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The decay of a baryon-rich quark plasma is considered on three levels, i.e. a) hydro--
dynamic expansion with either sudden or delayed phase transition and viscosity; b) bubble
creation and growth; and ¢) redistribution of quarks into hadrons. The calculations indicate
that slow deflagration of bubbles may be a physical process leading to rehadronisation,
while detonation and bulk transition seem to require both supercooling in plasma state and
overheating of the hadronic matter. Some estimates relying on classical nucleation theory
are presented. The redistribution model introduces statistical weights according to different
numbers of possible final states. Large yields of kaons and lambdas are predicted.

PACS numbers: 14.80.Dq, 47.75.+f

1. Introduction

The existence of a deconfinement phase transition (at high density and/or tempera-
ture) is more or less generally accepted; the resilted deconfinement state is called quark-
-gluon plasma [1]. Such a state may be expected in heavy ion collisions [2], and experiments
are being planned. Of course, the plasma state should be identified in measurcments. One:
can expect that direct photons and leptons can be emitted during the whole lifetime of the
plasma, while other particle yields and rapidity distributions are connected rather with
the decay of the plasma.

The plasma, if produced in a relativistic heavy ion collision, recombines into hadrons
during the hydrodynamic expansion. In the majority of papers dealing with hadronisa-
tion the central rapidity region (with small or zero baryon number) has been considered;
for this case detailed calculations exist for the evolution [2] and the lattice calculations
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for the equation of state are rapidly being improved [3-7]. However, other cases are im-
poitant too; here we investigate the decay of a baryon-rich plasma, produced either in the
fragmentation region of an ultrarelativistic collisions [8] or in a relativistic collision of
large stopping power [9, 10]. We consider the global hydrodynamic expansion of plasma
blobs either with sudden or with delayed phase transition; as approximation both spherical
and plane flow geometries will be used. Our goal is to study the time scales of the existence
and decay of the plasma, the extra entropy production due to non-equilibrium phase
transitions, the expansion patterns and the possibility of the formation of a condensation
front. As pointed out recently [7], relaxation phenomena, as e.g. the delayed phase transition
or bulk viscosity, alter the space-time history of the plasma, thus affecting the plasma
signatures too.

Here the rehadronisation process is considered on the bubble level, within the frame-
work of the classical nucleation theory; thus, the previous analyses [4, 6] are extended
to the baryon-rich plasma. The mentioned hadronising models rely on the assumption
of an equilibrated hadronic state, which then can be simply described by an equation of
state. Nevertheless ev:n then one does not have a reliable equation of state at disposal.
Therefore we are going to utilize a convenient parametrized form relying on a nucleon and
a pion component. Combining this with the plasma equation of state a two phase modsl
is obtained which is conform to the known lattice results for vanishing baryon number.

Since an assumption of final hadron equilibrium is rather strong and calculations
based on the flux tube model [3, 4] indicate that it might be unrealistic for small systems
created in heavy ion collisions and expanding freely, here we elaboraie a model for the
statistical redistribution of the quarks into hadrons, and compare it to the equilibrium
model. The predicted hadron yields are discussed as tools of plasma identification.

In Sect. 2 we consider the hydrodynamic expansion of plasma blobs. Different types
of bubble growth and physical processes across discontinuities are studied in Sect. 3.
The statistical model for quark redistribution is presented in Sect. 4, finally the
conclusions are given in Sect. 5.

2. Hydrodynamic expansion of plasma blobs

A dynamical phase transition is a complex process with strong interplay between
phase transition kinetics and global dynamics. Here we consider the global dynamics
of expanding plasma blobs, with some simplifications in the phase transition. Two different
simplifying assumptions will be used, namely first a sudden transition, and then a delayed
one with a linearized relaxation law. For technical reasons spherical and plane-symmetric
flow geometries are used; the tackled problems are the time scales, expansion pattern, vis-
cosity effccts and the extra entropy production.

The hydrodynamic equations are the familiar balance equations

T", =0, Q.1

(nu"), =0, (2.2
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(where T™ stands for the energy-momentum tensor, 7 is the baryon density, « is the four-
-velocity, while the semicolon denotes covariant derivative), solved in Lagrangian coordi-
nates as described in Ref. [11].

The equation of state is approximated as follows. The quark-gluon plasma is described
by the bag model

1
= —B+3 n*T*+°T*+ —

P P —H

q

1
ng=2p (T2+ = ;ﬂ), (2.3)
e, = 3p,+4B,

where p, T, u and e are the pressurz, temperature, chemical potential and energy density,
respectively, and B stands for the bag constant, BY4 = 235 MeV is accepted here. The
hadronic matter is built up from two components; for the nucleon component a parabolic
compression term + thermal Boltzmann term are used:

2
e, = n (mn-!-K (1 -1) +3 T), (2.4)
o

where m, is the nucleon mass, n, is the ground state density and K = 280 MeV, while
for the pionic component, for convenience’s sake, a massless equation of state is used:

752

. = — T4 2.

“=10 (2:3)
The presented model possesses a critical exponent f = 1/3 (according to numerical expe-
rience) which fact allows to fit the density jump in phase coexistence by the one-third

power law

Rg—Npyy = A(Tc—T)ﬂ, : (2~6)
with 4 = 0.1338 MeV-'/3 fm-3. This relation holds down to T = 0.8 T,, where
90 1/4
T, = (ﬂ B) 2.7

is the critical temperature.

Now we are going to discuss two particular approximations for the phase transition
process:
Case a) Sudden phase transition

In this approximation the Maxwell construction is used to match the equations of
state of different phases. This is physically satisfactory if the microscopic processes behind
nucleation and bubble growth are fast enough compared to the characteristic time of hydro-
dynamic evolution. Since viscosity is neglccted, the expansion is isentropic.

Let us consider first initial conditions appropriate for states which might be ac!ueved
in heavy ion collisions. For definiteness’ sake 7= 70 MeV, n = 2.2 fm-? and 4 = 400
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Fig. 1. Snapshots of density profiles during spherical hydrodynamical expansions.. Time values meant
in fm/c.a) Initial density n = 2.2 fm3 and initial temperature T = 70 MeV (the hatched area indicates _the
coexistence region on the isentrope), b) initial density n = 1fm3, initial temperature 7 = 180 MeV
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are chosen as an example for extreme dense and cool plasmas. This set represents a state
whence a deflagration without supercooling is possible (cf. Sect. 3). Fig. la displays the
snapshots of density profiles in a spherical expansion. At the beginning of the expansion
the density profiles are similar to a “double shock front”. There is a front in which the
plasma is cooling down isentropically to a state at the phase boundary or slightly inside
the coexistence region. Because of the rapid change of the sound velocity (cf. Fig. 2a),
there arises a plateau with states composed from more than 90 % plasma. Behind the platean
there is a sharp front in which hadronic state is reached. According to our approximation,
the cells are decoupled from the hydrodynamic evolution if their baryon density falls below
a break-up density chosen as n,, = 0.05 fm~> here.

The spatial structure can be visualized as a shrinking plasma blob surrounded by a thin
hadronic shell whence hadrons are ejected into vacuum. (A similar picture was developed
in Ref. [4] for u = 0.) The plasma lifetime is ca. 8 fm/c, the separating front moves with
a velocity v ~ 0.1 ¢ (thus comparable to the condensation front velocity in Sect. 3). Later
a rarefaction wave appears.

Obviously the expansion pattern may depend on the assumed symmetry, therefore
now we are going to compare the above spherical situation to a plane-symmetric one.
Fig. 2a displays the density profiles for slab geometry with the same initial conditions as
above, the initial length is that for uranium compressed to n = 2.2 fm-3. The plane-
-symmetric expansion is similar to the spherical one, nevertheless with 1) a shorter plasma
lifetime, due to the small size of the drop; 2) a stronger rarefaction wave; and 3) a stronger
plateau in the density profiles due to the sudden decrease in the sound velocity.

Of course, the present example relies on our ignorance of transparency and sideward
flow at E,,./4 ~ 5 GeV. Possibly more relevant initial conditions for the fragmentation
region are 375, < n < 5n,, and temperature close to deconfinement temperature. Thus
for the second example we choose n = 1fm-3, T = 180 MeV and blobs of N = 100.
The snapshots of these density profiles for spherical expansion are shown on Fig. 1b. No
inward moving separating front appears, rathsr the blob expands. Typical paths on the
phase diagram arc given in Ref. [12].

Case b) Delayed phase transition

_If the characteristic time of nucleation and bubble growth is not negligible compared
to that of the expansion, some relaxation processes are to be taken into account. These
non-equilibrium processes may be quite complicated; here we adopt the simplified model
described in Refs [11-13]. We assume that thermal and mechanical equilibrium are much
faster achieved than the chemical one. Neglecting surface effects one can write

W(n, T) = aW, +(1—a)W,, (2.8)

where W is the specific energy, the lower indices label the phases, W; is given by Egs (2.3)-
-(2.5), while « is the relative weight of the first phase '

N
o= L, 2.9
N;+N,




690
For the progress variable « we use a linearized relaxation law

. 1
o= —(a—0y), (2.10)
n
where 7, is the relaxation time of the chemical equilibration. The value «,, corresponds
to free energy minimum; the phase transition is driven by the deviation from equilibrium.
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Fig. 2. Snapshots of density profiles during plane-symmetric expansion; initial conditions as for Fig. la.
a) Isentropic expansion (the hatched area indicates the coexistence region); sound velocity on the given
isentrope, b) delayed phase transition is included; t, = 0.1 fm/c, ¢) gas viscosity is included

Reasonable values of 7, are expected to be in the order of the QCD time scale h/B'/*
~ 1fm/c.

The evolution depends on the value of 7,. For spherical symmetry 7, = 0.1 fm/c
leads again to a shrinking plasma blob as in Fig. 1a; if 7, > 0.5 fm/c the separating front
is smeared out. Fig. 2b displays a plane-symmetric expansion with the same initial condi-
tions as in Fig. 2a and with 7, = 0.1 fm/c. One can conclude that the sharp front disappears
even at relatively short relaxation times. The reason of this change of the flow pattern
is simply the change of the sound velocity; as shown in Ref. [14], the relevant quantity
is the frozen local sound velocity c;,

op(e, s;
2= p(e, s; o)

2 > Xz =0) (2.11)
de

which is discontinuous at 7 — 0.
In a non-equilibrium phase transition some entropy is produced as it was shown in
Refs [11-13]. For the comoving time derivative of th: specific entropy s one obtains

s = a(u,—p)/T. (2.12)

Fig. 3 shows the total extra entropy in the plane-symmetric model at 7, = 1 fm/c for
various initial states reachable by shock compression of ground state nuclear matter. One
can see that the extra specific entropy is ca. between 1 and 2. Obviously a substantial de-
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pendence is expected on 1,; the calculations show that 4S5 is maximal at 7, ~ 1 fm/c
(cf. Fig. 4), while the transition is nor completed un.il break up if 7, > 5 fm/c. This may
be a consequence of the fact that then the relaxation time is comparable to the time of the
expansion, hcwever, so far from equilibrium the linear Ansatz (2.10) is rather a rough
approximation, For completeness’ sake we calculated the entropy increase for the “softer”
initial conditions (3 < n/ng < 5, T = 200 MeV) too, but there the increase is rather small,
between 2 and 59;.

12 T T T

2 4

S

Fig. 3. Final state entropy versus initial entropy for v, = 1 fm/c. Initial states are plasma states reached
from ground state nuclear matter by shock compression; the expansion is plane-symmetric. Dashed line:
ouiermost cells, full line: central part

Case ¢) Viscosity effects

In a realistic situation the delayed phase transition is cnly one of the sources of entropy
production; there are irreversible processes even within one phase. Most famifiar repre-
sentative ot such irreversible processes is the viscosity. In a plane-symmetric flow both
the shear and the bulk viscosity enter the equations of motion as corrections to the pressure

pvis = P“‘(5+4’1/3)“r,r (213)

The entropy production of viscous processes is

°\ 2
i= L ettn) (ﬁ) , (2.14)
Tn n
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Fig. 4. Entropy production due to delayed phase transition -versus the inverse relaxation time ¢ = 1/t,;
plane-symmetric expansion. Dashed line: outermost cells, full line: central part. For g < 0.2 ¢/fm the
phase transition is not completed until break-up

Ref. [7] investigated such a non-equilibrium phase transition as a possible source
of the bulk viscosity. Since in this paper relaxation phenomena are explicitly incorporated,
we can concentrate on the shear viscosity. Viscosity estimates can be found in Refs [7]
and [15] for nuclear matter and for plasma. However, in the coexistence region the problem
is more complicated ; the two viscosity coefficients can be volume averaged only if the drop-
lets of the individual phases are large enough, otherwise the results of the kinetic theory
for mixtures suggest a different formula [16]. So, n(n, T) is model-dependent in the coex-
istence region; for illustrative purposes here we simply use the common gas viscosity as
in Ref. [12]. Fig. 2c displays the snapshots of density profiles for tne same initial conditions
as in Fig. 2a. A reheating can be cbserved due to conversion of kinetic energy into excita-
tion; in the particulai case the increase of the specific entropy is ca. 1. The absolute maxi-
mum of the entropy increase could be expected in an isoergic expansion (where the internal
ene1gy remains constant, since nothing is converted into flow). As an exampleé one can
consider a blob initially at n = 1 fm~® and T = 180 MeV. After isoergic rehadronisation
s = 25, which is rather unrealisticaly large.
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3. Bubbles and fronts

Now we are going to turn to investigating discontinuities separating the quark-gluon
plasma from nuclear matter. Such discontinuities represent the (planar) idealisation of
various fronts as surtace regions of growing hadronic bubbles, condensaticn fronts sur-
rounding plasma blobs or time-like fronts in rapid transitions. Possible initial siaies for the
plasma and final states for the hadronic matter are to be discussed here.

Let us consider a discontinuity with either space-like or time-like normal vector 4. In
the following discussions A’ is normalized to a unit vector. By integrating th: balance
equations through the discontinuity one obtains [17, 18]

[T"]4, =0, (3.1)

[nu"]4, =0, 3.2)

where the bracket denotes the jump. Eq. (3.1) always holds, while Eq. (3.2) is a con-

sequence of particle conservation, so it is valid only fer conserved component.. The gra-

dients of the thermodynamic intensives are expected to be maximal in the region repre-

sented here by the discontinuity, thcrefore one may assume that transfer processes are
moderate outside, and a perfect fluid approximation

T* = (e+ p)u'u*+ pg™ @3.3)

can be used there (g* is of course a Minkowski metric tensor, being the gravity irrelevant,
the signature is +2). Calculating the three-velocities from Egs (3.1) and (3.3) before and
behind the front one obtains .

- ( (e2—ey) (P2 +ey) )‘*"’
(P2=p) (pite))

_ [ (e2—e) (pyter) >‘“2 34

’2 ('(Pz—lh) (p2tey) . G

If there is a conserved particle number n, the velocities can be eliminated, and one gets
a relation between thermodynamic quantities

x%”f‘,ﬁ"%‘*‘(l’z—h) (x4 +x;) =0,
x = (e+p)n~?, 3.5)

where x is called generalised specific volume, and Eq. (3.5) is known as Rankine-Hugoniot-
-Taub equation. The current through the discontinuity satisfies the relation

LY <t S (3.6)
Xz Xy
The Second Law prescribes tha: the entropy current does not decrease while crossing the
discontinuity, i.e.

[snu']4; > 0. 3.7
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For A2 = + 1 the discontinuity is a front in the three-space, separating two subvolumes
of the matter, e.g. a shock, deflagration, detonation or condensation front. The case
A% = —1 describes an instantaneous (or rapid) change of the whole volume from one
state to another. The incorporation of this latter possibility extends the original Rankine-
-Hugoniot-Taub analysis to temporal evolution, so relating the section (p;—p.)/(x,
—x,) <0 of the adiabat to physical processes [19]. Now we are going to discuss different
particular kinds of fronts. Observe that for 4> = +1 the positivicy of the entropy produc-
tion (3.7), together with relation (3.6) and the existence of real three velocities (3.4) leads
to the inequalities

P, (.8)

and then there are three different possible types of transmutations as follows:
1) slow (rarefaction) deflagration: n, < ny, p, < Py, V2 > Uy, Vg5 < €425
2) fast (compression) deflagration: n, > n,, p, > p;, v, <vy, 03, > ¢;5; and
3) fast (compression) detonation: n, > ny,p, > Py, U5 < 03,07 > €3,0; < €3, 3.9

where ¢; stands for the sound velocity in the particular state.

The nuclear equation of state is not a simple relation e = e(p) as tor the bag model
equation of state tor the plasma, therefore generally the solutions of th: Rankine-Hugoniot-
-Taub equation are to be calculated numerically.

Casz a) Deflagration

Let us consider first a slow deflagration. Then conditions (3.9) prescribe p; > 0,
being the pressure nonnegative for nuclear matter at or above normal nuclear density.
Fig. 5 shows the permitted plasma initial states on the phase diagram. A particular adigaat
is depicted in the inset. The deflagration adiabats are convex curves on the (p, x) diagram,
bound by a Chapman-Jouguet point where the entropy reaches a maximum. The possible
final states represent hot and moderately dense nuclear matter between 50 and 150 MeV
temperatures and below 0.5 fm~3 density. One can observe that for 5 < s5; < 22 the initial
state is in the coexistence region, so the slow deflagration can start only from a supercooled
plasma, which needs a delayed phase transition.

For definiteness’ sake here we consider the deflagration to final states corresponding
to the Chapman-Jouguet point. Figs 6 and 7 display some final state variabies. We select
initial states on the phase boundary (cf. Fig. 6) and on the dashed line of Fig. 5, defined
by the equations

n=n(T,u=11y), (3.10)
(T, o) = 0,
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(cf. Fig. 7). The rather large entropy increase for the deflagrating low entropy plasnia has
already been mentioned by Stécker [10].

In a deflagrating plasma blob at rest the front proceeds with the velocity vy = v,

(cf. Eq. (3.4)), while the hadronic matter is ejected with

Vour = i?‘_lT:)vzz = V2. (.11
The front velocity is now considerably greater than that for vanishing baryon density
(compare Figs 6 and 7 with Fig. 8 in Ref. [6]). In the previous Section we mentioned that in
a spherical zxpansion of a very baryon-rich state the velocity of the transition region between
hadrons and plasma is found to be of the order of 0.1 c. Comparing this value to Figs 6 and
7 one can conclude that the slow deflagration is a serious candidate for the rehadronization
process of a cool plasma.

Let us consider now deflagration bubbles with hadronic matter inside and plasma
outside (cf. Ref. [6] for introducing this idea). Then the growth velocity of the hadronic
bubble is v,, = v,. In a medium of finite baryon charge the slow deflagration is bounded
by v, < ¢, equality holds at the Chapman-Jouguet point. For v, > ¢, ithe front is absolutely
unstable [20]. Consequently, in contrast to the case u = 0 [6], at large baryon densities
we find v, in the same order of magnitudes as vy, (cf. Figs. 6 and 7).

A growing hadronic bubble (with matter at rest inside) surrounded by a non—ﬁowmg
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Fig. 5. Permitted region of plasma states whence slow deflagration is possible into hadronic matter; temper-
ature versus density plot. The hatched area with lines indicates the permitted region, the lines are iséntropes.
The phase equilibrium boundaries are displayed by dotted lines. The heavy dashed line indicates states
with 0 plasma pressure; it almost coincides with the spinodal boundary. The dashed line in the metastable
region shows the initial states discussed in the text. The numbers left from the line Pq = 0indicate nucleation
rates in ¢/fm* (logarithmic notation). The inset displays a deflagration adiabat (full line: physical section)
belonging to an initial state on the s = 5 isentrope indicated by a cross. CJ is the Chapman-Jouguet point
below which the deflagration front is unstable (dashed line)



697

§ *81 jo oWy paysep JYSI SYI UO SINEIS [eNIUI YA Inq ‘9 ‘Brf sV L ‘Bid
(1x9) o wr spresop) jurod jendnor-uewdey) oY) 0) Arepunoq aseyd oy} WOy uoKeBISRYIP J0§ SS[qELIEA djE)S [EUl AWOS 9 Ty

L3

'S

€

9 ‘814

1

—

‘A% QL

g

A = Ol

A0, |2




698

plasma must drive a shock wave into the plasma in order to fulfil the boundary conditions.
Then there is a relation amongst the energy density of the far region of the plasma at rest
ey, that of flowing outward from the bubble e, and the velocity difference across the rehadro-
nisation front v,,:

3(es—e0)’

3, = . 3.12
P12 = (3¢ +¢,—4B) (3¢, +eo—4B) (3.12)

The plasma energy density ¢, is displayed in Figs 6 and 7.

In the adopted situation a strong supercooling is needed in the initial plasma state
so that p, < 0. Nevertheless, the discussed particular final states correspond to the
Chapman-Jouguet point as was mentioned above. In other cases initial states of p, > 0
are quite allowed. However, then the bubble growth velocity v,, becomes small and the
dominating hadronization process is bubble creation rather than bubble growing. Note
that phase space considerations do not fix all the parameters of the growth; one of them

12 T T T I |

Tv [B“‘]

Fig. 8. Hadronic temperatures versus plasma temperatures for bulk transition. Plasma initial states are
parametrized by the chemical potential. Entropy production would be negative on the right hand side
of the dashed line
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remains free and should be calculated in a complete picture including diffusion processes,
heat flow between the phases and the interface kinetics. This task is far from being consist-
ently solvable (even with static boundary conditions) since the relevant material constants
are poorly known. In the present exploratory study we have analysed only the hydrodynam-
ic component of this complex problem.

For a tast deflagradion the necessary conditions are very similar to those in a detona-
tion (cf. conditions (3.9)), the only differsnce is that the flow is not subsonic in the second
phase. Therefore we do not discuss this particular subcase here.

We can list the conclusions of this subsection as follows:

1) the deflagration front is a candidats for the rehadronisation process of a cool
plasma; and

* 2) slowly growing deflagration bubbles are possible candidates for homogeneous
nucleation; their initial conditions are not exotic (i.e. mechanically unstable [21-23])
with negative pressure.

The preshock waves emitted by th: deflagration bubbles cause, when meeting, irregular
(turbulent) flow in the medium. (The arising fluctuations then may act as impurities,
causing, in the late transition stage, a heterogeneous nucleation.) The resulting character-
istic rapidity fluctuations have been mentioned by Gyulassy et al. [6] as signals of the
nucleation process.
Case b) Detonation

Constructing the detonation solutions (see conditions (3.9)) of Eq. (3.5) with the equa-
tions of state (2.3-5) we find that the corresponding initial plasma states are characterized
by p <0 and n, < 0.4fm-3, while for the final hadronic states T, > 500 MeV. Both
states secm to be exotic. Let us discuss separately the initial and final states.

At p < 0 the matter is unstable against a decay into a non-homogeneous state (cf. e.g.,
droplets) [21-23]. However, such states can be quite reasonable from thermodynamic
viewpoint [21, 24] and the droplet formation needs some time. Therefore states with p < 0
can be reached. As it was shown in a different context [25] the inertial forces can drive
the expanding system farther till the negative pressure becomes operative, stopping and
reversing the expansion and causing a fisseling (fragmentation). Dynamical calculations
with suppressed phase transicion (z, — o0) show that the initial configurations considered
in Sect. 2 reach the minimum energy density outside the region, where detonation can
formally happen.

One has to notice that the droplet picture breaks down at large supercooling. The
Cahn-Hilliard theory [26] claims that the distinction beiween a limited suzface region
and a homogeneous interior of droplets fails even at moderate supercooling. At strong
supercooling the development of the new phase proceeds via spinodal decompositién;
near the spinodals the potential barrier vanishes and very small fluctuations of la-ge spatial
extension trigge: the development of the new phase. Before reaching the spinodal the paase
separation happens faster via thermal fluctuations of activation energy ~7. For such
fluctuations the size remains finite and the corretation leng'h, which is more or less the
surface thickness, is in the order of the droplet radius. Thevefore the picture of droplets
with sharp surface fails in the spinodal region. For a detailed discussion see Ref. [27].
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In the two-phase model under consideration the matter is per definitionem stable,
no turning point of the Helmholtz free energy f(n, T) or loop in p{u, T) [28] exists. However,
in terms of the Cahn-Hilliard theory the potential barrier vanishes at Jo = fo+f. This
defines the boundary of metastability (cf. Fig. 5). It is remarkable that the spinodal almost
coincides with the line p, = 0; the unstable region, familiar from van der Waals type
liquid-gas transitions is degenerated to a line, In a more cofnplete model based on equal
footing on both phases f(n, T) will be a smooth function with turning points f,, = 0 and
with a finite unstable region. So we consider our spinodal construction as an optimistic
limit for the metastable region beyond which the homogeneous initial phase can no longer
exist. '

For the final states, we can note that according to present general opinion 7 = 500 MeV
is far above the deconfinement temperature (generally estimated as 150-200 MeV). The
existence of a so superheated hadronic matter seems to be improbable.

Therefore we can conclude that, although detonation bubbles offer interesting con-
sequence [6], fast deflagration and detonation bubble growth cannot be expected in baryon-
-rich situations. For p = 0 the above considerations are not necessarily valid in their
present form.

Case ¢) Bulk transition

Now we turn to A% = — 1, when the hypersurface is time-like. Since then the two states
are separated in time, this is an instantaneous (or rapid) transition in a whole volume.
Such a picture can be applied to the vanishing central part of a dechying plasma blob,
or to the coalescence stage when the last islands of the plasma are vanishing, or to the
spontaneous appearance of the hadromc bubbles

Because of symmetry considerations v; = v, = 0 must hold. But then' Eq. (3.4)
leads to e, = e, and j* in Eq. (3.6) becomes simply —n? Hence n, = n,, and thus Eq.
(3.5) reduces to an identity. In Fig. 8 the possible final hadronic temperatures versus initial
plasma temperatures are displayed. Our Figure deals with the generic case; the special
case pu = 0 has been investigated in Ref. [4]. Let us observe that, due to the entropy condi-
tion (3.8), the possible initial and final states are concentrated on rather small regions. The
final hadronic temperatures seem to be slightly above the deconfinement temperatutre
while the initial plasma states possess negative pressures; bouh states are beyond the spino-
dals. Again, the physical relevance of such a rehadromization picture is questionable.

The considered bulk transition corresponds to fluctuations at constant density, while
in classical nucleation theory the density or particle number fluctuations dominate in
creating the critical bubbles. The latter processes are related to flow or diffusion of baryon
number, and, therefore, do not belong to our mcdel.

In all the processes discussed in this Section considerations about the microscopically
determined rate of the hadronic phase credtion were important. Therefore we close this
Section by some order of magnitude estimates relying on classical nucleation theory. In
accordance with Ref. [29] the nucleation rate via thermal fluctuactions is

16na®
w = wo T exp (— );, (3.13)
’ 3T(p, — p,) ‘
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where T, is the critical temperature (cf. Eq. (2.7)), while o stands for the surface tension
o = 0T} 3pl’2. (3.14)

Here p, is the pressure of the critical state, while the two still undefined factors w, and «,
are dimensionless smooth functions expected in the order of 1. Critical bubble radii are
given by

2a

R, = . 3.15
Pi—D2 ( )

The pressures of both phases are to be calculated at the same temperature and chemical
potential, thus giving equilibrium bubbles [29].

Note that here quantum fluctuations are ignored. They become important below the
equivalent quantum temperature Te;l, estimated as

Teq ~

8 Mev!/? fm [ an, )
—rer % (3.16)

|1y — R’
Typical values are of the order of 10 MeV, which is well below the temperatures considered
in this paper.

The radius of critical bubbles is smaller than 10 fm if the supercooling is about 10 MeV,.
for stronger supercooling it rapidly approaches values between 1 and 3 fm. Since the expec-
ted extension of the deconfined state is moderate, a few such bubbles will-complete the
confinement transition. '

The rate (3.13) is exceedingly small in the metastable region; some representative
numbers are indicated on the p, = 0 line of Fig. 5. For s, > 3 the maximum values of
w lie deeply inside the region p, < 0. :

The increase of the volume V, of the new phase proceeds via both bubble creation
and bubble growth. Thus

) 4n
Vy(t) = ;"(V(t)— V,()WR,

t t

+an | w(t') (V(E) = Vot D)ot [Raet)+ [ 0 )dt"Tdt’. (3.17y

tc

It is convenient to use the volume fraction x, = V>/V. Now, Eq. (3.17) is rather compfi-~
cated for practical use. In tackling early cosmology usually the Avrami approximation
is exploited, which results for isothermal nucleation in

%,(0) = 1—exp {~[(t—t)/E:]*}

fo = (mwul(3)" 1%, (3.18).
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where ¢, denotes the time moment when T = T,. Another possibility is to turn to the Ru-
ckenstein-Thm approximation; then Eq. (3.17) reduces to

%(f) = 47rvg,(t).tf w(t') (1—x5(t)) f [og(t")dt ' Tt (3.19)

This equation can be converted into an integral equatibn of Volterra type 1I; for isothermal
case the solution is

x,(t) = 1“\/i sin [(t—-tc)/t0‘+4/7c] exp {—(t—1t)/to},
to = Quwol) Y4 (3.20)

While the forms of the expressions x,(z) in Egs. (3.18) and (3.20) are not the same, the
characteristic times differ only in a factor 614, which is rather irrelevant w, being unknown.
Therefore choice be.ween approximations will not be further discussed here; we use
Eq. (3.20) for estimation.

Att = ¢t +21t,, x, = 0.95. Thus 27, can be regarded as the time needed for transforma-
tion into hadrons. ‘

Now, for a simple estimation one can choose the rate values in Fig. 5 between 10~ and
10-8 ¢/fm®, v,/c ~ 0.1 and wy = ap = 1. Then the necessary time scale is rathe: long,
10? fm/c < t; < 10° fm/c. These results, even as estimates, involve strong simplifications
(as the crude pre-equilibrium factors in Eqs (3.13-14); neglect of both the time lag of the
fluctuation dev:lopment and the vanishing barrier at the spinodal), nevertheless they give
some hint for a noticeable supercooling and strong non-equilibrium phenomena during
the rehadronisation. If the nucleation time scales are indeed so long compared to those
of the hydrodynamical expansion, then the spinodal decomposition seems to be the relevant
decay process; it may be enhanced by mechanical instabilities at negative pressures.

4. Hadron yields

Until now we investigated the hydrodynamical regime of evolution. Nevertheless,
the observables are paiticle numbers and distributions, detected after break-up. The con-
nection between the data of the hydrodynamic calculation and these observables is not
trivial from at least three reasons. First, our hadronic equation of state contains only two
components, nucleons and massless pions. Second, even if it were to contain various
particle components, the detected particle numbers and distributions might differ from
those in the hydrodynamic description, as shown in an explicit example in Ref. [30].
Third, different compositions may fead to the same dynamic behaviour, as discussed in
Ref. [31]. These considerations suggcs® that a complete model should contain not only
the description of the hydrodynamic evolution but clear break-up prescriptions as well.

Of course the bresk-up happens in the hadronic phase, after some hadrochemical
processes. Nevertheless, in simplified models the phase transition and the break-up may
be contracted to the same moment. This will be done here too.
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The redistribution of quarks into hadrons is obviously a complex process. One may
expect that the final yields depend on three kinds of data: characteristics of the initial
plasma state, those of the final hadronic state and the history of the phase transition. Con-
cealing the third one by some averaging and discussing only the dependence on the ficst
two, one can clearly distinguish extreme models.

The first is when hadron yields depend only on final state data. This means chzmical
equilibrium, but, at least for strange particle production, it is ruled out by observations,
the predicted K yields being extremely high [32]. It is better to choose the other possitility,
when the yields depend only on initial state characteristics: this is the combinatoric model,
when hadron nvmbers are proportional to the corresponding quark-quark collisions [33].
It predicts reasonably low kaon numbers at moderate energies.

Now we propose a modified model interpolating between extremal possibilities.
First let us recapitulate some elements of the combinatoric model. It assumes that the un-
normalized probability of a particular hadron production is proportional to all the number
of quark constituents (collision probability) and also of a channel factor (distinguishing
between e.g. meson and baryon formation). The quark numbets are given, and th= channel
factors can be determined from balance equations expressing, for example, the assumption
that there is no apnihilation. Then there are four such equations:

Q = K+7n+2Y+E+3N,
S = K+n+Y+2E+30, 4.1)
+ conjugate equations for antiparticles,

where letters stand for particle numbers of the indicated particles, and Y is a common name
for A and X. These four equations can be satisfied by four channel factors in the generic
case (here we choose a distinction between formation of mesons containing and not contain-
ing S guarks, and the same for baryons); because of symmetries in the original combinatoric
model the number of different channel factors reduces to 2 [33].

Now, one can assume that the probability of the appearance of a particular hadron
as final state is proportional both to the initial probability (given by e.g. the combinatoric
model) and to the number of microstates belonging to the particular hadronic final state.
These statistical weight factors f; can be calculated from thermodynamics.

The statistic definition of the entropy shows that the number of microstates is measured
by €°. Nuvertheless, when using temperature instead of energy as a fundamental variable,
the proper potential is [34]

1 1
S— —E=—-—F, 42
T T (4.2)

Ff

where F is the free energy. So one would expect e~ 7/7 as a statistical weight, as it is, in fact,
used in e.g. Ref. [35] (cf. also footnot: 8 ot Ref. [36]). Nevertheless, F belongs to the whole
continuum of all the components, in the present context we are rather interested in the
changes of F for unit changes of the particle numbers, which are the chemical potentials.
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So one would expect

fi~ e I, (4.3)

where the tilde indicates final state variables.

Now, this model is straightforward if ; and T are known, since the four channel
factors can be calculated from the balanc: equations (4.1), collision probabilities are deter~
mined by the quark numbers, and the factors f; are given by Eq. (4.3). Neverthcless, in
order to obtain z; and T one should either follow the dynamics of the phase transition,
or perform some selt-consistency calculstions. (Note, e.g. that, according to observations,
there is definitely no chemical equilibrium in the final state [32].) Here we want to give
only estimations, so the problems will be avoided by two simplitying assumptions. First,
the leading term in Eq. (4.3) will be used:

fi ~ e™miT, (4.4)

where m; stand for particle masses; this approximation has become independent of assump-
tions for chemical equilibrium. Second, we consider an isothermal phase transition, when

F=T (4.5)
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Fig. 9. Unnormalized hadron yields versus plasma chemical potential at freeze-out, for two different hadronic
temperatures
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and choose some reasonable freeze-out temperature. Then the yields depend on the plasma
incensities T and p; in Fig. 9 we display the dependence ou u for two characteristic tem-
‘peratures.

One can observe the nucleon dominance for g > 200 MeV; surprisingly kaons and
lambdas are more frequent than pions. The rare hadrons are now suppressed due to their
large masses, for the dominant components the relative yield ; are similar to the predictions
of Ref. [33]. Our predictions for the ratios Y/Y and K/K are in the same ord:r of the
magnitude as in the nuclear fireball model [37], thus these ratios are nov useful as plasma
signals.

Comparing our medel to the combinatoric one, a possible conclusion is that the two
different models confirm each other for K and A yields; the rare hadron yields depend
on the details of the models, and more definite statements should be also preceded by
developing a consequent method for calculating 7.

One may also discuss another freeze-out possibilities e.g. such that the rehadroniza-
tion is so fast that the energy density is constant during it. Taking the thermal equilibrium
distributions for individual hadron species the picture resembles the detonation scenario.
Nevertheless we have seen that the detonation picture leads to too high superheating,
so it does not seem to be physical.

There is always the concurrent possibility that the plasma has not been formed.
Therefore the yields predicted by plasma rehadronisation and by hadrochemistry [38])
are to be compared at the investigated energies in order to get plasma signals.

5. Discussion and summary

In this paper we have investigated the rehadronization of a baryon-rich plasma on
different levels. First the hydrodynamical expansion of quark-gluon plasma blobs was
studied with some idealisations as Maxwell’s construction or, alternatively, a linear relaxa-
tion model for phase transitions, spherical or planar symmetry in the expansion and the
use of a gas viscosity. It is found that the expansion pattern essentially depends on the
viscosity and on the delay in the phase transition, If both effects are negligible, then the
expansion of the cold plasma can be described as a shrinking droplet evaporating hadrons
from its surface (it can be considered as a condensation front, being the source of consider-
able entropy production). Initially hotter plasma blobs expand without any clear front;
the entropy increase is on the 109, level.

The transition in idealized fronts was also analysed. We found slowly deflagrating
bubbles, and estimated v,/c ~ 0.1 for the bubble growth velocity. Unique value cannot
be obtained without incorporating diffusion, heat conduction and interface kinetics. The
entropy production of initially hot plasmas is moderate (~ 10%) so then entropy provides
a window into early hot stages. Bubble growth in cold plasmas tends to close this window
due to substantial entropy increase.

The analysis of detonation bubbles and bulk transitions was made here first time for
a medium of finite baryon charge. The plasma initial states are required to be strongly
supercooled (far inside the mechanically unstable region p < 0), and the final hadronic
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states are overheated (strongly for detonation and moderately for bulk transition).
Whether such transformations are liable or not, it should be decided by further work
based on dynamical calculations on the compression stage, proper treatment of curvature,
isurface and final size effects.

Some estimates of nucleation rates according to the classical droplet model are pre-
sented. While these estimates are not on safe ground, a comparison with hydrodynamic
fime scales gives some hints for substantial supercooling and strongly nonequilibrium
character of the phase transition.

‘The combinatoric rehadronisation model is more related to observable plasma signals.
We have introduced statistical weights for different hadrons corresponding to the numbers
‘of possible final states. Assuming thermal equilibrium between the plasma and the hadrons
definite predictions have been obtained for the relative yields. The high kaon and lambda
yields conform to the results of previous investigations; for other particles (except,
of course, protons and pions) the predictions seem to depend on the details of the models.
If the emerging hadrons remain in contact with each other for sufficiently long time, they
develop towards chemical equilibrium. In any case, the yields suggest that kaons and lamb-
das should be incorporated into the hadronic equation of state.

In conclusion: we considered the decay of the baryon-rich plasma in three issues:
a) hydrodynamic expansion; b) space-like or time-like fronts (discontinuities) between
the quark plasma and hadronic matter; and c¢) the emerging hadron yields. These items
can serve as bases for further detailed investigations.

Authors would like to thank Dr. J. Zimdnyi for illuminating discussions.
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