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The Heinz transport equations for qq plasma are generalized to include a term res-
ponsible for qq tunneling from vacuum in chromoelectric field. They are used to study
the time dependence of the particle and energy densities and other characteristics of qq
production in a color flux tube. The energy density larger than 4 GeV/fim® is found at the
“formation time” 0.3 fm for a tube five times stronger than the elementary one. The oscilla-
tions of the system survive the damping effects brought about by the process of production
of qq pairs.

PACS numbers: 05.60.+w, 12.38.Mh

1. Introduction

Possibilities of production of the quark-gluon plasma in high energy collisions of
heavy ions were recently discussed by many authors [1]. It was soon recognized that its
materialization requires large densities and sizable volumes of produced hadronic matter
at the first stages of the production process. As its mechanism is not well understood by
the present theory, the problem is faced with substantial uncertainties [2-9]. This situation
stimulated investigations of some simple models of the first stages of particle production
with the hope of obtaining at least a hint on the behavior of hadronic matter at these
early times. One class of such models, which dttracted some attention recently, were the
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generalizations of Schwinger’s one-dimensional electrodynamics [10~14]. These models
assume that after a high-energy collision the two receeding colored hadrons span in the
space between them a quasi-uniform chromoelectric ficld & [15, 16). Quarks, antiquarks
and gluons are to be produced by tunneling from vacuum under the influence of this
chromoelectric field [17, 18). The value of & determines the main characteristics of the
production process.

In the present paper we continue investigations of the hypothesis that, in collisions
of high-energy heavy ions, chromoelectric fields & much stronger than those in elementary
(e.g. ee~ — hadrons) collisions may be created [10, 11, 12]. In the previous work on this
problem a stochastic description was attempted [10, 12]. Here we employ the Heinz-Vlasoy
transport equations [3] which we have already used for later stages of plasma evolution
[19, 20]. By introducing a source term responsible for qq generation [13] we obtain a possi-
bility of describing of the very beginning of production process and of the collective mo-
tions at these ‘early times.

The model we are going to discuss was described in detail in Ref. [12]: The two opposite
color charges receed from each other with velocity of light and span a chromoelectric
field between them. This field fills a colored flux tube of radius r taken to be the same as
the radius of the clementary color tube spanned between quark and antiquark (for
example in ete~ — qq). Therefore, the predictions of the model can be given in terms
of two parameters: the radius of the tube and the size of the color charges which span
the field. We expect the tube radius, 7, to be some universal parameter of the order of 1 fm
(to be calculated from QCD, eventually). On the other hand the color charges can be,
to some extent, controlled in experiments: collisions of heavier nuclei are likely to create
larger color charges [10-14]. We hope that our calculations shall turn out to be a relevant

“contribution in constructing a viable model of particle production in high energy nuclear
collisions.

In Section 2 we construct transport equations in the presence of a source of gq pairs.
These equations are solved analytically in Section 3. The Vlasov equations for the self-
~consistent field and their solutions are described in Section 4. The numerical results
are discussed in Szction 5. Section 6 contains conclusions and an outlook. In Appendix A
relations between several parameters relevant to production of qq pairs in a color tube
are derived. The algorithm for solving the field equations is spelled out in Appendix B.
Finally, Appendix C contains formulae for the momentum and energy densities in terms
of the quark di.tribution functions.

2. Transport equations for the qq plasma in the presence of a source of qq pairs

In this Section we show how to incorporate production of qq pairs into the Heinz
version [3] of the qq plasma. To this end let us first write the Heinz equations in the matrix
form

- — A, ..
P0G = F ép S{F uy» G} —iAp"[A,, G]. .1
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Here G, F,, and A4, are 3x3 matrices in color space denoting, respectively, the quark
(antiquark) density, the color field strength and the color potential. 4 is the color coupling
constant. The upper sign refers to quarks and the lower one to antiquarks. The left-hand
side of (2.1) represents the rate of change of the quark (antiquark) phase space density
per unit time caused by the action of the colored field given by the right-hand side of the
equation. When production of quarks (antiquarks) takes place one must add to the right-
-hand side of (2.1) the rate of change of the phase space density due to this production.
The formula for the production rate of qq pairs (integrated over longitudinal momenta)
in the field & reads [11, 12, 17] (see Appendix A for details)

A o Em?
rd’p, = ] Z lIn(1—e ~4)|d’p,

flavors

=0, if A<O0. (2.2)
Here
A =118|-0, (2.3)

with o being the (3 3) string tension and m? = m?+p? where m is the quark mass.
For generalization of Eq. (2.1) we need the production rate in the phase space element

d
dP = d*pé(p*—m?) = 7‘3 &p,, 2.4)

where w and v are the boost invariant variables introduced in [19]:

w = p“t—EZ, (2.5)
v = W, 2.6)

with
u=t"-z% vN))

Thus we have to guess the longitudinal momentum distribution of the produced quarks
and antiquarks. Following the result of WKB formula for tunneling [17, 18] we assume
that, on the plane z = 0, they are produced at rest [13]. It follows then — from boost
invariance — that

A -l
rdP = s Z IIn(l—e 4 )206(w)dP. 2.8
7
flavor
The next problem we face is to generalize (2.8) to the three different colors. We observe

that, since the qq pairs tunnel independently from vacuum, it seems natural to assume
that the quarks and the antiquarks are of opposite colors. Consequently, the production
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rate contributes only to the diagonal terms of Eq. (2.1) and we obtain

7"8,G = ; Y"(F s G} —iAp"[A,, G]+20R5(w), 2.9)

where R is the diagonal matrix whose elements R, are given by

A xnu
-_-4—‘3_5_ In(1—e” 4), R,=0 for A,<0, (2.10)
T
fiavor

WIth Ai 3 )-l‘ ‘I—-O‘
In the abelian approximation the matrices G and F,, can be taken diagonal and,
using boost invariance {20], (2.9) can be reduced to

LA
GF ;86 = Ro(w), i=1,23, @.11)

where G, are the diagonal elements of the density matrix and no summation of repeated
indices is implied. The dot denotes partial differentiation with respect to u# and the prime
with respect to w.

In the next Section we derive the general solution of Eq. (2.11).

3. The general solution of the transport equation
By introducing ‘the abbreviation

A s
Z&g = k(, (3.1)

Eqs (2.11) can be written in the form
G FhG; = RS(w), (3-2)

where R, is given by (2.10) with 4; = 2|k;]~o.
It can be verified that the general solution of (3.2) is

Gi(u, w, m%) = H(w+h{u), m>)FF(wth{u), m>)o (l;: ’ ) (3.3)
1

where H, is an arbitrary function (to be fixed by the initial conditions) and

F(+h(w)) = Ry(h(w) (b))~ (€20

This solution is valid at all points where A(x) # 0.

As is seen from Eq. (3.3) the quark density is given in terms of the function A(u),
related by (3.1) to the field strength. In accordance with Vlasov’s selfconsistency require-
ment A(u) must be obtained by solving the ficld equatinos. At this step it is treated as
a given function.
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Let us implement now the initial conditions. Assuming that the collision takes place
at u = 0, we have G0, w, m3) = 0. h(0) is determined by the strength of the initial color
field. Let us assume that A(0) > 0, A(0) = 0. Then, Eq. (3.3) gives for the quarks (we
omit the index i)

G(0, w, m}) = 0 = H(w, m})~F(w, m})6(w). (3-5)
Hence H(w, m?) = F®(w, m3)8(w) and we obtain
G(u, w, m}) = FO(w+h(u), m}) [6(w+h(u))—O(w)]. (3.6)
Similarly, we get for the antiquarks
Gy, w, m3) = FO(w—h(u), m2) [00w)y—0(w—h(w))]. (36"

Solutions (3.6) and (3.6’) are valid as long as A(x) > 0. In this region also A(x) > 0
and we obtain the situations shown schematically in Fig. 1. One notices the symmetry
between the quark and the antiquark distributions [19]:

2 A 2
G(u, w, m)) = G(u, —w, mj): 3.7
o) odu Cuy
w
-2 0
Fll\ uEt
w
-2 o ? N
- uku<uy
FM
w
0 2 !
u=u,
Flo)
F
0 7 P "

Fig. 1. Evolution of the quar_lg distribution G with increasing time, for X = 5 and the tube radius r = 0.7 fm.
The antiquark distribution G is a mirror reflection of G with respect to w = 0. One sees the oscillations
of G and an increase of its complexity with time
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To obtain the solution beyond the point u, where h(#;) = 0, we have to repeat the
procedure of matching the solutions at the points u,, u, ... % ... which are determined
by vanishing of the field strength A() = O (we anticipate the fact that A(u) is an oscillating
function of u). Thus, for the sector u; < u < u, we have (for the quarks, we also skip
m? depéndence)

G(uz, W) = FO(w+h(u,)) [6(w+h(u))—6(w)]
= H(w-+h(u))—FO(w+h(u;))6(—w), (3.8)

where we have assumed that foru, < u < u, h(u) < 0. Here F® denotes the function cal- -
culated from (3.3) for u > u, which is, in general, different from F®® calculated for u < u,
because the relation between h(u) and h(u) is different in different sectors. We obtain now

Hw+h(u,)) = FOw+h(u,)) [0(w+h(u))—0w) ]+ FO>w+h(u,)0(-w), (3.9)
which, substituted into (3.3) with w — w-+ha(u)—h(u) gives
G(u, w) = FO(w+h(u)) [0w+h(u))—0(w+h(u) — h(u))]
+ FO(w 4 h(u)) [6(—w—h(u) +h(u,))—0(—w)]. (3.10)

Continuing this piecemeal construction to the next sector u, < u < u; one obtains for
the quark distribution function

G(u, w) = FO(w+ h(u)) [0(w+ h(u)) —0(w + k(1) — h(u,))]
+FO(w+ h(u)) [0(—w—h(u)+ h(u,))—0(—w—h(u) + h(u,))]
+ FP(w 4 h(u)) [0(w+ h(u) — h(u,)) — 0(w)], (G.11)

and so on — to the following sectors. One can convince oneself that (3.7) is generally valid,
hence one needs to construct only the quark distribution functions. Fig. 1 shows the evolu-
tion of [ d2p,G(u, w, m?) with increasine u for the first two sectors.

4. The solution of the field equation

The field equations for the diagonal case and in absence of particle production were
written down explicitly in Ref. [20]. Here wa have to generalize them to include the tunneling
term (2.8). We shall consider the special case when only one chromoelectric field is present:
In the notation of Ref. [20] we take p; = 0 and ps # O which means that only the part
of the quark-field interaction proportional to the generator % Ag is active. We set

| A
h=hy=—2h = —2h, = — —

\/3 VYs.
We ihave now the quarks of all three colors present, since they all couple to yg, however
only two distributions are different because G; = G,. Using (4.1) and Eq. (2.16) of Ref. [20]

@.1)
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the field equation takes the form
uh(u) = 15 A* [ dPw{G3(u, w)— G (u, w)—G;(u, )+ G(u, w)}

3

22 Ju
R

12h

i=1

=3 mx,fdP w{G3(u, w)—G,(u, w)} — %gjdzpﬂh Z R, 42)

i=1

3

where the last term represents a change of the field due to particle production (an analogon
of the displacement current in electrodynamics). Its derivation is outlined in Appendix A.
In the second part of Eq. (4.2) we have used the symmetry relation (3.7) explicitly. The

2
strong coupling constant «, = g Since Gy(u, w) are expressed in terms of A(u) by the
T

Fig. 2. The potential 4 vs. v = 4/t for K = 1, 2, 5 and r = 0.7 fm. The frequency of oscillations increases
with K. Note that production of qq pairs is determined by the time derivative of 4, see Fig. 3
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formulae of the previous Section, (4.2) represents a second order integro-differential

equation for A(u).
Using Egs (2.10), (3.3) and (3.4) one can rewrite Eq. (4.2) in the form

u 3
1A & ~ ~ ~. “sC(%) \/ E
uh(u) = — a’-ifdu[ws(u, u)— o (u, u)]— ol AWy  (4.3)
0 i=1
The functions ¢ (u, u) are explicitly given in Appendix B. They are expressed in terms
of k) for all u < u. Consequently, Eq. (4.3) can be solved by iteration starting from
u=20.
The solutions of (4.3) are determined, essentially, by two parameters: the value of
the field strength at u = 0, and the coupling constant «, The initial value of the field
strength can be expressed in terms of the string tension (c.f. (A. 15)). We have

k(0) = Ko,

with K = 1 for the elementary 33 staring. For ¢ we take the standard value 1 GeV/fm
= 5fm-2. We consider only 2 quark flavors (N, = 2) and neglect the quark masses.

In Fig. 2 we plot the function h(x) (obtained from (4.4)) versus t = /u for a few
values of K and «,. One sees clearly the oscillating character of the solution. Hence we can
say that introduction of qq production by tunneling does not remove the oscillations
of plasma found in Refs [19, 20].

5. Results

Once the solution k(x) is obtained from Eq. (4.2), other quantities of physical interest
can be calculated. We have performed several such calculations, The results are described
below.

In Fig. 3 the chromoelectric field strength & = &, is plotted versus T = /u. One
sees again the oscillating character of the process. The frequency of oscillations increases
rapidly with the initial field strength (i.e. with the parameter K). The amplitude decreases
with time. Both features are qualitatively consistent with the results obtained in Refs
[18] and [19].

The most important characteristics of the process is the energy density per unit
volume, since it determines the conditions for a phase transition, hence the possibility
of formation of qq plasma. dE/dV at z = 0 is plotted in Fig. 4 versus time ¢ = 7 = /u.
One sees that the energy transferred into qq pairs increases rapidly with increasing K,
as expected: from 150 MeV/fm? for elementary tube (K = 1) to more than 4 GeV/fm?
for K = 5. The increase is thus much faster than the one one would get from a simple
addition of K elementary tubes. One sees also that the time at which the maximum of the
qq energy density is reached (which we identify with the formation time of qq pairs) shortens
considerably with increasing K: for K = 5 we obtain a rather short formation time of
about 0.3 fm. This confirms the speculations formulated in Refs. [11, 12] and [4]. The
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oscillating character of the process is also evident: the energy is transferred from qq pairs
into the ficld and back. For comparison we show also in Fig. 4 the total energy density,
dEror/dV, which is the sum of the energy densities of the qq pairs and of the chromoelectric
field. For small times dE;or/dV is varying slowly (it would be constant in absence of qq
pairs) and then decreases approximately as 1/t due to the longitudinal expansion.

It is important to realize that in our model even at z = 0 both longitudinal and trans-
verse momenta of quarks contribute to the qq energy density. This is to be contrasted
with the standard approach [2] where the point z = 0 corresponds to y = 0 and thus
only transverse momentum is relevant. Consequently, if our approach is the correct one,
i.e. if quarks and antiquarks are indeed accelerated by the chromoelectric field in the tube,
the estimates of the energy density based on the extrapolation from measurements at
y = 0 [6] are to be reconsidered.

In Fig. 5 the average longitudinal momentum of quarks of color 3 at z = 0 s plotted
versus time. It reaches the values of the order of 1 GeV, significantly greater than the average

E=E, [GeV/tm)

-14

4 .,
Fig. 3. The field strength & =»7hvs. 7 = +/u for K= 1,2, 5and r = 0.7 fm. The frequency of oscilla-

tions increases with the initial field strength given by K. The amplitudes decrease with time. The horizontal
lines denote the value of the field below which there is no qq tunneling
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transverse momentum shown in Fig. 6. This stresses again the importance of the longi-
tudinal motion.

As seen from Fig. 6, the transverse momentum of the produced quarks and anti-
quarks increases with increasing value of the chromoelectric field. This confirms the results
of Refs [11-14]. The value of (p, ) is fairly low for elementary tube, suggesting that hadroni-
zation of quarks and antiquarks must play a significant role [14] and thus the observed
value of the average transverse momentum, contrary to the earlier expectations [11, 12},
gives only qualitative, indirect information on transverse momenta of qq pairs at the
formation time.

r=0.7fm

01 02 7 04 06 0810 15 2 @ 3 4

- dE,
Fig. 4. The energy density of the qq pairsat z = 0 (solid lines, ﬁ) and the sum of the energy densities

dE
T;T)for K=1,2,5 and r = 0.7 fm.

of the qq pairs and of the chromoelectric field (dashed lines,

dEqg
dv

increases dramatically, while the formation time (given by the position of the first maximum

of 4Eqq ) decreases with increasing K. The oscillations are clearly visible. One sees also the energy being

dv
transferred from the qq pairs into the field and back
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In Fig. 7 the density of quarks and antiquarks per unit of rapidity at z = 0 is plotted
versus time. One sees a very rapid increase of dN/dy with increasing K, much faster than one
would obtain by addition of the contributions of K elementary tubes.

All results shown in Figs 1-7 were obtained for r = 0.7 fm. We have also investigated
their sensitivity to the value of r: We found no qualitative changes in the behavior of the
system. Decreasing r slows down the whole process somewhat, that is to say, the frequency
of oscillations goes down and the formation time increases. The maximal energy density

<{py V3 (GeV]
r= 0.7¢m

059

/ 1m)

] z 3 4

-051 K=2

K=1

Fig. 5. The average longitudinal momentum of quarks of color 3 at z = 0 vs. time. It reaches ~ 1 GeV,
which is considerably more than the average transverse momentum (see Fig. 6)

<Py GeV
1.04

r=07 fm

i K=5
--\ ng
———

K=1

. TLfm]
o 1 2 3 4

Fig. 6. The average transverse momentum of quarks and antiquarks, It increases with increasing K
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dN/dy

100 r=.7¢
K=5
K=2

104
Tt
o1 Y ——— - T T ———
02 04 1

Fig. 7. Density of quarks (antiquarks) at z = O per unit of rapidity vs. time. One sees a rapid increase

o}

6

of dNjdy with K
~
N,
N\,
AN dE
Ke5 v [Gev/int =07 fm-

Fig. 8. The same as in Fig. 4 but with qq interaction term set to zero (i.e. Eq. (5.1) is employed)
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increases, while the density of particles per unit of rapidity is fairly insensitive to varia-
tions of r.

Finally, we have studied the effect of the quark-antiquark interactions [18]. To this
end we repeated the calculations without the qq interaction term, i.e. taking

A; = 3 A&, (5.1)

instead of (2.10). This removes the treshold for particle production: The particle densities
are larger and, consequently, the qq oscillations are strongly damped by the displacement
current. This is illustrated in Figs 8 and 9 where the energy and particle densities, respecti-
vely, are shown. Comparing Figs 8, 9 with Figs 4,7 one sees that, as expected from the
relative magnitudes of the qq interaction and the initial field strength given by K, the
removal of the qq interaction influences little the rate of the process for large K, while
for small KX it results in considerable acceleration of the evolution of the system.

Let us finish this Section with a brief comment on the recent work of Kajantie and
Matsui [13]. The main difference between the two approaches is that we included the inter-
action of quarks and antiquarks with the field while they did not. The field introduced
selfconsistently leads to oscillations of the system which do not exist in Ref. [13]. On the
other hand in Ref. [13] the relaxation effects are introduced through a relaxation time
parameter. This was not done in our paper because inclusion of the relaxation term makes
impossible an explicit solution of the Heinz equations. Thus the results of the two papers
escape ‘a direct comparison.

N

W0 04

r= 0.7 fm

o T=0fm]
T u T LIS e a4
[} [t 23 06 <8 52 2 a

Fig. 9. The same as in Fig. 7 but with the qq interaction term set to zero (i.e. Eq. (5.1) is employed)
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6. Conclusions and outlook

We have investigated production and subsequent motion of qq pairs in an uniform
chromoelectric field spanned between two opposite color charges receeding from each
other with velocity close to that of light. We hope that this picture can serve as a first step
towards constructing a realistic model of the first moments of particle production in high
energy collisions.

Our main result is the generalization of the boost-invariant Boltzmann-Vlasov equa-
tions by including a term responsible for qq tunneling from vacuum. In this way we obtain
a fairly complete description of the early stages of particle production depznding only
on two parameters: the initial field strength and the radius of the color tube (or — equi-
valently — the value of the strong coupling constant). This is a substantial improvement
over our earlier calculations, where a number of free parameters (which were difficult
to control) had to be introduced. Consequently, the model gives rather well-defined pre-
dictions for many characteristics of the production process which can be tested in future
experiments with heavy ion beams, where appearance of strong chromoelectric fields
is expected [10-13].

As described in Section 5, we have calculated several relevant quantities. Our main
conclusions are as follows.

(7)) The oscillating character of the process, first discovered in [19] is not destroyed
by the presence of the qq production term. The quarks and antiquarks are accelerated
and subsequently de-accelerated in the chromoelectic field. The frequency of the oscillations
increases with increasing value of the initial chromoelectric field.

(i) The energy density of qq pairs increases rapidly after the collision, as a conse-
quence of both copious production and acceleration of quarks and antiquarks in the field.
It reaches maximum {equal to about 1/4 of the initial energy density of the field) and
falls subsequently as a result of the longitudinal expansion. The time f, at which the
maximum of qq energy density is reached, which we identify with formation time, turns
out to be well below 0.5 fm for strong initial fields. The value of the energy density at
t = 1, varies strongly with increasing of the initial field and reaches values exceeding
4 GeV/fm3 for strong fields, suggesting a possibility of plasma formation. The effect is
significantly stronger than simple incoherent addition of elementary processes.

(iii) The longitudinal motion of quarks and antiquarks gives important contribution
to the energy density of the qq pairs, even at z = 0. This feature is very different from the
standard picture [2] where it is assumed that particles at z = 0 stay at rest (y = 0) in the
c.m. system of the collision. The difference is caused by the action of the chromoelectric
field: although the quarks and antiquarks are indeed produced at rest in the co-moving
frame, they are subsequently accelerated by the field and the simple relation between
z and y [2] is lost. Consequently, the observed energy density of particles at y = 0 does
pot necessarily reflect the actual energy density of qq pairs at z = 0. This may have conse-
quences for phenomenological estimates of the possibilities of formation of qq plasma [6].

We would like to finish with a few remarks on limitations of our present calculation
and on possible future improvements. First we note that the following two important
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phenomena are missing at the present stage: (i) the model ignores the possibility of produc-
tion of gluons and (i) it ignores the collisions between quarks and antiquarks and is thus
unable to account for thermalization. While inclusion of gluons seems to be just a technical
complication which we hope to overcome in the future, the effects of qq collisions represent
a rather difficult problem which is, moreover, crucial for relevance of our present work.
Indeed, we may expect our calculations to be valid only for times shorter than the time
try, needed for thermalization of the system. Since at present there exist no reliable estimate
of tr,, one cannot determine its relation to the formation time #,, characteristic for the
process we describe'in the present paper. This is a very interesting and important problem
for the future.

Another point which is not entirely clear is the physical reality of the oscillations
between the qq pairs and the field. We feel that whereas it is hard to doubt that the initial
chromoelectric field can create and accelerate quarks and antiquarks, it is not obvious
that the transfer of energy from qq pairs back into the color field can be correctly described
in terms of interaction. with a classical field. On the contrary, it scems likely that the
deceleration of quarks may be dominated by the gluon bremsstrahlung. This is also an
interesting problem which can be undertaken, however, only after gluons are introduced
into the picture.

Let us end up with an obvious remark that it would be very useful to estimate produc-
tion of photons and lepton pairs from the oscillating plasma, using the solutions presented
in the present paper. In view of the small number of free parameters, such calculation
should be more reliable than the existing estimates [19, 20, 21] which, nevertheless, already
indicated that preequilibrium plasma may give non-negligible signals of photons and
lepton pairs.

We thank K. Kajantie and T. Matsui for sending us their unpublished results. The
interesting discussions with J. P. Blaizot, P. Danielewicz and J. Knoll are gratefully acknowl-
edged.

APPENDIX A

Production of qq pairs in a uniform chromoelectric field

In this Appendix we fix the numerical coefficients in various relations between fields,
coupling constants, densities, string tensions etc. We start with normalizations of the
constant chromoelectric fields from which tunneling of qq pairs takes place.

The interaction energy of quarks with the field is (see e.g. Ref. [22])

W = "}Eﬂ’uQ?j’I’jA;- (A.1)
Let us take a uniform, constant chromoelectric field
A3 = —E°%, A°=0. (A.2)
The interaction energy becomes
W = AzE°p; Qip;. (A.3)
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Weknow that E® field is coupled to all three colored quarks and that we can have a diagonal
form of G when E? and E® are different from zero (E* couples to just two colors) [20]. We
set E3 = 0 for the sake of simplicity but our calculations can' be easily generalized to the
case E3 # 0, E® # 0.

We take
5;1'!’1
Y= 05292
5;3'/’3
r 1 j
- 0 0
2 \/ 3
N 1
0 0 !
| V3
Thus

1 1 1
W = izE® — - —_
rz (8’112\/3 8222\/3 833 \/3)
=Az(811 3 €1+ 8225 62+ 833 1 €3), (A.5)

where g,; = ;" y, are the quark densities (hence the zeroth components of the current)
and

1 2
& = 20%E®; hence &, =&, =-—-E® and &; = —— E& (A.6)

/3 V3
Eq. (A. 5) implies that the energy balance in the tunneling process of a qq pair of color
i is the same as the one used in Ref. [11]:

2P+ P+ mP—iz8,+2z0 = 0, (A7)

(for the definition of the elementary string tension ¢ see below). Consequently, aiso the
rate of production of pairs of color i is given by the formula of Ref. [12]

dg 2 A mma

i

=rd'p = E In(1—e ~40)|d°p,, (A.8)
4n
flavors
with A; = 3 4|8;|—o.
Now, let us relate the field E® to the color charges of quarks and antiquarks at the
ends of the color tube. We start from the field equations

aﬂF:v = }J’%Qa'ﬁ = a‘jv33Q§3: (A9)
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where we assume that only the quarks (antiquarks) of a given color (anticolor) 3(5) span
the field. From (A.9) we get the Gauss theorem for a color tube

E®A = iKQ3;, (A.10)

with K equal to the number of quarks (antiquarks) (of color 3) at the end, and A being
the area of the transverse cross section of the tube. In terms of &5 we get the relation

&3 = 24K(03,)* %—. (A.11)

It is also useful to calculate the string tension. From the definition of the string tension
and Egs (A. 10) we get

gZ
ok = (B =1 54 =2 &34 (A.12)
(Q33)
Thus from (A. 11) we obtain
o'x = ]1_' }'K$3' (A.13)

Let us also note that (A. 11) and (A. 12) imply a relation between the strong coupling
constant, the radius of the tube and the elementary string tension o(K = 1)

A? 24% 20t
=1 (@) = 0% = T (A1)
Finally we observe that from (A. 13) and (A. 11) we get

A& (Q )? _
—4-’- =12 : = Ko. (A.15)

As the last point we outline briefly the derivation of the field equation (4.2). The energy
and momentum conservation condition implies

i}
anT?i(:ld = %’ 5( ) = —a T particles » (A'16)
where
paruc!es s dP P‘l 14 z (GI+G;) (A'17)

Using transport equations (2.9) one can show that

3
a parucles = '"A'ng];sc'{'z j dsz.Pv 'Zl Ri, (A18)
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where
ju = J dPp,(g°—3°). (A.19)
‘Substituting (A. 18) and (A. 19) into (A. 16) we obtain, after some algebra, Eq. (4.2)

APPENDIX B
Algorithm for solving the field equations (4.2)

Using Eqgs (2.4), (2.10), (3.3) and (3.4), and introducing a new integration variable #;
through the equation

— Ah; = hy(u;)— hy(u), (B.1)
the integrals in (4.2) can be written as follows
nmJ_z
N; In(l-e4
I(u) = f dii b, f d*p, “(:e__—'_) (B2)
an? J tJdhy +mtu
where A; = A[h(u;)]. The integral over the transverse momentum we express as
In(l—e A ACB;
sz j/l(Ah € ¢ ) . i (ﬁ) ~." (B.3)
) +miu ud;
(h"md \/ an’+
where, neglecting quark masses,
o
' In(l—e™)
Ch) = e (B.4)
I
A
and B, = Ah,-/ () + 224
Finally, we obtain
Nef o~ = ’ ud
Iw) = - ;;‘sjd“rdhiAfC(ﬁo / (dh)y + —, (B.5)
0

and the field equations become

uh(u) = — é’ifl:dgsljhs/ﬁc(ﬁa) / \/ (4h3)*+ E? -@- 1)]- (B.6)
1]

The integrals on the r.h.s. of (B. 6) can be performed numerically step by step if the solu-
tion h(u) is known for all u, <u..
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APPENDIX C
Some average densities in terms of the quark distribution functions

To calculate the quark density per unit volume of space we start from the general
formula for the number of quarks and antiquarks in the phase-space volume dVdP {19]

dN = | dPde,p"{G(x, p)+G(x, p)}. (C.)
avdp
Observing that (note: t2—z? = inv. hence zdz = rdt)

da,p* = d*s(dzE—dtp) = dzsdz—‘t’- = dV-’:-, (C2)
where s is the transverse distance, we have for the density of quarks and antiquarks
dN _ dN
dv ~ d’sdz

1
= f dwd’p,6(x, p), (C3)

where we have also employed Eq. (2.4).
Similarly, the average value of any power of the transverse momentum ean be expressed
as

Py = | dPdo,p'piG(x,p)/ | dPdo,p"G(x, p)
davdp dvdp

= [ dwd’p,pTG(x, p)/ | dwd’p,G(x, p)- (C4)

Using Eqgs (2.10), (3.3) and (3.4) the interaction over d?p, in (C.3) and (C. 4) can be explic-
itly performed giving

dN N, fC(2) /12

v - e | (€5
m m
- —C(2+ *?)I(I-F '5—) , A2+Em ; A2 e
=t S fw y /j e €H)

where A is given by Eq. (2.10), {(x) is the Riemann { function, N; is the number of flavors,
and we neglected the quark masses. The integral over w is to be performed numerically.
More details about evaluating integrals of this kind are given in Appendix B.

The quark density per unit space volume (C.5) i3 an interesting quantity for descrip-
tion of plasma, but it is not directly observable. It is therefore interesting to find its relation
to the density of quarks per unit of rapidity which is easier to estimate experimentally
(through measurements of the particle density per unit of rapldxty) To this end we introduce
a new set of boost mvanant variables (see. e.g. [13]). First we introduce

t+z E+ }/ I

n=3ln— and y=73In

C.7
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We have then
dz dw dpy
—=dn, — =-——=dy, )
” no o= y (C8)
and
w = ~tm, sinh(y—y), v = tm cosh(n—y). (C9)

Using (C.7)-(C.9) Eq. (C.1) gives
dN = | d*sdnd*p,dyvG. (C.10)

Now, boost invariance implies that G must be a function of the difference n—y, so we
find that

dN  dN _, dN
d’sdy ~ dsdn T dPsdz

(C.11)

Let us now proceed to the energy density. Using (C.1) we find for the energy contained
in a phase-space volume dVdP

dE = [ dPde,p"E{G(x, p)+G(x, p)}, (C.12)

avdp

thus, employing (C.12), we obtain the energy density per unit volume of space:

dE 1 1
—d—l—/- = —t- dPEv{G(x, p)+G(x, p)} “‘Efdwdzpl

x 2 (G(x, p)+G(x, p)). (C.13)

Using the symmetry relation (3.7) we have

9E _ 1 [ vip06(x, p). (C.14)
dv u

From Eqs (2.10), (3.3) and (3.4) we obtain finally

dE N,

; C.15
dV 41r. u ( )

with 2 = (w-b).z/|:(w-h)2+ —/gl-] and B(f) = J dx\/ﬁ2+(l—ﬂz)xln (1—e™™). This

formula was used in numerical estimates of dE/dV given in Section 5.
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To calculate the energy density, per unit of rapidity we again employ (C.12). Taking
into account (C.7)-(C.9) we have

dE dE
Bsdn j dyd*p,om G(x, y—n)cosh y = t= (C.16)
and
dE dN
Pody = fdndzp om, G(x, y—n) cosh y = {m,) coshy Tody’ (C.17)

Finally, let us give the formula for the longitudinal momentum density of quarks

d
F 2 f d*PopyG(x, p) = — {oosh n T +sinh T} (C18)

with T* = [ d*Pp*p’G which at z = 0, gives

d N{(2)
-d%l =5 J dwd’pwG(x, p) = goay | dwlw —h)— (C.19)

The integral is taken as indicated in Appendi;( B.

Using (C.5) we obtain for the average value of the longitudinal momentum of quarks
atz=0

= 1 d -h d 4 C.20
@ =gt [ 5 =1 o [an . (c:20

which was used for numerical estimates.

Note added in proof: The problem of qq pair creation and gluon pair creation in a constant color
field of arbitrary direction was discussed by Gyulassy and Iwasaki (Phys. Lett. 165B, 157 (1985).
We thank U. Heinz for calling our attention to this paper which has not been accesible to us so
far (see also: U. Heinz, Color response and color transport. in quark-gluon plasma. Invited talk
presented at the second International Workshop “Local Equlibrium 1n Strong Interaction Physics”,
Santa Fe, New Mexico, April 9-12, 1986).
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