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POSITION-DEPENDENT FRICTION IN QUANTUM MECHANICS
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The quantum description of motion of a particle subjected to position-dependent
frictional forces is presented. The approximation applied to solve the problem is especially
good in the field of heavy-ion physics. The two cases are taken into account: a motion without
external forces and a motion in the harmonic oscillator potential. As an example, a frictional
barrier penetration is considered.

PACS numbers: 03.65.-w, 25.70.-z

1. Introduction

A study of frictional phenomena in quantum mechanics has its roots in investigation
of Langevin systems. A description of a motion of a Brownian particle requires the intreduc-
tion of a frictional force, the term quite familiar in the field of the classical dynamics-but
somewhat embarrassing in quantum mechanics. Since the problem of a quantum descrip-
tion of a system subjected to dissipative as well as external and stochastic forces has no
unambiguous solution, a number of methods developed in the last four decades is quite
handsome (for review see {1-3]). In the Langevin equation describing a Brownian particle
motion, a friction force is proportional, with a constant coefficient, to the velocity and in
most of these methods no other possibilities have been taken into account. As an exception,
Remaud and Hernandez [4] consider a time-dependent friction coefficient.

In many physical problems, concepts concerning a constant friction coefficient do not
suffice. In particular, friction is the term widely used in descriptions (mainly in the classical
manner) of heavy-ion collisions. Frictional forces depend in this case on position and their
range is comparable with the nuclear radius. Hahn and Hasse [5] investigated quantum-
-mechanically heavy-ion collisions using the realistic frictional forces (with the position-
-dependent strength) but that work was purely numerical and required an immense computa-
tiopal effort.

The aim of this paper is to show what is to be expected if one allows a friction coefficient
to vary with position. All considerations base on an approximation proved to be correct
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for heavy-ion collision problems. General formulae for the wave packet time-evolution,
without external forces, on the basis of Kanai’s model are presented in Sect. 2. In Sect. 3
they are applied to the case of viscous barrier penetration. Sect. 4 is devoted to the investiga-
tion of the wave packet motion in the field of the damped harmonic oscillator from Kanai’s,
as well as the Kostin model’s point of view.

2. Free particle in a viscous medium

Let us assume that the classical dissipative force acting on a particle moving in an
arbitrary external field V(x) is proportional to the velocity of this particle: F = —mf{(f)v,
where m is the constant particle mass. f(¢) can be an arbitrary function of time. We restrict
our considerations to one dimension. Following Kanai [6] (also [7, 8]), quantization of this
system leads to the Schrodinger equation
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where @(t) is given by
(1) = exp (— [ f(d). )
The wave packet solution for the force-free motion (V(x) = 0) with the initial condition
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where a is the initial width of the packet, ik, — initial momentum and 4 — the normaliza-
tion constant, is easy to obtain by the method of integral transformation. It has the form:
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Since the density distribution is in the form
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the centroid of the packet, moving like a classical particle, is given by

koh .
{xy = — (1) = ni(1). U]

m

In this way, we have solved the problem of a free particle moving in a viscous medium,
determined by a time-dependent friction coefficient f{#). However, our task is to deal with
position-dependent form-factors f(x). For this purpose we make the approximation

Jx) = fKx)). ®

Now, the friction coefficient is merely a function of time. The approximation (8) means
that the whole packet is subjected to the same value of frictional coefficient, determined
by the classical motion of the centroid of the packet.

It is not apparert that the approximation which seems to be in contradiction with the
spirit of quantum mechanics, is suitable for dealing with physical problems. It is possible
that in some cases it may appear to be too rough. However, at least for description of heavy-
-ion collision it is excellent and well founded. Hahn and Hasse [5] have made a numerical
analysis of heavy-ion collisions using a frictional form-factor in the approximation (8).
Results (quantum trajectories, deflection functions and energy loss) have been compared
with the more realistic case, in which the exact formula have been applied. An agreement
turned out to be very satisfactory.

Relations (2), (5), (7) and (8) imply that the function z(z) fulfils the equation

T+f(re()t = 0. )

By these means, our problem resolves itself to the solution of Eq. (9). In the next
paragraphs the exemplary solutions for typical physical problems are presented. It is easy
to realize that Eq. (9) is identical with the classical equation of motion of a damped free
particle. It is the immediate consequence of the Ehrenfest theorem.

Up to now, we discussed Kanai’s method only. In Sect. 4 a few remarks will be made
about the motion of a free particle from the Kostin model’s point of view.

3. Examples and discussion

In this paragraph we are dealing with the physically most interesting case of friction
confined to a finite region. At first, we take f(x) in the form:

fG) = v[0(x)—6(x—x0)], X0 >0, y = const, (10

where 0(x) is Heaviside’s function. In other words, friction is switched on at x = 0 and
switched off at x = x;. Our problem is to find such T that

f@0) = y[6())—6(t— T(xo))]. (1)
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From (2) gnd (5) we obtain

-~
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where the integration constants have been chosen to satisfy the initial conditions:
7(0) =0, 1(0)= 1. (13)

Since x4 = {x> (t = T) = n(T), it is easy to calculate T

1
T=’-‘—°-—1n<1— lx—") 14)
Ny n
and to obtain
o) = [1 - ’%‘12] ¢ +const (15)

for t > T.

The barrier penetration by the packet results in slowing down of the centroid motion
(in comparison to the friction-free case) and slower spreading of the width of the packet.
However, if friction reaches the critical value (yx, = 1), the packet never leaves the viscous
region in finite time. The packet eventually stops and ceases to spread [9]. When friction
approaches the critical value, the uncertainty principle is violated. This difficulty has been
already widely discussed [10-12].

Let us consider now a barrier in the form:

f(x) = ye™*. (16)
Solution of the equation

T+ye 7 = 0, an

with the initial conditions (13), on the positive half-axis is:

.
f = [r+—ln(1+ 1(e“‘""-1))]. (18)
ap—yL an \ o

For t>» 0:

T = (1— J—) t+const. (19)
an



661

Thus, for large time, the result is similar to (15). The final energy is

. h2k2 . hzkz 2

100 2m

where hk, stands for the average momentum at t = 0.

4. The damped harmonic oscillator

In the Kanai’s method, the Hamiltonian for the damped harmonic oscillator has

the form:
hz 2

m
H= — — = — @*xeY(0),
o 52 PO+ o T (21)

where Q is the classical frequency and ¢(t) is given by (2). We shall seek the centroid (x>
and the square width y of the distribution

l91* = 2r) ™12 exp [ —(x—<x))*/2¢]. (22)
Due to the approximation (8), from the Ehrenfest theorem we obtain:
(XY +Hf(Kx) (%) +Q%x) = 0, (23)

as an analogue to the Eq. (9). The moments of the packet can be calculated [13] from the
equation for the time-evolution of an arbitrary operator A:

dd 04 i

— = — + —[H, 4] 24
o= T4l (24)
The function x(f) is the second moment. Expression (24) leads to the equation (obtained
by Remaud and Hernandez [4] for the time-dependent friction):

a+f({xD)u+ Q% = '—nz—z- exp[—2 jf((x))dt]u_ 3, (25)
where
2
ue) = |5

Equations (23) and (25) determine the density (22) completely. However, in general,
it is not easy to solve Eq. (25) analytically. We shall do this for the case of rectangular
barrier (10). _

Eq. (23) for the barrier (10), with the initial conditions

Y (=0)=0
<& (t = 0) = po/m, 26)
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has the following solution

-
20 Gn o, £ <0,
mQ
x) = >
x5 T o iz g ot, 0<t<T, @7
mo '
LC, cos Qt+C,sinQt t>T.
where
w? = 0?2 —9y%/4
and
C Po —yT/2f : o . 7 . ‘ .
(=—e sin wT cos QT — — sin QT cos @T+ — sin 0T sin QT
meo Q 2Q
Po -9T/2 . . Y . (2
C,=—ce sin 0T sin QT — — sin oT cos QT 4+ — cos T cos QT ).
mo 2Q Q
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Xo = Po 12y T
mo

The function (x> (¢) and its first derivative are continuous for all #.

Eq. (25) has been solved by Remaud and Hernandez [4] for the constant friction
coefficient. In our case we have

1
i+ Q% = —3 u 3 1<0,t>T (28a)
m
. 2 L o -3
A+ya+Qu = —e u"7, 0<t<T. (28b)
m v

Assuming that for ¢+ < 0 we can restrict ourselves to a constant solution, we have:

1
Uu=—-——-—, t < 0. (29)
\/ mQ
Defining the new function W(t) by
1
u(t) = — W(t) exp (—7 1) (30)
Jm

one can transform (28b) to the form:

W+o’W = W3, (31)
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The general solution is:
W? = o '[(1+A4%+B%"? + 4 cos 2wt + B sin 2wt]. (32)

Constants 4 and B can be determined from the continuity conditions at ¢ = 0. Finally,
we have

u(t) = \/— \/1— Tzsm Quwt+0)exp(—37t), 0<t<T, (33)

8, = arctg(-— ga;) .

Thus, switching on the dissipative mechanism generates oscillations. They are damped
and the width of the packet tends to zero if friction persists.
In the third region (¢ > T), the solution is more complicated:

where

1 [Ai+Bi+1 B? 1z
u(t) = _[ i St sin (zm+ez)] , t>T, (34)
JmelL 2B, VA*+B?
“where
s 2QT
A= —A,sin20T— 2207 (42 B2y,
2B,
sin 2QT
B = A, cos 2QT — (42-B%+1),
1
Y Y .
A= - 2—603((0 cos (20T +0,)— o sin (2a1T+01)+52>,
ok v o
By = o 1- 5{25’“(2"’7"“”91) e

6, = arctg (4/B).

It must be emphasized that after leaving the frictional region by the packet, oscillations
can never die down, regardless of the size of this region and the strength of the frictional
force. The larger the vaiue of y7 the larger the amplitude of the final oscillations.

The question arises whether other models predict the similar phenomenon. In Hasse’s
method (e.g. [14, 13]), with the constant friction coefficient, oscillations are present but
they seem to behave unphysically, as it has been reported by Remaud and Hernandez [4].
We shall discuss now Kostin’s approach [15, 16].
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Kostin’s method takes friction into account by including an additional, nonlinear
term into the Hamiltonian:

h? §? i

h
Eyr +3 mQix* — ;f((x» (111 % - <ln %>) : (5)

H=—

The wave packet solution for the constant friction has been found by Kan and Griffin [16].
Kostin’s model has an important superiority over Kanai’s one because it gives the correct
uncertainty relation. Our problem of the barrier penetration appears to be very simple
in this formalism.

As above, we seek the density distribution (22). Eq. (23) with solution (27) is still
valid. The width of the packet can be obtained from

U+Q% = m™ "3, t<0,t>T,
i4yu4+ Q% = m™%u"3, 0<t<T. (36)
The constant solution
1
U= ——=
vmQ

is stable and fulfils both equations (36). Thus, the presence of the frictional force does not -

affect the shape of the packet at all, in contradiction to the Kanai’s model predictions.
Now, let us return for a moment to the case of a free motion, discussed in Sections

2 and 3. Kostin’s method bas the packet solution in which the width is given by the equation:

U4+ = m™2u"3, (37

Unfortunately, even for a constant friction coefficient Eq. (37) has no analytical solution.
Hasse [1] has shown numerically that u(f) behaves similarly to the width in Kanai’s method.
For small times both results are almost identical. Thus, if friction is limited to a small
region, Kanai’s and Kostin’s models are in full agre.ment.

5. Summary and conclusions

* We have discussed the behaviour of a particle subjected to a dissipative force, whose
strength depends on the position operator. The problem has been treated in an approximate
way: a position dependence has been transfered on a time dependence by taking the average
value of the position operator. The two cases have been considered: a free particle, without
external field, and a particle in a quadratic field.

The problem of a free motion is especially simple in Kanai’s approach. One second
order differential equation (9) determines the wave packet evolution completely. By means
of this equation the problem of frictional barrier penetration has been solved. As 2 result
of such a penetration, the packet travels and spreads similarly to the friction-free case
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but with the diminished speed. Qualitatively, this outcome does not depend on the particular

shape and hight of the barrier.
It has been argued that rasults of Kostin’s method are very similar though more difficult

to obtain,

A study of the case of the harmonic oscillator requires an investigation of the system
(23) and (25). For the rectangular barrier (10) the Kostin model gives a very simple picture.
The packet does not change its shape during the pass through the barrier. The width remains
fixed everywhere. Only the classical motion of the centroid of the packet is affected by dissi-
pative forces. Results of Kanai’s model are entirely different. It predicts that, as the final
outcome, the width of the packet will oscillate with a constant frequency and an amplitude
depends on the frictional barrier parameters. The fact that this amplitude (as well as an
equilibrium position) grows exponentially with y7, is especially strange. In Hasse’s model,
in turn, oscillations have a different character: they are not damped in the frictional region.
This comparison reminds us that the quantum theory of dissipative phenomena is far
from being complete,

REFERENCES

[1]1 R. W. Hasse, J. Math. Phys. 16, 2005 (1975).

{2] J. Messer, Acta Phys. Austriaca 50, 75 (1979).

{31 H. Dekker, Phys. Rep 80, 1 (1981).

[4] B. Remaud, E. S. Hernandez, J. Phys. Al13, 2013 (1980).
{51 X. Hahn, R. W. Hasse, Nucl. Phys. A417, 351 (1984).

[6] E. Kanai, Progr. Theor. Phys. 3, 440 (1948).

{7} P. Cardirola, Nuove Cimento 18, 393 (1941).

{8] H. H. Denman, Am. J. Phys. 34, 1147 (1966).

[91 L. H. Buch, H. H. Denman, 4Am. J. Phys. 42, 304 (1974).
{10] W. E. Brittin, Phys. Rev. 77, 396 (1950).

[11] I. R. Senitzky, Phys. Rev. 119, 670 (1960).

[12] J. Messer, Lett. Math. Phys. 2, 281 (1978).

{13] R. W. Hasse, J. Phys. All, 1245 (1978).

{14] K. Albrecht, Phys. Lett. B56, 127 (1975).

[15] M. D. Kostin, J. Chem. Phys. 57, 3589 (1972).

[16] K. K. Kan, J. J. Griffin, Phys. Lett. B50, 241 (1974).



