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SINGLET FORM FACTORS AND LOCAL OBSERVABLES IN THE
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Within the Glashow-Weinberg-Salam model local observables like the electromagnetic
current-and field strength tensor must be defined as singlet fields in order to be gauge invariant
and to satisfy Maxwell’s equations. We show that S-matrix elements of the physical electro-
magnetic current (lepton form factors) are non renormalizable due to “anomalous™ short
distance behaviour. An explicit calculation demonstrates that thereis a one to one correspond-
ence between gauge invariant short distance anomalous terms and gauge dependent terms
in the standard R-gauge formulation. As a result, the gauge invariant electron current is an
observable only on the classical level. When quantum corrections become relevant unphysical
short distance behaviour is exhibited by the form factors and thus quantities like the charge
radius of the electron or the neutrino become ambiguous concepts.

PACS numbers: 12.15.-y

1. Introduction

The aim of this article is a study of properties of local observables in the Glashow-
-Weinberg-Salam (GSW) model [1]. Explicitly, we investigate the electromagnetic current,
the electromagnetic field strength and the validity of Maxwell’s equations. The short distance
propetties of electromagnetic lepton form factors are computed in the one-loop approxi-
mation using the singlet field current. A brief account of the results obtained for the high
energy behavior of the physical electromagnetic current has been presented in Ref. [2].

Locality is one of the basic properties (together with relativistic covariance, unitarity
and renormalizability [3]) of quantum gauge field theory models which rather successfully
describe elementary particle dynamics. Physical local fields like currents, field strength
tensors and the energy momentum tensor are the quantities which admit direct tests of
causal space-time properties of interactions. Though actval measurements always take
place in finite space-time regions, experimental data are fitted usually, with good accuracy,
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to S-matrix elements evaluated using LSZ-asymptotic conditions for scattering states (we
disregard the infrared problem of QED here). We are interested here to analyse S-matrix
elements of local observables.

Apart from the conceptual questions, there is a direct practical interest in studying
physical form factors since these are supposed to define physical effective (running)
couplings. The latter are important in electroweak theory because the GWS model describes
processes at extremely different energy scales p, like low energy lepton processés and vector
boson processes, and a suitable reparametrisation of the theory admits to keep radiative
corrections small at very different scales.

The common approach to the concept of running parameters uses the renormalization
group. This approach suffers, either from a lack of decoupling of heavy particles m > u
(which should not influence physics at lower energy scales £ < p) in the gauge invariant
and infrared finite min‘mal subtiaction (MS) scheme, or from lack of gauge invariance
in the momentum subtiaction schemes (off shell renormalization) [4].

One could expect that a more physical definition of the effective electrical charge
e(u?), for example, is directly given by the univeisal lepton form factor

e(q”) = e(1+A4Fg(q*), (1.1)

which exhibits the proper physical thresholds (excitation of virtual pairs). Our investiga-
tion has led to an obstruction of this expectation. In a renormalizable gauge Fx(g?) is gauge
dependent and turns out to have no unitary gauge limit when g2 # 0. In this gauge the
gauge parameter functions as an ultraviolet cat off (in a similar way as in the gauge boson
propagators). In a physical gauge, the singlet form factor turns out not to be renormali-
zable.

Since the S-matrix is renormalizable it seems doubtful that non-renormalizable physical
fields are observable though renormalizability often is considered to be merely a technical
. requirement rather than a physical principle. Indeed, it seems impossible to measure the
electromagnetic current and the field stiength tensor beyond the validity of the one photon
exchange approximation. The latter breaks down at high momentum transfer, due to the
additional exchange of the Z-boson (mixing of curreuts), two photons, yZ ard so on.
Apparently the range of the weak interactions, which is given by the inveise vector boson
mass My, sets the scale beyond which local observables cease to be measuraple quantities.
In addition actual observability of form factors of a particle is limited by the Compton
wavelength nm—! of the paiticle. As a low energy concept local observables have.their physical
meaning and describe perfectly charge sectors, the presence of the massless photon and the
infrared structure of the theory.

The proper definition of local observables and physical form factors in non abelian
gauge theories is not completely trivial. In principle, physical fields are given by the classical
expressions in the unitary gauge. Since renormalization in this gauge is rather obscure
we shall follow a different approach and use Kibble’s singlet fields! (unitary gauge orbit
fields) [5] and perform our analysis in the renormalizable *t Hooft gauge. The relevance

! Kibble has noted the “absence of symmetry” when using these variables.



711

of singlet fields in gauge theories has been pointed out by many authors. Sucher and
Woo [6] use them implicitly to argue about the physical interpretation of the Higgs mechan-
ism and the absence of spontansous breaking of local gauge symmetries.

Within the context of the manifestly gauge invariant lattice gauge models Wegner
[7] first proposed the Z,-lattice gauge model as a statistical mechanics system without
local crder parameter exhibiting a phase transition. It is shown that only singlet fields
(non local in this case) have non trivial correlation functions. Elitzur [8] pointed out the
impossibility of spontaneously breaking local symmetiies and Banks and Rabinovici [9]
stressed the singlet field nature of the GWS model.

Independently, "t Hooft [10] exhibited explicitly composite singlet fields as interpolat-
ing fields for the physical particles (confinement phase picture).

It is well known that the Green functions of interpolating singlet particle fields (which
coincide with the standard fields in the unitary gauge) are not renormalizable. The main
result of our investigation is that the Green functions of (some) physical observables are
not renormalizable either.

Since explicit perturbative calculations using singlet fields are uncommon, we will
briefly review the singlet field formulation of the GWS model and show the equivalence
of different formal representations in Sections 2 and 3. The electromagpetic quantities
are discussed in Section 4. In Section 5 we analyse the electromagnetic form factors of the
electron and present the analytic results for largé momentum transfers. A discussion of
our results and of possible implications follows in Section 6.

2. U-gauge orbit fields

We consider the GWS model in the renormalizable ’t Hooft gauge (R-gauge). Associat-
ed with the local gauge group SU(2), ® U(1)y we have the gauge fields W,, and B,. The
gauge couplings aie g and g'/2, respectively. The field strength tensors are G,,, = 0,W,,
— 0, Wyt 8 cWW,. and By, = 0,B,—0,B, with associated conserved currents 0,G5”
= —gJ; and §,B" = —g'[2Jy (the currents ccnsidered will always include the terms fiom
the gauge fixing part £ and the Faddeev-Popov part £y, of the effective Lagrangian
Zg). Obviously the conserved current J), is not covariant whereas the covariant matter
field curtent D,GY = 0,G5" +geuw WGt = —gj, is not conserved. Jy is a conserved
singlet current.

The charges associated with the non-abelian gauge group SU(2), must be screened
in a phase where the gauge bosons W,, are massive (we suppose g’ = 0 for simplicity of the
argument here) since in this case

1
Q, = J d?xJ? = — — j d*x0,G¥?¥ = 0
g
by virtue of Gauss’ law. This infers the existence of an effective scalar field @, (elementary

or composite) which screens the SU(2); quantum numbers of the physical fields. &, must
transform as a true representation of the gauge group. In principle a non-linear realisa-
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02
tion with 3 fields and &, &, = 5 = const. would be possible but this would not lead

to a renormalizable theory. The case of a linear realisation yields the standard Higgs doublet
&, with 3+1 fields. We shall discuss the screening of SU(2), in the GWS model in detail
in the following.

The Higgs field?

P 1 0
P, = (;’; > = :/—Q(Hs+i7i¢i)Xb; X = (1) (2.12)

and its Y-charge conjugate &, = it,®;

* 1
o, = <f;-> = ﬁ(Herm)x,; X = (é) ‘ (2.1b)

with covariant derivatives

D&, = <a“— gp5-% W,mr,,) ®,
2 2
and

D,®, = (a,,+ %B,,— % W, 'c,,) o,

na

respectively, enter the terms

gﬂiggs = (Du(pb)+ (D‘qub)'— V(¢;¢b)
and

"Z,Yukawa = _(Ew(¢ta (Db)G.pR,p-l'h.C.)

of the invariant Lagrangian. In the Yukawa term G, is a diagonal coupling matrix
G, = diag (G;, Gy), L, is the left handed fermion doublet and R, are the two associated
right handed singlets:

1+
P = <$'), L,=I_¥ R,=I,%; I,= —2“. 2.2)
b

In the Higgs phase the SU(2), ® U(1)y symmetry is broken to the residual electro-
magnetic U(1),,,. The ground state is characterized in a particular gauge by a translationally
invariant classical background field

(Pp)o = Po = v>0 (2.3)

v .
\/2 Xb’

2 7; are the Pauli matrices; ¢F = (p, Fip.)A/2, 9o = (Hs—ip)lA/2 and ¢ = @,.
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such that the shifted field &, = ®,—®, has zero vacuum expectation value (éb) = 0.
Equivalently, for the “physical” Higgs field H = H,—v, {(H) = 0.

In the particular gauge considered the gauge boson mass-term (D, @) (D"®,) is diago-
nalized, on the classical level, by the orthogonal transformation to the standard “physical”
gauge fields

_ 8B, +g W) _8Wi-¢'B, —— W, Fiw}
# \/g2+g'2 B \/gz_!_g:z # V2

The massless photon field 4, defined by (2.4) is not abelian and thus cannot be the proper
U(l)., gauge field beycnd the tree approximation.

The reason why the photon field is not obtained correctly by the above argument
1s that no care has been taken of the fact that all ground states [0)4, associated with gauge
equivalent background fields

A (2.4)

| N .
@02:/'—51111,, 0= UDo,

Uy = €72 cU(l)y, U = é"*"1eSUQ), (2.5

are physically equivalent, _
Kibble {5] bas constructed the fields which account for the gauge equivalence of the
ground states [0)q,. Writing the Higgs field in polar form

+uv 0
&, = Ul UE®) =expfitt 2 (2.6)
V2 2 v
we observe that ielative to (2.3)
v

Py = NG U(0)x, 27
is an equivalent background field. The physical fields are obtained now by the replace-
ment of the standard R-gauge fields by the U-gauge fields® [11]:

u . o+v
@b = U+(0)¢b = ""\/_2‘ Xb’

5
Wiz, = UNOW,.z,U0)+ — U*(©)0,U(0),
g

I, = U*(O)L,. | (2.8)

— 6 . —
3 With 7, = —Tz— B = ~%and [Ty, T] = (ts)acT, Kibble's original form W% = (exp (= itB:))saWya
v
+ig 1 45,0)3,8, follows from (2.8) using the identities U+@)T,U®) = Tp (exp (—itib))ss and

1~ o 6 _ o
U+(8)2,U(8) = T,,(—————e"p(_ i ')) 2,8 = ToA5a(®)2,05.
1;6; ba
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Eq. (2.8) defines an operator gauge-transformation by which the Higgs ghosts are eliminated
from the invariant part of the Lagrangian:

yinv(W’ B, ¢b’ ¢n L\pa Rw) = ginv(Wu9 B’ ¢:$ ¢:‘9 L:» Rv)~ (2'9)
In particular the Higgs Lagrangian takes the form

(e+0)? (e+v)*

02

gﬂiggs = ’;— (apgapg)+

(M3ZZ" +2My Wi W)=V ( ) (2.10)

and
oy ] Q
'?Yukawa = —yiyim (1 + ';) .
Thus, on the one hand (2.8) provides a transformation to the unitary gauge (U-gauge)
0

characterized by ¢; = 7‘ = 0 and H = g, on the other hand (2.8) defines the U-gauge
field orbits in the R-gauge.

It may be worthwhile to notice that in the physical gauge it is the discrete symmetry
¢ — — ¢ which is spontaneously broken. This also explains the absence of physical Gold-
stone bosons. We also notice that {g,> = v is a physical gauge singlet order parameter

(g, = o+v). Indeed, the Higgs mechanism is not a spontaneous breaking of a local gauge
symmetry in the physical Hilbeit space [6, 8].

3. SU@), @ U(D)y screening to U(D).m

The crucial observation is that under SU(2), ® U(1)y the U-gauge fields W*, ¢*, L,
transform completely different from the standard R-gauge fields W, &, L,. In fact, the
SU(2), ® U(1)y charges of the R-gauge fields are scieened up to the electric charge by the
Higgs ghost fields U(0) [9].

In order to sce this we have to consider the transformation pioperties of U(6) under
the gauge transformations (2.5). We first consider the matrix field

- 1 .
¢ = — (H+v+itug) = (D, D) 3.1
V2t
which transforms according to
¢ = (UUs'®, UUo®,) = UpUo; U, = exp (—ig'[2wot3) (32

and hence has a covariant derivative

_— 8 ~
D, = 0,+i E15:,,¢nc3—: W, 1.9 (3.3)

MIN

By definition the relations

$Xb = @, &X: = @, 5,,‘57(:; = Du¢b and 5;4‘5% = Dth 34
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hold*. Since in the Higgs phase (v > 0) the singlet field

+ 2
¢f¢b=(g v)

o?
=—2-(1+X); X =2—+—5—42 2 (3.5

~ is strictly positive we may relate U(f) to ¢ by the regular transformation

U®) = (Vo5 &,)"'¢ (3.6)

(for the components: H+v = (g+v) cos 2% , ¢ = (e+v) %‘- sin % with 8 = /0,6).
According to (3.2), U(6) then transforms as
U@y = vu®)U,.
We observe that we may write, using (2.8) and (3.3),
X* = —g'B,1,+gWht, = i(U*(0)D,U(0)—h.c.)

"

such that the “physical” gauge fields are given by

g gz = (B By) " - (B D, By —hoc)

X;r X%
and
XX = 2 gWot = (@, ®) " - i(®] DD, —(D, D) D). 3.7

Evidently these fields transform under SU(2), ® U(1) as U(l),, fields, since
@Y =Zi  (WEY = e*leamys, (38)

where we have identified g'w, = ew, (see below). It turns out, in particular, that the
U-gauge fields are SU(2)-singlet fields. The Higgs field is also a singlet now:

{/3 Ty Q+v "
B =VO b, =" yOL=0. (3.9)

7
Similatly for the feimi fields (2.2), which transform as

L, = UU-L, R, = UiUo) R,

* In the limit g’ = 0 and G, = 0 (massless fermions) a global SUQ2), ® SUQ2)g symmetry: x; = aixs
+bixs, 1ai12+ 16;1%2 = 1 would be present as follows from (3.3) and (3.4) and the form of &;,, [12]. In this
case W*— UpWH U{(SUQ)L triplet), w{ - Upp¥(SU@)L doublet), pf — Upy¥(SUQR)r doublet) and
e — p (SUQ)L, ® SU(2)x singlet) under the global group. The associated Noether currents are 1y

— upy i TU i yYru i upv (@+v)2 uy 1 1
= —egG Wi+ Ly R4 LY = —;—%Gi - —4‘“W1 (by the equation of motion) and

—_. Ti
JRi = RY —é—y".R',“,. In the GWS model this symmetiy is broken, but it nevertheless has its physical

drawback in the screening of Higgs effects [13].
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with y- the Y-charge of L, (y- = —1 for leptons, y- = 1/3 for quarks), we obtain

A (L +R,) = (VO 0,) ) L+ ppp = vt
and

1 (Ly+R,) = (VO B) 10} Ly+pir = v (3.10)
Again the U-gauge fermi-fields aie SU(2)-singlets transforming as U(1),,, fields:

() = ***%yf;  (i=b,1) (3.11)

with ¢g; the electric charges of the fields in units of e.

Some remarks are in order conccrnmg the unusual non-polynomial composite form
of the U-gauge fields:
(i) In the Higgs phase (v > 0), according to (3.5), the singlet field

2 .
S =70, = 3’2—(1+X) >0 (3.12),

is strictly positive and X = O(v~'). Thus functions F(S) analytic in Re S > 0, as S-! and

(VS)*! appearing in (3.7), (3.9) and (3.10), are well-defined as perturbation series in the
2

, v v
loop-expansion parameter v~!. In lowest order, with S = 5> D, = § X,and &, = ;i Les
N

the U-gauge fields X} agree with the corresponding R-gauge ﬁelds Xk
(ii) The U-gauge fields are linear in the ccrresponding R-gauge multiplet fields.

o+v
\/—2' y

+v . .
and @, = % %> the U-gauge fields coincide with the standard (classical) expressions.
v

0, 2
(iii) Formally, in the U-gauge ((pi = :2—' =0,H = g) with § = > (1 + Q) , P =

This property together with the singlet nature of the physical fields uniquely determines.
the U-gauge fields. The aim of the non-polynomial singlet normalization factors obviously
is to eliminate the physical composite fields which would be present otherwise.

As seen from the physical U-gauge, all the physical particles are singlets and therefore
have arbitrary masses. How does the gauge group SU(2), ® U(1)y manifest itself physi-
cally ? Obviously it still determines the dynamics (notice that apart from Ly, and Ly xawa
the form of .%;,, remains unchanged). Typically, given the electromagnetic coupling e and
the particle masses, all the interaction vertices are determined by the mass-coupling relations
which are such that a decent high energy behavior for the S-matiix elements emerges
(power counting rules typical for a renormalizable field theory). In fact, the GWS model
in the U-gauge can be derived, using power counting arguments for the on-shell tree ampli-
tudes, staiting fiom an effective Lagrangian

Lot = o (JEWI £ DC)+ =2 T gZ e

N A cos Oy
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with J** =Jt+iJ%, T4 = J4—sin® Oy j,, J§ the phenomenological SU(2), fermion currents
(e = g cos Oy unification condition) [14]. On-shell renormalizability requires the existence
of a physical scalar Higgs particle. Off-shell renormalizability may be achieved upon intro-
duction of three scalar Higgs ghosts and leads back to the standard approach of the GWS
model.

4. The photon field

We are prepared now to discuss the electromagnetic quantities within the GWS-
-model. The essential point is that in order to recover local QED, with the electromagnetic
field strength tensor F,, and the conserved electiomagnetic current j;,,, as observable fields,
the formulation in terms of the U-gauge fields is inevitable.

By virtue of gW,;—g'B, = Vg*+g'* Z; and (3.7) we find that the correct photon
field must be

. gB+gWh Ngi+g? g . ~Ng'+g? e (B D)
Y s A Byt —2,= e~ Tz Juy o7
JVetrg? 4 g 4 2My " (D5 D)
4.1
with ‘
Joy = i(®; D,B,—h.c.) 4.2)

the contribution from Py, to the U(1)y singlet current. Now, since the second term in
(4.1) is a neutral singlet and B, = B,+43,w, under the gauge transformations (2.5), we
have the proper abelian transformation law

’

uy/ u g
(4p) = Au+0,0,4 o4 = - Do 4.3)

for the photon field. Therefore
u u UV 1 ~
F:v = anAv_avAu and Jem = — ;O“Fu#v (44)

are singlet fields. They define the correct electromagnetic field and conserved current,
respectively, and tte Maxwell equations are satisfied.
According to our considerations in the last part of the preceding section we may
rewrite (4.1) as
e

A= A= 2M2,

"

=4 0, (4.5)

where 0, is a ghost operator. Explicitly we have

U2
J% = —x/g2+.g’2(3 +vH+L (H*+ <p2)z,,)
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+oto” <2eA,,— - g() (sin? Oy —cos® Bw)Z“>

S Uw
—gp(@* W, + o WhH+ig(H+v) (9 W, ~9@™ W)
+00,9+Ho,p—ip 8,0” (4.6)
with the leading term

J% = — —\/g +g22, 4.7

For the ghost operator we obtain from (4.1), using (3.12) and (3.5),

( % Z( 17X "+ — \/g +g7 z,,), (4.8)

or up to the one-loop order

0, = -0, (H-v)p)—ig" 0,0 —ig(H—v) (¢ W, — ¢~ W,")
—gp(e "W, +o W) +2¢0" ¢ (ed,+ g cos 0yZ,)+O0(v™ ). 4.9)

We observe that the physical vertices HZ, and H?Z,, present in J5y, have disappeared
from 0,. Now, the observable singlet fields (4.4) are given by

F*, =F,, \2Ww 0,0,—~8,0,)

and

1
M (Og™—0"¢")0, (4.10)

suv v
Jem _]em

with all physical vertices contained in the standard field expressions F,, and j;,,. Explicitly,
the standaird conseived electiomagnetic current reads
+7
2 D"q>,,)

. i
Jom = E qff/»—’f‘}’v":"f'*'l(@;
J

- v - 1 v
+ &35 W Ge' — O, (W W) ~i((@7 ™ — (@7 ™)+ 5 004D, 41D

‘where the last two terms are the contributions from the Faddeev-Popov part &gp and the
gauge-fixing part Ly of the effective Lagrangian.
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The electromagnetic form-factors

o lipem®) 15

are gauge invariant now and may be computed in the renormalizable 't Hooft gauge®.

5. The electromagnetic singlet form factor of the eleciron
Using the singlet field formalism; we now investigate the S-matrix element
—TI;, =<e"(p2) 'i}','iem(q)lef(Px)> (.1

of the electromagnetic current (4.10) in the one-loop approximation. Since the standard
" QED (virtual photon) contributions and the infiared problem are the same as in pure
QED we shall focus our analysis on the “weak” part and ignore the QED contribution
[15). We may evaluate I';, by virtue of Maxwell’s equations from the matrix element

e (p) 1 A(@)le™ (p1))

= (e ™(p2) lAg)le™ (po)> — *2%; e™(p2) 10@)le” (P>
w

= —~iel'YD, (q)— 5.2)

[ 1‘
aM2,

which is given diagrammatically by Fig.*1.

et

Fig. 1. Contributions to the matrix element of the abelian photon field

1
In (5.2) D,(q) = i(— gnt+(—0a) 9 q") — is the standard photon propagator
S q* ) q¥+ie
(« the gauge parameter). The CP-invatiant (I'*“(p;, p,) = y°I** (= pas, —p)¥° = (P4, p2))
covariant decomposition for on shell electrons® teads (P = p; +p,, g = (p;— p,), P, = 0)
p* q°
e = y?A74+9%ysA53+ — A5+ — 9545 x = A, 0 (5.3)
2m, 2m,

$ The propagators then have the form —~ | g,,—(1—2) ——z—pff-p—'-—)( p2— M?24-iey! for the vector
pi—aMii-ie

bosons and (p2—aM?2+is)™* for the related Higgs and Faddeev-Popov ghosts.

\ s All ec_;_uations areto be considered as sandwiched between the electron spinors #(p,) ... u(p,) (mu(p,)
= meul(p,), u(p:; = u(p)me).



720

and hence

9N\ ve P
r, " F,+9"ysF,+ F,}, 5.4)
(g,‘ q )(7 117 V582 2m, 3) ( )
with
2

F; = Af+ Af.

2M%,

Using the Gordon decomposition we may write the electromagnetic vertex in the form:

g
) vsF 4(q%) +ic™ %o
2m,

2m
I = y¥Fe(g*)+ (7 + (5:5)

where
i
0 = = [F\7]
and
FE=F1+F3, FA=F23 FM=F3.

Since F,(0) = 0 (see Eq. (5.9) below) Eq. (5.5) exhibits no pole at g2 = 0.
According to Fig. 1 we may express the form factors in terms of irreducible amplitudes,
defined by

r
: —ie (y“A’"+y s AYS + L4 T e 4 75A’°°>

2m, 2m

I &L wreamraeam
Lm‘-g. s i(er)My (g A%+ g " A)%)

2:’@-'?‘ : ~(ev)q“Blo,B"' = —(A}5+4q°41)). (5.6)

Including renormalization counterterms we obtain

M" z , 1
Ad = 4T 2a myv: AY2—(ev) ;1—5 o,
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MZ
Af = A2 s AT

q —
A3 = 435,
2 AYZ

= Ao —2m; A¥l, .

(q M ) ¢-D
with the “renormalized” amplitudes
ee .. oe z
AL = A5 +2,+5(Z,- 1)+ — +2a47%(0),
€

AL = ALY+ z,+2bAT5(0),

dAT,
AT = z’o—qzd—;;’m); Z,~1=_(e )z

2

q
A% = AT5- A0~ -W(Alﬁ(M 2= A15(0)). (5.8)
z

Expressions analogous to (5.7) are obtained for the amplitudes 4{. The renormalization
counterterms are all included in 4#. a = sin? Oy, —% and b = § are the vector and axial
vector couplings of the Zee-vertex, z, and z, are given by the electron wave function renor-

. de L
malization factor Z,—1 = z,+z,ys and — is the charge renormalization counterterm.
e

The renormalization conditions are chosen such that the physical particle masses
m;, My, My and m, and the fine structure constant « = ¢?/4r are the independent param-
eters. This' QED like on shell renormalization scheme has been discussed in detail in
Ref. [16]. The parameters sin® Oy = 1—MZ/M2 and v! = e/(2My, sin Oy) are dependent
parameters. The wave function renormalization factors for the external lines are determined
by the LSZ-asymptotic condition for scattering states. Furthermore, the y—Z mixing
propagator is renormalized such that it is diagonal at g% = 0 and at g2 M 2 (see A% in
Eq. (5.8)). Whereas the parameter counterterms are gauge invariant (if properly defined),
the wave function renormalizations depend on the gauge. In our case the latter must
be determined for the singlet field propagators. It is important to notice that ir: the U-gauge
AY(0) = 0, such that no mixing mass counterterm is present.’

PN . €v ..
7 This indicates that our gauge dependent choice b = — —1—‘—4; A}'f(()) for the y-Z mixing mass coun-
terterm is correct. In contrast, Sirlin [16] uses the gauge invariant quantity

gg'—gdg  (e) 1 M3 MY
4 sin’ ow

T T etvgr | Mz ME  ME

which does not even agree in the UV singular terms with our prescription.
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Before we are going to discuss our results for the renormalized form factors,(5.5)
let us add the following remarks: As in QED the form factors are real analytic functions.
The singlet electromagnetic current is trivially conserved by (5.4): ¢,I'; = 0. On the other
hand, the Slavnov-Taylor identity (r(pz)la A*(x)|e~( p1)> 0 yields g, /% =Z(p2)—Z(p,),
for on shell electrons, where X.(p) = #(A+Bys)+m.C is the baie electron self-energy
operator. For the irreducible amplitudes this implies

qZ

A'yee
4m2

A +3 (A% +q%°4%%) = —B(m?) = —2z, (5.9)

This yields the physical condition FA(O) = Ofor the axial form factor. The charge renormali-
zation condition, Fi(0) = 1, determines

oe

— = —(A75(0)+ A3 (0) +z,+5 (Z,— 1) +2aA} (0))
e
el M2 A m?
= 2 (% In —uzi -3—% E g5 In ?i) (5.10)
!

— 2
in the MS scheme (In y? = - —y+I1n 4z, y Euler’s constant, ¢ = 4—d, d space dimensions).
£

The sum extends over the charged fermions (flavors and colors).

We have performed the one-loop calculation for the gauge invariant . form factors
in the singlet field iormalism. The singlet field Feynman rules and some rules for the evalua-
tion of the non-standard contribuiions are given in Appendix A. We have used dimensional
regularization together with an apticommuting y5 [17] in ordsr to preserve the canonical
Slavnov-Taylor-identities. The complete one-loop expressions are somewhat lengthy
and will not be given here. The result of a numerical evaluation of Fg(g?) in the region 1 GeV
b \/ ig?l £ 1TeV is depicted in Fig. 2.

Our main interest concerns the asymptotic behavior of the form factors for large
(spacelike or timelike) momentum trausfers. Terms which vanish in the limit m, — 0
are neg'ected. In order to make clear the origin of differeni kinds of terms we present
the one-loop results for the form. factors (5.5) as a sum

Fo= FY+F2+Fl+F (5.11)

of contributions from loops involving virtual W¥, Z, y and fermions (f), respectively. The
Higgs contributions are suppresced by factoxs mz/Mw and thus may be ignored.
For |g2| > M¢ we find (¢2 = ME/MZ; s2 = 1—c?)

o 'y
F(q®) = ——— {ap+b
(q) 16ms2c2 {"’ T ME

T (019 5\ inpiar—and e 5.12)
+ai1 m ln_”—z" -"'3‘ '—ITEG(q ‘—4Mw) ,0+a,1 Mw ( *
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Fig. 2. Radiative correction to the singlet charge form factor Fg (Egs. (1.1) and (5.5)) as a function of the

momentum transfer V |t (t = ¢?), for a cut off # = 1 GeV. For increasing values of u the region where.

corrections grow rapidly (breakdown of perturbation expansion) moves to the right. The pole indicated

at4/7 = Mz ~ 93 GeV would be there if the y-Z mixing amplitude A‘{Z would not be renormalized according
to Eq. (5.8)

for the “renovmalized” virtual W* contributions in the MS subtraction scheme (see Eq.
(5.10)). Th: coefficients are given by (g(cg) = V421 arcotg Vaci~1)

ago = —32c§ -3 cg+232 2+ 1
—(—32¢5 - 67453‘3'1%: Cg ~H—3c 2)g(ce) ~ 7.972,
bpo = Sco—22—Lcg? > —2.181, ag =1c2-1~ 0120,
tor the charge torm factor Fg, and by
Ano = 8c5—% co+5—(8cs +3* 5 —$—1% 5 P)g(ch) ~ —4.616,
bao = 3 —1—5¢cs2 1076, an = Lci—4 ~0.047

for the axial form factor F,. Numerical values are for s; = 0.217.
On the other hand,

zZ, 2 o iq ‘ q2 n’ . 2 2vpr
Fi(@) = ————167:8:_02 aio+bioIn —- e +5bio|Sp{1+ — i) "% —inf(q” —4m)bio
o z z
(5.13)
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is the contribution from virtual Z bosons with coefficients

apo = —1dcg+21cZ —3% ~ —0.890, bpo = 12¢§—18ca+14% ~ 0.763,
and
dho = Te2 =22~ 0231, bjo= —6c2+% ~ —0.198.

dt . .
The Spence function Sp(x) = — j-;- In (1—xr) is given asymptotically by

7{2 q" 2
5 — —L1n? +irl : M3
sol12 L\ = )6 7 M3 : nM% 7> M
p M% 6“‘ 2

n,z
Y -—-;—ln2<— ::4—9 ; —q% > M3

For comparison the standard QED (virtual photon) contribution to Fg is (¢%] > m?)

2 2 2
Fia®) = {41n——-——21n gt qz PR S
my e Y me 3
q2
—inf(q® —4m?) (3 —21n -7)} (5.19)
my

with m, a fictitious photon mass. The inclusion of the real soft photons in the electron states,
necessary in order to obtain an infrared finite result, will not be considsred heie. Apart
from the infraied problem F{ is gauge invariant and finite.

For completeness we add the fermion loop terms which coms in through the self-
enetgies A]" and 4} According to Egs. (5.7) aud (5.8) we have

fr 2 A'Iz YZ
Fe(q") = —2a e 2(141;): (ev)? z(Au £

2

M
Fi(g®) = -2b M2 (A%, (5.15)

where

b}
(4O = 0, (f)ﬁ(zy- 1)y = 0)

1 o ~ 4mj
~(ev)? F(Ayﬁ £ = 7_;“5‘ g qa;H, (‘F)

S
is the QED vacuum polarisation contribution to Fg and

4 4
= o Yo (1) ()
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is the y-Z mixing contribution. The function Hj is given by

v\ g N1-y,—-1 A
Hy(yp) = 3+ys+ (1+ —f) \/l—yf In——; (H;(0) =-0)
and a, = —q, sin? Oy +% for the upper and lower components of the weak isodoublets,

respectively (g, is the charge of the fermion f). These contributions are given by the stand-
ard expressions which are gauge invariant and finite.

The magnetic form factor F,, vanishes in the limit m, — 0. The leading terms, for
m?2 < M% < |q?|, are given by

o« m? g% ‘
() = —11-1 in0(q> —4M3
M(q) 47CS3 M‘zw[ a M%, +in (q W)]
a m? g3 . aM?Z,
+ e —q—;—[—%+5(ln 78 —m0(q2—4M,?v)) +2I( 7 )] (5.16)
a m? -
FHY(q®) = —5 —5 | (—=20¢; +30—-%2 ;')
8nsg q
2 -2 lg* . 2 2
+(8cg—1249¢; ) { In YE —inb(q* —4my)
Zz
2 7.,:2 ] ]
+2¢72 (sP (1+ -131—2> - ‘g)] (5.17)
z
and
S| 1—y+1 4m?
@) =22 o vizy+t o - (5.18)
r ¢ J1-y Jl1-y-1 q

The function I(y) in (5.16) is given by

1 2
2{arctg—); y>1
_ 2 2 _ ( Jy—l)
10 =5p (1+¢_1-‘y') +or (1—.J1——y) - 1

An important observation is the presence of terms which survive for large |g?| in FX.

From these results we see that the contributions FZ, F] and Fj are gauge invariant
and finite. Beyond that they also agree with the standard R-gauge field result. This is appar-
ently not the case for FY, i.e. this contribution (see Fig. 3) is not ultraviolet finite. Since
the singlet fields formally coincide with the standard fields in the unitary gauge (U-gauge),
it is interesting to compare our results with the asymptotic expressions obtained for
F# in the ’t Hooft gauge as & — oo (unitary gauge limit). In fact, the results agree up to
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charged ghost
diagrams

Fig. 3. Diagrams involving virtual charged bosons

terms proportional to g%/My:

q° M3
4F; = Fiq", 1)~ Fi(@, Dlameo = K- 7 [Cio+csl (1” atin _)] 1)

w I‘z

for aibitrary values of m? and g2 (full one-loop result). The coefficients are

3
bl M
N

n12
N Cit = ai1+% "M“‘z‘ (5.193.)
z

m
5 2 5
T2 S — 36

L 2
s Ca0 = 36 50—

@l

=

ool

&l

CE0 3
z

and 4F,, = 0. Eq. (5.19) also exhibits the full cut-off dependence of F;, and formally, for
2

o= %2— , the divergent parts cancel. A detailed discussion of our results follows in the
w

next section.

6. Discussion

Each of the contributions Ff, F and Ff (Eq. (5.11)) to the “renormalized” electro-
magnetic form factors.(5.5) is gauge invariant and fiaite.and coincides with the standard
R-gauge field result in the one-loop approximation. In contrast, the virtual charged vector
boson term F" either depends on the gauge and has no unitary gauge limit « — oo (standard
cutrent (4.11)) ot it is not ultraviolet finite (physical singlet current (4.10)). The asymptotic
expression for F;", Eq. (5.12), for large |g?| is given in the minimal subtraction (MS) scheme
(see also Eq. (5.10)) and depends on the superficial scale parameter x. Some numerical
values obtained for Fi are presented in Table I.

The short distance behavior is “anomalous™ since, up to logarithms, F; = O(g?)
whereas F; = O(1) for the standard current of canonical dimension 3. The ghost operator
0,, apart from cancelling the gauge dependent terms of the standard current, induces
gauge invariant terms of order O(g?) which are not ultraviolet finite. In view of the non-
-polynomial form of the singlet current (which has no canonical dimension) this seems not
to be surprising. Because of the bad high energy behavior it.seems to make not much
sepse to try to construct a finite singlet current by inventing some renormalization prescrip-
tion for ji -as an external current. All counterterms needed to renotmalize the S-matrix
elements and the standard field Green functions have already been taken into account.
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TABLE 1

Percentage correction of the charge form factor as a function of V |¢*| for different cut-offs # (for comparison
also the Feynman-'t Hooft (¢ = 1) values are given). Values in brackets are for ¢* < 0

VIg*| (GeV) 100 316 1000 3162
Re Fy £ (GeV) = 1 0.5 0.7 ~1.1(1.5) —169116.4) | —201.4(200.0)
>0 Mw |  0.650.6) 0.2(0.2) -3.7(3.2) —69.6(68.2)
@ <0 1000 0.7 (0.5 0.9(~0.6) 3.7(~4.2) 4.8(—6.1)
@=1 0.5 (0.5) 0.2(0.2) ~0.2(~0.2) ~0.5(—0.5)
“q = 00 0.6 1.1 5.3 415
Im FY¥
>0 @=1 0.4 0.4 0.4 0.4

It is obvious that the renormalization conditions for S-matrix elemerts cannot remove ultra-
violet divergencies originating from the ghost-operator 0,, since the latter does not contri-
bute to on shell quartities.

The question to be asked is whether the electromagnetic singlet current as a “local
observable™ is actually observable. For example, we could try to measure the electro-
magnetic form factor of the muon in a p-e Coulomb scattering experiment. The p-e scatter-
ing matiix element is known to have renormalizable high energy .behavior. Obviously
the “anomalous™ singlet field terms (or the corresponding gauge dependent standard
field terms) in the muon form factors cancel upon including consistently all diagrams
contributing to the scattering process to a given order of perturbation theory. This cancella-
tion mechanism for terms of bad high energy behavior in the U-gauge is completely equiv-
alent to the cancellation of gauge dependent terms in the R-gauge [18]. The complementary
of the U-gauge formulation, which is adapted to the physical Hilbert space but not to the
dynamics, and the R-gauge formulation, which is adapted to the dynamics but not to the
physical Hilbert space, has already been pointed out by Kibble [5] and is commonly
krown.

However, there seems to be common agreement, too, that a satisfactory understanding
of the stiucture of quantum ficld theories should rely on a formulation in terms of local
observables [19] avoiding unphysical concepts, like gauge potentials, which necessaiily
lead to mathematical inconsistencies of the basic principles when applied to unphysical
degrees of freedom [20]. For quantum electrodynamics such an attempt has been carried
to a satisfactory stage on a perturbative level only recently [21]. For non abelian gauge
theories, at least for models like the GWS electroweak theory, the above mentioned comple-
mentaiity raises doubts on whether local observables are the prefeired “coordinates” for
understanding all aspects of such models. For dynamical reasons one has to expect severe
difficulties in controlling the short distance aspects in tetms of gauge invariant fields on
which the lattice gauge theory approach or the canonical quantization appioach rely,
for example. Also the stochastic quantization method [22] does not circumvent the problems
addressed here.
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It may be helpful to keep in mind the close resemblance of local gauge symmetries
and the equivalence principle (general covariance) of gravity [23] for a better structural
understanding of non abelian gauge theories.

If S-matrix elements would be the only measurable quantities, the choice of inter-
polating fields to the one particle states (off shell extrapolations) would be rather arbitrary
according to the equivalence theorem for the S-matrix [24] and the quéstion, in terms of
which fields the theory was (equivalcnt(y) formulated, would be essentially a technical one.
In fact, actual measurements always take place within bounded space-time regions and
“one particle states™ are identified as “‘configurations” (prototype: charged particle plus
soft photon cloud) depending on experimental resolutions (and possibly also on assump-
tions about the expected particle spectrum and the 1ange of interactions). Thus, ratber
than S-matrix elements, local observables “near” the mass shell are measured and the
problem of proper off shell extrapolation® of the S-matrix becomes physically relevant,
at least in principle. Rather than trying to give a proper characterization of local observ-
ables we use this term formally for local gauge invariant fields like the electromagnetic
current.

Our analysis leads to the conclusion that “local observables” are physical only in the
low momentum transfer approximation. The detailed one-loop calculation demonstrates
that the electromagnetic form factors are dominated for |g2| < My by the standard QED
contributions (virtual photons and fermionic contributions to the vacuum polarization).
Actually for |g2| S M, the cut-off dependence is insignificant for cut-offs u in the range
1GeV < u S 1TeV. In this approximate sense we fairly well control the local structuce,
which is important to account for the local nature of actual measurements and which
provides the possibility of direct tests of causal space-time properties.

This result is by no means satisfactory. It rather raises a number of questions. The
major question is whether the model uniquely predicts the quantities which are actually
(precisely) measured or which are measurable in principle. This would require the existence
of a class of gauge invariant and finite quantities other than the S-matrix elements.

We should mcntion here, that gauge invariant fields with a decent (renormalizable)
high energy behavior need not be observable. Such fields exist within the GWS model.
In fact the abelian U(1)y field B, has associated a field strength tensor B,, and a conserved
current Jy which are gauge invariant in the R-gauge. Since right handcd fermions do not
couple to W, the physical y-Z mixture B, = cos OyA,—sin OyZ, can be measured, in
principle, on right handed lepton states. However, matrix elements like {eg (p)l7(q)lex (p)>

8 We should point out that the physical interpolating sihglet fields are by no means unique. A physical
composite singlet representation (confinement form) {10] may be obtained by the replacement @p/|Pp|

2
- %—— &y, in the U-gauge singlet fields Egs. (3.7), (3.10) and (4.1). In the R-gauge the composite fields.

2
% Z;, and Wfft are of canonical dimensions 3. Explicitly we have Zj = Z <1+ —9—> , Wﬁ*
v

2
e . .
= Wﬁi (1+ -%) and 9§ = (1+II_ 7) yf in the unitary gauge. v appears as a compositeness scale.
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are measurable only in the high energy limit where chirality is a good quantum number
and provided the one-particle (B) exchange is predominant at the same time.

We cannot exclude the possibility that the actually measured (off shell) quantities
turn out to. exhibit “anomalous” (non renormalizable) high energy behaviour (U-gauge)
or to be gauge dependent (R-gauge) within the GWS-model. This could mean either that
pertutbation theory breaks down for physical off shell quantities at scales u = My, or
that the model is “incomplete™ (a low energy effective form) and should be imbedded in
a grand unified or a supersymmetric theory.

In any case, since the physical off shell behavior need not be “smooth’ at momentum
transfers [q2| X My a study of related problems may be relevant for the analysis of vector
boson processes going on at the CERN pp-collider [25].

We are grateful for stimulating discussions with O. Steinmann and D. Buchholz.

APPENDIX

In this appendix we biiefly comment on some practical aspects for the evaluation
of singlet field expressions. The momentum space Feynman rules for the ghost operator
0, (Eq. (4.9)) in comparison to the composite operator J‘,’,’Y (Eq. (4.6)) and the Lagrangian
vertices, which appear with an additional 4, or Z, field at the vertex depicted are given
in Table II.

The computation of S-matrix elements and Green functions of U-gauge fields (in the
R-gauge) is not very different from standard R-gauge field calculations. The only difference
is the appearance of the composite ghost operators 0, at the external vertices. Since these
do pot exhibit physical one particle poles they do not contribute if the corresponding
external line is set on shell. Thus for lines to be put on shell one uses the standard R-gauge
fields and wave function renormalization factors determined from them. Contributions
from diagrams exhibiting physical lines only (U-gauge diagrams) remauin unaltered. On
the other hand, the standard ghost diagrams in general are accompanied by partners
(generated by @, vertices) which have the effect to change the standard contribution into
a multiple, with a factor depending on the external momentum transfer. We shall illustrate
this for the transversal amplitude used in Sect. 5.

We first consider the y and Z selfenergies. In terms of irreducible diagrams the y(Z)-
-propagator is given by

T(Z@ Y(Z) T(Z@ g Y(2Z) @
A B, Ci D1

(According to Fig. 1 only 4, and C, contribute to I'g, Eq. (5.2)). For the selfenergy parts
this implies

yy: A} = A1+231q2+D1Q4; (Cy = By),
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Feynman rules for composite operators (6,‘ = —lpy; gz =1 Vgt+g* =
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YZ: A} = A, +B(a*—M®P+C,q* +D1q* (> —M3),
ZZ: A% = A, +2B,(q*~MH+D(*—M%)?*; (C, = By.

Obviously the non standard terms (B;, C; and D,) do not contribute on shell.
By inspection of the diagrams one finds that the extra terms may be taken into account
by multiplying the standard charged ghost loop diagrams

¥z (9%
A e~ M
wt o
a) b) c)
by the following simple factors:
(@) (b) ©

7% \? 9% \’ 7\ q°
Y R R R S S
< My My M3,
2 q*—M; 2 \(, q*—Mj : 2¢%— M7
YZ: — o [\ 1- s {1~ |\ 15— TV Y]
M3 M2 M2 2ME, 2MZ—M2 2MZ,— M3

77- (1= qz’_&z 1__q_2_—_]—\4_%_2 1_%@
‘ . 2 2MZ— M2 (M3 —M3)?

Similarly for the yee-vertex the singlet photon diagrams
B e
Y & 0@:
e e
Aj Bj

yield the form factors A; = A;+ B,g?> and the ghost loop contributions B; are included
upon multiplication of the standard charged ghost loops

e
*
; v,
ww-(\ v
A
e

d) e)
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by the following factors

@ ©

g2 g%
yee: I— —s 1—- 5
M3, . 2Mg,

It is remarkable to notice that there are no new diagiams (and hence no new Feynman
integrals) to be considered and that the highly non frivial gauge dependence of the standard
off shell amplitudes completely drops out by a change of the weight factors of ghost dia-
grams. Since the singlet field amplitudes differ from the standard amplitudes only by contri-
butions from external ghost vertices this kind of cancellation mechanism also works in
higher orders of perturbation theory.

We add some technical remarks. Our results could be obtained as well by a straight-
forward U-gauge calculation [26]. However, working in the U-gauge, the high energy
behavior is more difficult to control due to the bad high energy behavior of the vector
boson propagators and furthermore one has no checks ‘on gauge invariance. In the singlet
field formulation one takes advantage of the following points: (i} propagators and internal
vertices are given by the standard R-gauge expressions; (i) the ghost operator terms
appearing in the singlet fields do not contiibute on shell and thus can be ignored for on
shell fields; (i) considering off shell fields, the bad highenergy behavior is isolated in the
external composite ghost vertices and hence can be controlled in an optimal way; (iv) gauge
invariance of singlet fields (off shell) can be checked explicitly (independence on the gauge
parameter «); (v) the pathological Lee-Yang terms [26] proportional to 6%(0), are absent.
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