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In the present paper, the excess and hole 4N-nuclei are defined. For given groups of
nuclei, binding energies and relations between quadrupole deformation parameters § are
considered theoretically.

PACS numbers: 21.10.Ft

1. Introduction

It is very well known that the 4N-nuclei have relatively high stability. In the region
of nuclear masses of ‘4 < 40, the doubly magic nuclei are only the 4N-ones (*He, 0O,
and *°Ca) and 4N-nuclei have also completely filled subshells as 1p;,, (*2C), 1ds,, (*Si),
and 2s,,, (*2S). In the framework of the classical a-particle model [9], it is assumed that
the internal a-particles are harmonically bound in a semirigid molecule structure since the
binding energy of a-particles in the nucleus per the number of bonds between the a-particles
is almost the same for all 4N-nuclei, except of the 8Be nucleus which is unstable. Thus,
the 4N-nuclei are in a2 way distinguished from the others. To investigate the properties
of the nuclear matter it would be helpful to classify the nuclei of 4 < 40 similarly to the
4N-ones, namely, as the excess and hole 4N-nuclei, which are defined as the 4 N-ones with
one excess nucleon and one nucleon hole, respectively. To justify this classification of nuclei
the binding energy as a function of the number of nucleons beyond the magic shells should
be investigated. For these groups of nuclei the straightforward dependences of the energy,
and half life of the f-decay were theoretically discussed in Ref. [3]. The conclusion can be
drawn from Ref. [3] that the specific properties of the nuclear matter can then be found.
In this paper, the shapes of given groups of nuclei are theoretically investigated in terms
of the quadrupole deformation parameter . To obtain the relations between quadrupole
deformation parameters § for the given group of nuclei the angular frequency for the single
particle motion in the deformed potential well and the potential energy of the deformation
should be considered. '
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2. Excess and hole 4N-nuclei

2.1. Binding energy

The straightforward dependences of the binding energy for 4 N-nuclei versus the number
of nucleons beyond the magic shells is shown in Fig. 1. In this figure there are also shown the
graphs for the 4N-nuclei with excess proton (4N). ;, and excess neutron (4N), ,,, and for
the 4N-nuclei with a proton hole (4N)_,, and a neutron hole (4N)_,,. For these nuclei
the straightforward dependences are also observed. The binding energy of the nucleus can
then be written as follows:

B = BQ+NBn, (1)

where N is the number of nucleons beyond the magic shells and B, denotes the mean binding
energy of 1d-2s shell nucleon. The calculated quantities B, and B, are listed in Table I. As
seen from Table I, B, is near the binding energy for the '°O nucleus (127.6 MeV [11]).
The restriction to the 1d and 2s shells follows from the strong change in the relative binding
energy per nucleon for the 1s- and some 1p;;,-nuclei. For the excess and hole 4N-nuclei
B, becomes close to the binding energy for the 4N-nuclei as 2°Ne, 24Mg, ..., if N is lowered
by 4, 8, ... Setting B, equal to the binding energy B,y for the 4N-nucleus of the mass which
differs from the excess and hole 4N-nuclear mass correspondingly on +1 and B, as above,
one can write the binding energy of the nucleus

B = B,ytB,, (2)

where plus refers to the excess nucleon and minus refers to the hole. Here, the agreements
between experimental data [11] and calculated binding energies appear to be within 0.159;
and ~49, for the (4N)_,- and (4N), 1,-nuclei, and within 0.6%; and 6.6 % for the (4N) 4 ,-
and (4N)_,-nuclei. The classification of nuclei into the excess and hole 4N-ones is thus
substantiated.

TABLE 1

Comparison of calculated quantities B, and B, for the different groups of nuclei
Group of nuclei B, (MeV) B, (MeV)

(4N)-1p 121.4 9.3

(4N)—-1n 117.1 9.1

4N 126.4 9.1

(4N)+1p 116.8 9.4

(4N)+1n 122.2 9.3

Experimental data are taken from Ref. [11].

2.2. Quadrupole deformation parameter §

For nuclei, the quadrupole deformation parameter f can be taken from:
1) Intrinsic electric quadrupole moment using the relation for the deformed: nucleus

Qo =~ 0.757ZR?B(1+0.16p), (3)
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where Z refers to the nuclear charge and R is the nuclear radius which is set equal
10 roA1/3.
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Fig. 1. Dependences of the binding energy of the nucleus as a function of the number of nucleons beyond
the magic shells (Z = N = 2), lower line and Z = N = 8 upper line) for defined groups of nuclei. Solid
lines represent calculations. Experimental data are taken from Ref, [11]

The experimental Q, can be obtained from:

la) experimental electric quadrupole moment of the nucleus,

1b) reduced transition probability B(E2, I; — L) [6] for the rotational states excited in
nuclear reactions; for example, the inelastic scattering, and Coulomb excitation.

2) Angular distributions of lnelastlcally scattered particles using the coupled channel
analysis and the DWBA analysns where f is one of the fitting parameters.

3) Nilson’s model quadrupole deformation parameter & [6].

In point 1a), the restriction on the quadrupole deformation parameter § results from the
nuclear spin J and 0 for which the measured electric quadrupole moments are equal to zero,
for example, **N, '°F, 3P ((4N)_, -nuclei), 13C, and 2°Si ((4N) . ,-nuclei). Here, it is neces-
sary to note that the experimental evidence of electric quadrupole moments for nuclei of
A < 40 is incomplete. Large differences can be observed between the quadrupole defor-
mation parameters f§ obtained from point 2). This is the reason why only some results can
be taken into consideration. In the case of point 3), it is very well known that Nilson’s
model predictions give a satisfactory agreement with experimental data of nuclear levels
in the region of nuclear masses of 4 ~ 25. The obtained quadrupole deformation param-
eters B for odd mass nuclei are listed in Table IL. As seen from Table II, the excess nuclei
having one neutron beyond the magic shells (*?’0) and also those having completely filled
2s-shells (33S) have the negative quadrupole deformation parameter f = —0.11 (oblate
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spheroid). For the hole 4N-nucleus (**K) having the proton hole in the magic shells, the
quadrupole deformation parameter f is positive and equals 0.1 (prolate spheroid). More-
over, it is also found from Table II that the negative quadrupole deformation parameters f
are also observed for nuclei having one proton beyond the completely filled proton shell
(Li and 35Cl, except the °F nucleus). If the nucleon hole in the completely filled shell
is observed, then such nucleus has the positive quadrupole deformation parameter f, as for
example, !'B, 27Al and also °Be, 2*Mg. Comparing the results of g for 1ds,,-shell nuclei
(see Table II) with those for the 1ds,,-shell 4N-nuclei (0.47+0.04, 0.35+0.01 [2] for
20Ne, 0.42+0.04 [16], 0.55+0.06 [1] for **Mg, 0.40 [11, 12]. 0.48+0.05 [1] for 28Si),
it is possible to conclude that these parameters f§ are rather close to about 0.4. However
the quadrupole deformation parameter 8 for the 27Al nucleus is near to that for the 32§
nucleus (0.37 [12] 0.304:-0.05 [1]). The results presented in Table II can be theoretically
interpreted in the following way. In the case of the single particle motion in the deformed
potential well, the angular frequency perpendicular w, and parallel w; to the symmetry
axis of the nucleus, can b2 written

0, = 0y(1+5§) “)
and

@y = w1 -%B). 3

The contribution from the deformation to the angular frequency w, for the harmonic
oscillator well is then given by

Ao, = 3 o, (6)
and
do) = —% Bw,. Q)

Let us now consider, for example, the relative ratio of 4w, for the different excess and
hole 4N-nuclei:

(o)), _ B (g)_o_x) _ {f_x(ﬁg)‘“ ®
(dw,): B2 \®o2 B2 \4; ’
where @y, = 41 4713, As is stated before, it is possible to set
Ay = (Agn)i %1 ©®
and
A, = (Auv)zil- (10)

In Egs (9) and (10) plug refers to the excess 4N-nucleus and minus refers to the hole 4N-
-nucleus. (A4,y), and (44y), refer to nearest masses of 4N-nuclei, as is discussed in Eq. (2).
Introducing Egs (9) and (10) into Eq. (8), we have

(doy), &(1 jﬂgx_)m

(do)), B, B (Aan) 1 an
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where
44,y = (Asn)1—(A4n)2- (11.1)
Setting
44 173
@ = o, (1_ Gt 1) (2
and
B =NB, for B,=8, (13)

and observing that the oscillator has the discrete spectrum of the energy, the oscillator
energy

h(4w,), = Nho', (14)

where N refers to a given integer in the discrete spectrum in which the minimum energy
is equal to hw'. It is to be noted that similar result may be obtained for @/;. In the foregoing
discussion, it was found that the quadrupole deformation coefficients § for two different
nuclei are related by an integer N in Eq. (13). As seen from the columns: 2, 3,4, 5,7, 8, 9,
10, and 12 of Table II, this equation is fully justified by experimental data. In the certain
group of nuclei, let us now consider two different nuclei for which the quadrupole deforma-
tion parameter is f. The potential energy of the quadrupole deformation [5]:

V =1cp? 15y

is directly related to the quadrupole deformation parameter f and the energy of the surface
tension in C. For these nuclei the relative ratio of the potential energies of the deformation
can then be approximately written

v, AN\ '
71 - (j) for B, = B.. (16)
2 2

Introducing Eqs. (9) and (10) into Eq. (16), the last equation becomes

2/3
(1, Ade YT an
V, (Asn)2 %1

where AA,y is defined in Eq. (11.1).

As seen from Table II this equation is justified by experimental data for 1d,-shell
nuclei and the pair of nuclei of the 1ds,,-shell (*70) and 1d;,,-shell (33S). It is also observed
for the 1ds,,-shell 4N-nuclei for which § & 0.4, as it was mentioned before. Thus, the same
shapes predicted by B for the given group of nuclei of the given shell and also of different
shells, may be explained in terms of the potential energy of the quadrupole deformation.
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3. Conclusion

In conclusion, it can be said that the classification of the given group of nuclei as the
excess and hole 4N-nuclei is justified. The important property of these nuclei is that the
quadrupole deformation parameters f are connected by an integer N, which is associated
with the discrete spectrum of the oscillator energies. The given quadrupole deformation
parameter f for different nuclei of the given group may be explained in terms of the po-
tential energy of the quadrupole deformation.
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