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It is shown that a previous inclusion of electromagnetic material field in the generalised
field theory using gauge structures is inconsistent with the theory itself. The derivation of
the field equations is reviewed and the full equations of the electromagnetic field are found.
The resulting theory bears some formal resemblance to the non-linear electrodynamics of
Born and Infeld. A new interpretation is found for the Klotz-Russell skew-symmetric tensor.

PACS numbers: 04.50.+h

1. Introduction

Generalised Field Theory, described and summarised in references [1}- and [2] and
abbreviated as GFT throughout this work, claims to be a comprehensive theory of gravita-
tion and electromagnetism.

The electromagnetic field tensor is identified in GFT by:

f;'zv = kR[uv](f)9 (1)

where k is a proportionality constant, Greek indices go from 0 to 3 and R[m(l:) is the
skew symmetric part of the Ricci tensor constructed from the nonsymmetric affine connec-
tion I whose components satisfy identically the four conditions.

r,=1§,=0. @

g = 1 po

The geometrical connection I’ satisfies these conditions automatically if it is given by
Schrodinger’s relations

ri, =ri+%8r, ©)
in terms of another connecticn, I' which can be called ““a physical connection”. The field

equations

R,() =0
(745)
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then include
R[;w](r) = ':2? (Fu,v"'rv,u)' (4)

It is, of course, equation (4) which is the main reason for the identification (1). Rm](f)
is the curl of potential-like vector and therefore exactly a Maxwell-like tensor.

Nevertheless, the electromagnetic theory of GFT is incomplete and it is this problem
that I shall-attempt to resolve in the present work. As Einstein himself observed (Ref. [3]),
a comprehensive theory of the (total) macrophysical field must contain something like
Maxwell’s equations. Indeed, this requirement is the only a priori clue as to what its own
structure should be. On the other hand, we need not expect GFT to yield exactly the equa-
tions of Maxwell’s theory. An equally a priori motivation is for seeking comprehensive
account of the macrophysical fields at all was elimination from the fundamental field
equations of source terms usually expressed by an energy momentum tensor T,,. Such
a tensor (Ref. {4]) must be defined and its components calculated but only after the field
equations are solved in a given geometrical and physical situation. Now, unlike the general
telativistic theory of the gravitational field, classical electromagnetism is given by two sets
of equations

By =J  fiwa=0. &)

Here A" = —h"* (and the current J*) must be tensor densities since otherwise the partial,
comma derivative would have to be replaced by a covariant, semicolon operation. Such
areplacement is usually called the minimum coupling hypothesis and if it is to be an addition-
al assumption, however plausible, it is clearly to be avoided from the structure of a funda-
mental theory. The first and the second of the equations (5) are independent unless a rela-
tionship (e.g. the constitutive relations of homogeneous, isotropic, electrically activ: matter)
between the density b and the tensor fis arbitrarily postulated. This again should be avoided.
The first of the equations (5) resembles the field equations of General Relativity with the
current J* corresponding to the energy-momentum tensor and the continuity equation

Ju=0
to the Bianchi identities or the conservation equations
™, = 0.

The spirit of GFT then suggests that we cannot expect this equation to emerge from the
structure of the theory and that it should serve merely as a definition of J* itself. Then
however, the connection between the “material” tensor (density) k (related to the bivector
(D, H) of classical electromagnetism) and the intensity tensor f (bivector (E, B) is irretriev-
ably lost unless the theory contains some equations which determine the former.

The complete electromagnetic field theory of GFT resembles then necessarily the non-
linear electromagnetism of Born and Infeld (e.g. Ref. [5]) in which likewise the current
vector or vector density is defined a posteriori. All the same, this conclusion now follows
from the general nature of GFT rather than from purely electromagnetic considerations.
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It may not be out of place to mention at once a curious inconsistency of the Born-Infeld
theory. In the spherically symmetric case, they obtained a nonsingular intensity field

R r)4 o ©)
a "3 I'o
but a singular, Coulomb induction

Dr= 2 (7)

Although the Born-Infeld theory leads, and this is its main attraction, to finite self-
-energy of a point charge at rest, through an arbitrary choice of the Lagrangian it cannot
avoid the above singularity in the field itself. Since point charges are in any case little more
that a mathematical fiction we may well ask whether the result concerning self-energy
is really sufficient to establish its superiority over Maxwell’s theory. In fact, the induction
vector D is usually considered as referring to the field inside eleétrically active matter while
the intensity vector subsists outside material sources or charges which give rise to the field.
Since the spatial origin of the coordinate system is invariably chosen in the former region,
say at the centre of a spherically symmetric source, we can say that this point is never
reached by the field E. Hence, it should not matter if E is singular there but it may matter
if D is.

It seems therefore that from an abstract, field theoretical point of view, the relations
(6) and (7) should be reversed and we shall find that this indeed is the conclusion of the GFF
electromagnetic theory.

Returning to the main problem of what the latter should be, Mclnnes and I (Ref. [6])
proposed a solution based on the fibre bundle techniques. We shall consider in the next
section, the reasons why the resulting theory is unsatisfactory as far as GFT is concerned.
Roughly speaking, it implies necessarily that GFT itself is incomplete as a theory of the
total macrophysical field. While it must be readily admitted that GFT is incomplete in the
sense that it lays no claim to include essentially quantum mechanical, weak and strong
interactions (see Ref. [7] for a discussion of the relationship of GFT and the electroweak,
GUT etc. theories), its cosmological implications (see concluding Section) in particular
make the above conclusion inadmissible. In Section 3 we shall review the variational deriva-
tion of the GFT field equations including the “‘metric hypothesis” that the symmetric
components of the connection are the Christoffel brackets

~ A
vy = {ﬂ"}a (8)

constructed from a symmetric tensor a which is the metric tensor of the space-time. We
shall use I itself as (one) set of the variational parameters. Here, some repetition of pre-
viously published material is necessary to see that GFT does in fact contain a complete
theory of the electromagnetic field and nothing else apart, of course, from the gravitational
field. When symmetry of the field is restored, GFT collapses into General Relativity but
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it can be shown (Ref. [8]) that it contains also the New Theory of Gravitation of Moffat.
Sections 4 and 5 are devoted to a detailed discussion of the problem of electromagnetism
based on the static, sphetically symmetric solution of the field equations which happens
to be their only general solution discovered hitherto. In Section 6 we turn to a problem
which will enable us to decide finally on the form of the electromagnetic field laws. Origi-
nally, the tensor f given by the equation (1) replaced in GFT an earlier (Refs. [9, 10])
expression,

Wyy = g aﬂg Luovol;aB (9)

for the electromagnetic intensity. In equation (9), ¢ is the nonsymmetric total field tensor
and the subscript “0” indicates that covariant derivatives are to be taken with respect
to the symmetric part of the connection I'. The Russell-Klotz tensor w is the curl of the
potential I', only up to the second order in the expansion

where g the Minkowski tensor diag (+1, —1, —1, —1) but this is enough for both f and
w to lead to the same equations of motion for a charged test particle. Solution of the problem
of motion of (Ref. [2]) was of course, the starting point of the investigation which led to
GFT. w has been hitherto left out from the structure of the theory. However, we shall
find that this tensor plays after all a part in the description of the electromagnetic field.
Finally, in Section .7, we summarise the GFT laws of electromagnetism.

2. Critique of the “nonsymmetron” electromagnetism

It bas been suggested in Ref. [6] that the field equations of nonlinear electromagnetic
theory should be

Thy, =0, (10)
and
qu,ll = 09
where
r, = R[”,](f')-f-pg[m],
W = \/:—g—[auﬁg(av)+avag(uﬂ)_auﬁavm]Faﬂ,
p = 4 [Ro+k FooF™] (1)
and
g = det (g,,).

Here the tensor F,, is the curl of gauge potentials (if the gauge group G is chosen to be
the abelian U(1)) and 4R; is the dimension of the gauge group.
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Equations (10) are derived from a variational principle on the product space
M x U(1),

where M represents the base manifold which is the space-time of macrophysics. The pro-
cedure of erecting a fibre bundle over M acted upon by a hypothetical (that is one whose
structure must be postulated) gauge groups G (here, the electromagnetic U(1)), is legitimate
enough when one seeks an extension of the fundamental theory which is supposed to
describe the physics in M. Since, at present, we have no recognised method for determining
the structure of G other than guesswork, it follows that the resulting theory effectively
abandons the requirement or expectation that GFT should encompass a complete theory
of the electromagnetic field. Unless this is explicitly demonstrated, we cannot accept the
conclusion. In other words, GFT should be shown to be incomplete before the necessity
of invoking fibre bundle methods becomes admissible. Logically, the situation is the same
as seeking five, or more dimensional theories (in which there can be little doubt that there
is enough freedom for including gravitation, electromagnetism and perhaps anything else
we may feel like to include) before it is proved that a four-dimensional theory must fail.
Since Ry, too is the curl of a vector which can for no reason be the same as the vector
defining F,,, the nonsymmetron theory encounters the difficulty of explaining the physical
nature of these multiple potentials. Moreover, the first of equations (10) implies the ex-
istence of yet another potential. When thetefore the factor p is constant, as it clearly can be
for some F fields, gi,,, itself bzcomes, from the first of the equations (11), a curl of a vector.
This restriction of the field g on the base manifold (macrophysics) by a condition on the
gauge field is again difficult to understand. A less serious, but different problem arises from
the relation between the tensor F and the density W required by the fibre bundle method.
The second of the equations (11) gives

Wy = 00, W* = \/ —g [6%g5+ 6288~ 68621F
and
QW™ = v/ — g [606%+ g8l — 608 1F

since both the metric @« and the symm- tric part of the field tensor g are necessarily non-
singular, the former by definition and the latter because GFT must collapse into General
Relativity when it is the only field present. We have also written

2 = 58"
Since, as we can easily verify,
gﬁgg = 52.3
it follows that
gl#[acv+g(cv)] W“v = \/_g {5:+g;]F 7
Hence, the relation between the tensor density W and the tensor F is invertible iff

det [0, +2°,] = 0.
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On the other hand, we know that this determinant tends to zero in the weak field
approximation and, maybe, for other fields as well. In itself, the above is not a destructive
criticism but only a limitation on the possible solutions. However, it is more difficult to
understand the “limiting” condition

RG g O[F"\. - 0]

needed to ensure the validity of the derivation of the equations of motion. It means, in
effect, elimination of the gauge group and a return to tht manifold M alone. If therefore
the complete electromagnetic theory can be derived only with the help of gauge invariance,
GFT itself cannot be complete. We run into a further difficulty by having to use the magnetic
solution in constructing the nonsymmetron model of the charged particle. It is certainly
true, as stated in Ref. [6] that the magnetic solution is an acceptable solution of the modified
field equations (i.e. when the metric hypothesis is included in the lagrangian: see below).
But the latter happens also to be a solution of Moffat’s theory (Ref. {8]) which has been
correctly associated with a pure gravitational field. We cannot have it both ways. Indeed,
Moffat’s theory fits neatly into GFT as it stood before the nonsymmetron article but not
into its modified form. Because this correspondence explains also the negative result of
Infeld (Ref. [11]) in connection with Einstein’s original version (Ref. [12]) of the non-
symmetric unified field theory, it is clearly preferable to seek completion of electromagnetism
within  GFT. The gauge construction can then be reserved to account, if necessary, for
more complicated fields.

3. Field equations of GFT and the variational principle

It is well known (Refs [13, 14]) that the Ricci tensor which is automatically Hermitian
symmetric (Ref. [13]) or double transposition invariant (the condition which Einstein
interpreted as representing charge configuration invariance of the physical laws of the
macroscopic level of experience, thus giving the nonsymmetric theory a firm, phenomeno-
logical foundation; see also Ref. {2] for a discussion of the underlying concepts) has the
form

R, = = W5, +[143a, 4+, [Wy o + W, ] — o Wo + W ]
+ W, W2, —2(1+ 30, )W, WE,, — 303 W, WS,

—o(1+3a,) [W:owﬁg“f' W:g%‘:’] - 3{%‘*‘9‘1]2 We W (12)

Here oy and o, are numerical parameters and the coefficients W,fv, with respect to which
the Ricci tensor is Hermitian, are related (Ref. [15]) to the components of the affine con-
nection by

W:v =T ﬁv+ AN [6‘:1: ("m)—-éif ¢(’va)}

2(9at, + 60, +2)
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6o, +1
2(15a, +4)

Ao Apa
5vr(uc)+6nr(w)

2

— 18T, -5, .
+ 3(9a1+6a2+2)[ W= 0T] (13

Hence, in particular (there is a minor misprint in Ref. [15])

3 .
|/ Ap——— S
@) 2150, +4) “”

1

R — ] A} ol ) 4y
" 2(9a1+6a2+2)[ (uo) u] (1 )‘

We may note that the relation between the physical and the geometrical connections
and W is
ri, =Th—%6ir, = Wh+1 (60, + 1),
=3 8MW, — 3oy + 1)EEWG,y +(Boy + 30, +1)5,W,. (15)
The condition that equation (15) should be soluble for W in terms of I is
4 = (152, +4) (92, +6a,+2) = 0. (16)

If the connection I" were not given a priori (by the relation (3)), all that we could obtain
from the equation (15) would be

I+, = 3 (150, + &)W, — % (9o, +6a, +2)W,. an

We have mentioned in the Introduction that our aim is to use I" rather than W as one of the
variational parameters, the others being the field g or the associated density é = \/ ~g9

[in components, g*' = ——gg“"], and the metric tensor a. Because of the equation (17),
the procedure is not without some difficultics unless we actually know that

r,=o. (18)

Of course, equation (15) (or for that matter, equation (3) cannot be solved for W in terms
of I alone, that is, without the vector I' .« appearing as well (and this is the main reason
for calling I' a physical conpe .tion: vector I'* is proportional to the electromagnetic four-
-potential). We overcome this difficulty bccause of a remarkable consequence of the
transposition algebra. ,

To see what happens, let us now turn to the variational principle which leads to the
generalised field equations. We assume that the latter follow from

s I [é’"va + Apuaﬂv;l] =0, (19)
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where the semicolon derivative is calculated with respect to [, It is because a,,,,

is explicitly introduced into the Lagrangian that we want to express variation of the Ricci
tensor with respect to I" rather than with respect to W. For the moment, as in Ref. [15],
we shall regard the coefficients (components of a tensor density)

Auv). Avn}. (20)
as Lagrange’s multipliers. We write in the first instance,
§ [RW08" + g0R,,, — [A* ) + AT Ty + A* ) ]8a,,

=g APAST8, ) — e AP OTG, 1y 4 @ 164777 = 0
or
 [R,,08" + NYSWE— A ba,,
— A AT 0y — 0, ATy + a0 4P%] = 0 (21)
remembering that A4 is a tensor density and not a tensor. Here
Ni = = (1430 0] [84,05+ £7,0%]
+a [ o83+ 8 o83+ 84 Why+ 87 Wi = 2[1 + 30,18 WG
—[1+3a, 18 [ Wipd; + Wap5] — 30 (8" Wiy + £ Wai]
20, [1+32,] [§HOWaS + §O WS
[+ 8 WS+ WA @)
Using equation (13) we find fhat the variation in I', gives
Nkl =0, (23)

However, a straightforward calculation shows that the coefficients N,** given by the
equation (22) are independent of I',. Consequently, in carrying out the variation we can put

6o, +1 -
W= I L [8H¢,,)+021C,)
2152, +4)
Wim = T+ 2(W) (83 ey — 85T Gy )s
3 ~ 3 ~
We = _— -~ f° W, =———-— I (24)

@) T (150, +4) ¥ TF T 29, + 60, +2) O
and with T as the variational parameter, readily obtain the fizld equations

R, (=0 N¥), =0, a,,;=0 4",=0. (25)
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A comment here is required. The expression (12) of the Ricci tensor in terms of Wis possible
only if it is a priori constructed from the connection I with which W itself is in one to one .
relation. The name “physical” which we have given to it comes about only with our attempt
to interpret the field equations themselves whan the first, the vanishing of the Ricci tensor
expressed in terms of I', becomes equivalent to the equations

R(uv)(f) =0, R[uv](f') = % [ru,v_rv,u]’
In addition to equations (25) we also have

N‘(,ﬂ") -— K[Ng“")5; + sze)az] - Auvuaaa - A”avaaa = 0

or
AR qpdy _ gie N K[Nf,"")a"" + sza)aul], (26)
where
_ 6&1 + 1
T 2(150,+4)

The symmetry condition (20) enables us to solve equation (26) in the usual way to give
finally

A = § [@“NGP +a " N¢P — a** NIV] - KN a", (27)
Using Einstein’s notation with I as the affine connection, we can readily show that
Ng» = g%, —[1+30,] [g4% .0, + 2%2,.8],
N® = —(150, +4)g42 .. (28)

Moreover, equation (23), which in any case is included in the second of the field equations
(25), is equivalent to

g1, =0 (29)
Thus
g’*“z;n = é(fo‘);u' = éua;c+éaﬁfgp,
and we can write the solution for A*"* as

A = L[, 4 @GR, gt grge) ] (30)

to which the much more complicated expression given in Ref. [15] is equivalent. The
purpose of including multiplier terms in the variation (19) was to derive variationally the
“metric hypothesis™

a,w;z[f fpz)] = 0; 31)
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For this to follow, an “independent” variation in 4*** has to be assumed. If now the expres-
sion (30) is inserted a priori into the variational principle it becomes necessary to postulate
formal independence of A*** (now retained only as a convenient notation) and of a,,.
Alternatively we can let

A =0
after carrying out the vaiiation itself. In either case, we obtain

ge, = 0.

Since it is also not difficult to show that the equation

NP =0
is equivalent to
gui =0,
we end up with the weak field equations of Einstein and Straus (with I', as the potential):

R =0, Ry =3%[1,,~-1,,], £4%,=0 (32)

together with the identities (29) and the metric definition (31). Frcm the macrophysical
point of view there are no other equations to be found unless one abandons the original
variational principle. The metric hypothesis remains a superimposed definition, shown
previously (Ref. [2]) to be the only one consistent with the principle of Hermitian symmetry.
The full set of the GFT equations: (32), (29) and (31) is now the basis in which we have
to find the complete laws of the electromagnetic field.

Let us note that the last of equations (32) and equation (31) imply that

[e, = (nv=gy,=(vV=0a), iev—_gav—a (33)

so that \/—g is necessarily proportional to the space-time volume. This identity enables
us to resolve an otherwise considerable ambiguity in defining physical quantities such as
a current density vector.

We can say that the relation (33) is all that remains in GFT of what I called a strong
geometrisation principle of General Relativity in which components of the metric tensor
are identified with gravitational potentials and the curvature of the space-time explicitly
gives the gravitational properties of matter.

4. The problem of electromagnetism

The space-time in which the macrophysical electromagnetic and gravitational fields
subsist and which correponds to the complete field equations of GFT, is a Riemannian
(or rather, pseudo-Riemannian) V, with the metric

ds® = a,,dx"dx". 33)
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The physical fields themselves are represented by the sixteen components g,, of the non-
symmetric tensor g. This does not mean, say, that it should be possible to point to g, and
claim that it is a radial component (of gravitational potential tensor), or to 8123 that
it is a component of magnetic induction vector or of electric intensity. Indeed, we know
that g,,, cannot be the electromagnetic (intensity) tensor because such identification
neccessarily leads (Ref. [11]) to equations of motion of a supposedly charged test particle
in an electric field but without a Lorentz force acting on it. All that we can say is that the
field tensor g together with the vector I', represents the total macrophysical field. It is to be
determined from solutions of the field equations but its components need not bear any
direct resemblance to the known partial fields of physics. On the other hand, it GFT is to
have any physical credibility, the partial fields themselves must be perceivable somewhere
in' the structure of the theory.

Thus, we must expect for example that, paraphrasing the words of Einstein: something
like Maxwell equations should emerge from the comprehensive account. If however, there
is to be any possibility of an empirical verification of the theory, and especially a local
or laboratory scale verification of it, this “something” should not be exactly Maxwellian
electromagnetism nor for that matter, exactly the gravitation of General Relativity.

We have already observed that both sets of Maxwell’s equations should be contained
in the field equations of GFT but, it is then self evident that material or the first set of the
equation (5) can only represent a definition of the current density. They cannot, so to say,
gratuitously drop out from the field equations. In other words, if the identification of the
intensity tensor of the equation (1) is retained, and we can see no way how it could be altered
without creating an unsurmountable problem of what the Maxwell-like field R;,,,, () might
mean the complementary set of the electromagnetic field equations must be of the form

", =0,
where k a tensor density. The clectromagnetic field laws would then be

i;‘”,v =0, f(ﬂv,l] =0, fnv = kR[pv](f);

with the current density vector j* defined suitably in terms of k or £. It is then obvious
that the electromagnetic theory of GFT is necessarily nonlinear and more of the
Born-Infeld than of a Maxwell-like appearance.

At first sight, the identities (29) are an alluring candidate for the missing set of the
clectromagnetic equations. We shall find presently however, that their unqualified adoption
as field laws leads to difficulties. There is another reason why the classical electromagnetism
of Maxwell does not fit the comprehensive field theory. The standard Maxwell theory
without the constitutive relations between material and intensity vectors is given by the
equations

B?, = j* [assuming B** = —h™], £, = ¢, .~ Py
where, with latin indices going from 1 to 3, the field vectors are identified as

B, = fij» Ex = fio, h® = Dy, b = H,; i, j, L cyclic 1, 2, 3;
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and the potential and current are

¢p = (—¢: A)’j“ = (on)
If partial derivatives are replaced by covariant (minimum coupling hypothesis) the first set
becomes

B, =j* or k*,=J*
with

NI A N g S

All this, of course, is elementary. It is nevertheless important to observe that before con-
stitutive relations between the tensors b and j are imposed, and this can only be done a priori,
that is without reference to a specific kind of electromagnetically active matter, by a hypo-
thesis, the first set of Maxwell’s equations is little more than a definition of the current
satisfying the continuity equations j°,, = 0 or J° , = 0. Similarly, if o= Lemrb Jap> Where
& are the Levi-Civita premutation symbols, the second set of Maxwell’s equations can

be written as F**,, = 0.
Of course,

i 1 —-1/2 :
P = 4 (=) 26
is a tensor, the converse relation being
, N
fnv = 'i'\/_gsuprap'

Let us note also the following. The identification of the field vectors above assumes Carte-
sian coordinates. If we go over to polar coordinates:

[xO, xl’ xz, x3] - [xo’, x}', xz" xs‘} = [xo, r, 9’ ¢]’

the tensor transformation laws

ox*  ox’ ox*  oxF
’ = — ’hlaﬂ — huv

Tab = 557 T T ox*  ox’

give
for = — sin 8 cos ¢E,-+sin 0 sin pE,+cos 0E;) = —E,,
and
1
B2 = [sin @ cos ¢h?3 +sin 6 sin ph>! +cos 6h'*] = .

r?sin 0 r?sin 9

Let us now recall (Ref. [2]) the only known general solution of the field equations (29),
(31), (32) namely the spherically symmetric, static, solution:

a,, = diag [o, —a, —1r%, —17 sin? 6], (34)



797

with

ré 2\
g=1+c¢ [5 -1, as=(1--],
r Fo )

and ¢ and r, constant, while

e 0 0 0
0 —«a 0 0
EBv=10 o0 -8 fsing |’ (33)

0 O —fsin@ —pBsin®0
with

Br+s*=r* and f=?—\/;g——].

]

Since the only surviving skew compcnent of the Ricci tenscr in this case is:

it follows that the constant ¢ cannot vanish without the field equations collapsing into
the strong field equations of Einstein (Ref. [12]) related by Mcffat to the theory of a pure
gravitational field and yielding no Lorentz force in the equations of motion.

We see that for this solution /—g = ./—a. If now we lower tensor indices with the
metric tensor a as required by GFT,

- -
F,, = a,a,F

then, tentatively identifying f;v as the electrcmagnetic intensity, so that

S € Rpp(D) (37

(this amendment of the identification (1) appears to be necessary since we expect the solution
to correspond to a radial ficld and so the “2-3” component must be converted into the
“0-1" one), we obtain

Fi3 = (-8)—”2022‘133f01-
Hence, in polar coordinates

2
r
Fu3 = kesin @ = f,,r? sin 0 /1— =
ro

Joi= —E, = ——=—r, (38)

or

where k is the proportionality constart in the cquation (37). 1 have claimed previously
(Ref. [2]) that the static, spherically symmetric soluticn of the field equations leads exactly
to the Coulomb law so that identification of the electromagnetic vectors must be changed
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a priori with f;; = E etc. suggested long ago by Einstein himself. Exactness of the inverse
square law was in fact one of the main reasons for the cosmological interpretation crucial
to GFT (a Coulomb law with an apparent cut off at r = ry < +cc makes sense only if ry is
the finite radius of the observable Universe!). Do we have to change this conclusion?
The answer is no, at least not if instead of r we take the radial coordinate to be

r

F= 39
\/ = (39)
11— —
"o
previously called the cosmological or global coordinate. Then
r ke
Jor = c—i—ffm = 7z = —E; (40)

and the exact Coulomb law is recovered except that the cut off now occurs at infinity.
However, the identification (37) is questionable for another reason which we shall consider
in the next section.

5. The electromagnetic problem continued

We are now faced with the following problem. If R[,,v](l”) is directly proportional to
the electromagnetic intensity tensor and the theory collapses into General Relativity when
the field g,, becomes symmetric (equations

guv,l_f‘zzgav“—f:vguo =0,

then immediately imply that f‘“v is likewise symmetric: actually, we can still have Moffat-
-like theory because I need not be symmetric as well unless I', = 0), and if GFT is to include
. the full electromagnetic field, the identities

é[uV],v =0

clearly refer, at least in some sense, to the latter. No other conclusion can be reasonably
drawn.
For the static, spherically symmetric solution (34), (35) we have

V—a=+v—g=ao(f>+p>sin o (41)
and
(1o 1
—1/a
B fcosecll

&= TR T 7R @

_ JScosec 8 _ B cosec® 0

i f2+52 f2+ﬁ2 ]
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whence

. r 2 [
g = — —and ¥ = - = \/1— -. (43)
o Fol' ro

For the “global” radial coordinate (39)
233 {23} 2
g2 = g3 (r) = - ——coseco. (44)
ror
Hence the related radial component of the (electromagnetic) vector is given by

. 2ror
V, =g sing = — 2>

(45)

ra+r?

and vanishes both at the origin and at infinity.

Now, the problem of motion requires the static, spherically symmetric solution to
correspond to an electric and not to a magnetic field. Since we have also tentatively related
the tensor F to the intensity field, there appears to be no choice but to regard

V, =D, (46)

ie. the radial component of the electric induction vector. However, we find that this
identification leads to a conceptual complication with reference to the total charge in
the GFT universe.

Let first

*
8lap1 = I \/-a saﬂuvg[m]' “n
Raising indices with the metric a,,:

xleo] ez of  *

g = a%a" g,

we define, as indeed seems to be the only possibility open to us, the current by
1 [aa]
== [V—a g, @8)
—a

¥f this is so, the charge density becomes

1 dfdr ,/— 441
N dr(dr\/ “8

and the total charge ¢ (or charge excess) in the universe is

o0
3 Joo

8nrar
4 [—a gt gp = 0 | =
7% ”Jd( dr ) T

[¢]

(49)




760

In other words, the inevitable conclusion from the above identification is that globally,
the universe is electrically neutral. In itself, this would not be fatal result. Previously
(Ref. [16]), the apparcnt charge excess (which, because of local consideration, had to be
negative) was regarded as responsible for the expansion of the universc.

In a way, the present result seems to confirm the subsequent claim of my then coauthor
(Ref. [17]) that the static solution (35) or rather the metric (34) is a neutral solution anyway.
Vlachynsky obtained his interpretation by transforming th: GFT metric into a Vaidya
solution of Genceral Relativity usually regarded as representing the gravitation field of
a rotating black hole immersed in a Schwarzschild background. However, Vlachynsky’s
interpretation is based on a misunderstanding. In particular, it ignores two crucial results
of GFT, namely the solution of the problem of motion of an indisputably charged particle
and the appearance of the Coulomb law in the structure of the theory. The point is that
the meaning of the Vaidya solution depends on the standard interpretation of General
Relativity which is rejected in GFT. Hence to say that a particular solution (requiring non
empty field equations)'is, for example, a biack hole has no more right to being accepted
than that this solution should mean something totally different in a different theory.

All the same, the GFT world could still be neutral. The clectric charge density at
a given distance from the origin does not vanish and globally its positive and negative
values could balance out. Local charge could be responsible for the observed expansion
but the neatness of the original interpretation would be lost irretrievably. Before resolving

this question, let us digress somewhat and review again both the identification of Ry,,,(I’)
and of the old, Russell-Klotz tensor.

6. The Ricci and the Russell-Klotz tensors

Let us first review the reasons why R[m(f ) is a suitable, electromagnetic field tensor.
The geometric affine connection [” is given in GFT in terms of the field tensor g and
its first derivatives by the equations

gfv_;l = guv,)._f:).gav_f:vguo =0 (50)

(which are easily obtained from the variationally derived g%, = 0). Similarly, the Ricci
tensor constructed from I is

Ro(I) = =I5 o4+ 008~ I, (51)

Since equation (50) implies that [, = {In./—g}, so that Figyw = ey, it is easy
to see that

R[uv](f) == ~€{,‘(‘,’1;‘" (52)

It is an immediate consequence of Schrodinger’s definition (3) of the “physical” connection
I' which incidentally (definition (3) was chosen to achieve just that) guarantees I~“,‘ =0,
Eq. (2), and is responsible for the symmetric components in equation (51), that Ry D)
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should be given also by the equation (4). Suppose now that we expand the field g in a power
series of a “small” parameter €:

por (31) Sy = My, 87y, +0(E), (53)
and
g = " +eH"+2Y"" +0(&). (54)

Assumption that the field tensor is O(¢°) the Minkowski tensor #, is forced by the require-
ment that GFT should contain General Relativity. The above expansions then correspond
to the “weak field approximation” in the latter. The same reason leads us to the further
assumption, namely that A, = h,, or that g is symmetric O(¢!). From a physical point
of view, this is equivalent to the empirical fact that an interaction between electromagnetic
and gravitational fields is locally difficult to observe (General Relativity is an excellent
heo ry of pure gravity) and has not been discovered hitherto.
It now follows readily from

1o

g8 = 8780 = &,
that
H* = —n""hy = —h", (55)
say, and
YE = "0y e+ 0" hy = —y™+B*h,, (56)

tensor indices being raised and lowered with the Minkowski tensor . Then Y*V = — y0
+h*h,” and YU =yt
a

Therefore
8 = ek +6"[ — Y+ 1h, + YT+ 0[], (57)
Because also
-~ L 2
rs, = el +e g, + 0[], (58)
it follows that
1 1 .
r:u = er = % nvk[hlv,u'i'hul,v_hnv,l]’ (59)

2
L

1 A 1 A
twn = 317 Davat Yoy = Van,ad =5 B [Rayuthusy—hy, 1]

1
=3 ’1”[)’(;.\;),,4 + Yo=Yl =h T f}w)a (60)

and, what interests us most,

2
r?uv] = % ndl[y[lv],u + y[ul],v + y[yv],i.l (61)
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The identity (2) immediately implies that

2

Fu = ’lcly[ul],a = 0 (62)
and then

Riwi@) = =3 1"Viwner = 3 O Vs (63)

where (] is the D’Alembertian operator.

1t is this result which guarantees (Ref. [10]) that the tensor R[“,,](f) should lead to the
correct equations of motion of a charged test particle. However, the same result holds also
for the Russell-Klotz tensor

@y, = \gaﬂg[gg];aﬂ (9)

and for an infinite class of tensors which satisfy the equations of motion condition. The
whole class need not be explicitly considered because relation of its individual members
with the electromagnetic field becomes progressively more tenuous. They may represent
in the order of approximation higher than second, conceptually “possible” particles while
electromagnetic field itself is regarded as the simplest differential vector field. That it occurs
in Nature is then a direct consequence of Ockham’s simplicity postulate. On the other
hand, the form of w appears to throw light on the interpretation of the skew part of the
field tensor although its meaning has not been hitherto adequately explained in GFT once,
on account of the equation (4), Ry, (") was adopted as the intensity tensor @ was, so to
say, left hanging in the air together with the original insight (Ref. [9]) into the interpreta-
tion of the non-symmetric theory. We shall now show that far from being a curiosity, the
presence of @ is essential to the resolution of the problem of the missing set of Maxwell’s
(or Maxwell-like) equations.

1n this Section, we shall confine ourselves to the calculation of o for the static spheri-
cally symmetric case of the GFT field equations given by equations (34) and (35). Somewhat
unexpectedly, but entirely in comformity with the ideas of GFT, we shall be led to a further
modification of the tensor @ itself.

The metric of space-time (a pseudo-Riemannian manifold) corresponding to the above
solution is expressed in the global coordinates by

ds? = ydf?—y lo’dri—rledQ?, (64)
where
2m crg rg
=l-—=1+—, 0=,
y r r rg+r?

dQ?* = do* +sin? 6d¢?,

and we have dropped the distinguishing bar over r. Since we do not require a scalar contrac-
tion of w in the present work, the notation w for the factor in equation (64) which distin-
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guishes it from a Schwarzschild metriccann ot lead to any ambiguity. The solution for
the field tensor g now becomes

Boo =Y 811 =~y 0% g, = g;;cosec’h
ror’[ro—r’] 2r3r3sin 0
== [r(2,+r2]2- 5> 823 = —g32 = W . (65)

The nonzero Christoffz] brackets, which are also the symmetric components of the
geometrical affine connection I', are

{23} = cot 6, (66)

where dashes denote derivation with respect to r.

A rather tedious but straightforward calculation now shows that the only relevant,
nonzero second derivatives of g,3, are

1 . 2 1 .
8razpo0 = 00 8rz3p1s  8r23nus ={8{23];1],;"2 12 82351 11 823515

1 1
823322 = {22} 82332 %22} Br2331

1 .
823333 = — 33 (82113 + 8r2331)s

and

1 _ 2
8ra23x1 =g[23];1—2 12 L2315 8311z = 12 8r23y

It is interesting to note that both

823523 & 0= 8r23332- 67
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(In the above, the covariant derivatives are with respect to the Christoffel brackets.) We
also have

B _ a,
g g[gg];aﬁ = —8 ﬂg[gg];aﬁ (68)

which has been used already instead of the original definition
O = 8”8y

of the tensor w in Ref. [9], which was not skew symmetric. A non-skew clectromagnetic
field tensor would be too much of a departure from Maxwellian theory to contemplate.
Equations (67) show also that in the case of the solution (64) and (65) it does not matter
whether we write

— B _ PR 7
= c?nv =8 g[gg];aﬁ Or Wy, = By, = 4a g[gg]:aﬁ' (69)

Close to the origin, the tensors @, and @, are indistinguishable. Indeed elementary calcula-
tion shows that ' :
dror*[r+cro] [3ra+7*] sin @

[r2+r]? ’

6:’23 =

12ror?[r+crg]
Wy = ———5———8in 0. 70
223 [r(2)+r2]2 ( )
Since either of these is V,r? sin 0, where V, is the radial component of the electromagnatic
field vector, we find in both cases that for r — 0,

12¢
V,=— (71)
To
and V, -0 as r - o0,

Let us postpone to the next section the decision whether V'is to be identified with
the electric induction D or the elcctric intensity E vector. However, we can settle at once
the choice between the two tensors (69). In GFT tensor indices are raised and lowered
with the help of the metric tensor a and not with the field tensor g. Since either form (69)
of w gives the same equations of motion result, it is clearly preterable and more natural
to choose @ as field tensor. Thus, we finally adopt for the latter

@ = a”gpuap (72)

So far, of course, we have only a hint that it represents in fact the electromagnetic field
or part thereof.
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7. The electromagnetic field of GFT

In the electrodynamics of Born and Infeld, nonlinearity is expressed by a relation
between the material and the intensity field tensors, (D, H) and (E, B) in the 3-dimensional
notation, and follows from a postulated (nonlinear, and in fact irrational Lagrangian).
The electromagnetic theory demanded by GFT is likewise nonlinear but in a somewhat
different sense.

Since the problem of the equations of motion requiresthat one of the field tensors
Juv € R[M(f ), with dash donoting merely that it should be calculated in polar coordinates,
we can easily restore the exact Coulomb law into the theory. In fact, for the static spherically
symmetric solution of the GFT field equations, the only nonzero component of f’ is
f23 ¢ csin 6.

If therefore, we agree to write

Bk =f0ka .fij = Eka iaj’ k = CYCHC la 2’ 3’ (73)
we get for one set of the electromagnetic field equations

‘R[”VI,\; = 09 (74)
where

R = V—a a"a"f,;

suppressing a possible proportionality constant R™'), of course, is a tensor density. Then
E, oc 1/r? as required. We have seen also that equation (29), g®1, = 0, is, within the
structure of GFT, th: only possible choice for the missing set of the electromagnetic field
iaws, analogous to the first set of Maxwell’s equations though without the current. On the
other hand, we have rejected the simple identification of gl as the tensor density corre-
sponding to the material tensor because of the difficulty concerning the residual charge
in the universe and its possible influence on the expansion of space time.

This leaves little option but to write (again without a proportionality constant which
can always be inserted)

D, =w; and H, = wg, (75)
with w,, given by the Russell-Klotz expression
®,, = a“"g[%]w. (72)

Considerations of the last Sections now show that corresponding to the static, spherically
symmetric solution, we. have

r+roc

D oc ——.
"R+ )R
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Equations (29) can now be seen to look somewhat like Maxwell’s equations expressed
in terms of the Hertz potential

H crlaZ divZ
= curl —, = div Z,
o’ ¢

except that, of course, Hertz’s solution refers to the wave region of the field whereas our
law must be regarded as holding quite generally. This is possible if, in accordance with
the program of GFT, we require current density to be introduced by definition in exactly
the same way in which an energy-momentum tensor

Df ~
T, = —Gav[r:h)]’ (76)
where G, is the Einstein tensor constructed from thesy mmetric part of the geometrical
affine connection. It is shown in Ref. [2] that the energy momentum tensor then necessarily
involves a nonzero cosmological constant. An analogy with the definition (76)now suggests
that we should write
1

SHV vap
§ = __as“ Wyp

and define the current by

g:
=3

v

Since this is a definition, no minimum coupling hypothesis (MCH) which we certainly
do not wish to impose in GFT, is involved but again we obtain a zcro charge on the universe.
To resolve this problem, we must go back to Maxwellian electrodynamics in the curved
space-time of General Relativity determined by equation (76) rather than by the metric
hypothesis. There a curious situation arises (Ref. [18]) with respect to the alternative
identifications By = f;; or D, = w;; of the electromagnetic field vectors. In the standard
first case, the second set of Maxwell’s equations is automatically covariant but the current
definition, with

(0. J) an

being a four-vector requires at first sight MCH. This can be remedied by the equivalent
insertion of v/ —a. In the second case adopted above the situation is reversed and it is the
second set of Maxwell’s equations which seems to call for MCH while the first is automati-
cally covariant providing both the current and the field are tensor densities. In General
Relativity of course, it does not matter which choice we care to adopt. If, however, we want
to avoid MCH rigorously in GFT then we must identify this four component quantity
(77) with a vector density and not with a vector. Thus, the required current vector density
becomes

I* = ks, (78)
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where
s = L0, = —aw®, 9
and

J* = (0. ), (80)
and k (in (78)) is a constant of proportionality. In particular, we now have s°! =
V-ao = w,3 and ¢ = 5%, = 3—235 For the metric (64) (that is in the universe) the

To
total charge then becomes

fres

— ridr
q= JQ\/—[’ drd0d¢ = 48kr0nfm = ]27[2k =e, (81)
0
e
if ===
127*

Thus finally, the laws of the electromagnetic field in the generalised field theory are given by

g™, =0, 29)

R[M].v =0, (74)

=T (78)
T

with the field tensors proportional to R[,w](f) and, under the identification (75), to

@, = a“”g[gg];w, 72)

8. Conclusions

Generalised field theory is a geometrical account of the total, though strictly macro-
physical field consisting of gravitation and electromagnetism and exhibiting the global
interaction between them. We shall discuss elsewhere (Ref. [7]) its relation to the current
unification theories which are more quantum mechanically oriented. What we have sought
and found in the present work was an answer to the question whether GFT was sufficiently
comprehensive to include the full electromagnetic field equation. That it does, turned out
to be the consequence of insisting on not importing into its structure of extraneous and
unnecessary assumptions such as the minimum coupling hypothesis or gauge fields, and
of retaining the cosmological interpretation with distinguished GFT from the original
nonsymmetric theory of Einstein and Straus (Ref. [13]). The result is an electromagnetic
theory similar in form to the nonlinear electrodynamics of Born and Infeld. However,
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its interpretation in terms of Maxwell’s field vectors (viz. equations (29) and (72)) is consider-
ably more complicated and this is the price for what might be called the logical purity of the
argument employed in determining its structure.

We have seen in Section 2 that the previous attempt (Ref. [6]) to include all electro-
magnetic equations was inconsistent with the comprehensiveness requirement of GFT.
To the discussion described therein, we can add an observation that it is difficult to see how
equations (10) and (11) should reduce to Maxwell’s electrodynamics in a first approxima-
tion. Since the latter can be expected to correspond to a symmetrisation of the field, the
reduction is self evident in the present account. Equation (29) which characterises GFT
electromagnetism then disappears, a nonsymmetric connection still allows the definition
of the intensity tensor even if not by Ry,,;, but of course, the material tensor has to be insert-
ed, so to say, by hand. There is no room in GFT for the constitutive relations which are
also extraneous to the fundamental theory.

An interesting consequence of excluding additional assumptions is the need to regard
Maxwell’s four-quantity (g, j) as a vector density rather than a vector. The distinction is of
course trivial in a flat space-time and immaterial in General Relativity but, as we have
seen it does matter in GFT.

Apart from the introduction of the current vector density (:quation (78)) which is
a question of definition, we have shown in Section 3 that the electromagnetic field equations
follow readily from a variational principle. This cannot be said about the full field equation
of GFT without smploying either a very artificial Lagrangian or allowing the equations
themselves to become complicated beyond any hope of leading to tractable solutions. On
the other hand, retention of the “metric hypothesis” (equation (8)) as a restriction on the
domain of possible solutions is hardly reprehensible. From the point of view of geometrisa-
tion of physics, it is a law which tells us how the geometry of space-time is to be determined.
It is shown in Ref. [2] however, that it is not a hypothesis but a theorem which follows
from the basic representation of physics in the theory. It is then questionable whether its
inclusion in the variational principle is necessary at all.

The discussion of the present work is based exclusively on the static, spherically sym-
metric solution of the field equations. I shall consider consequences of other symmetries
in a separate publication. In particular, cylindrically symmetric fields can be expected
to provide us with a GFT model of such things as the Ohm’s law and perhaps lead to a result
making possible a laboratory verification of the theory.
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