )
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