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The quasi-relativistic equations of Cowan and Griffin have been derived from the
Dirac-Hartree-Fock theory. The one-electron integrals used in both methods are examined
and a close relationship between them is established. It is argued that using nonorthogonal
orbitals within the quasi-relativistic Hartree-Fock method is correct and in fact necessary.
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] . Introduction

It is now well established that for both light and heavy systems relativistic effects
bave to be taken into account in order to bring an overall agreement between theoretical
and experimental results [1-9]. Many different methods are currently being used fo1 relativ-
istic calculations of atomic and molecular systems and they account for relativity in one
way or another. Of these the variational method based on the Dirac-Coulomb Hamilto-
nian, i.e. the Dirac-Hartree-Fock (DHF) scheme [10, 11], treats relativistic effects most
thoroughly and forms a starting point for a perturbative inclusion of the Breit and quantum-
-electrodynamic corrections [3, 5-8]. This approach is very suitable for atoms but — due
to the variational collapse — fails in the case of analitical calculations for molecules. This
is why the methods employing the second-order Dirac equation have recently been devel-
oped [12-14]. Perturbative methods on the other hand rely on the Pauli Hamiltonian [15-17]
and because of its approximate character can only be used to describe motion of the valence
electrons in light systems in which self-consistent effects are small. ,

The relativistic Hartree-Fock method of Cowan and Griffin (CG) [i8, 19], which
belongs to the class of quasi-relativistic methods [18-25] falls in between the variational
and perturbative schemes. It combines advantages and discards drawbacks of both the
DHF and perturbative methods. First of all the CG method operates strictly within the
nonrelativistic framework of the Hartree-Fock (HF) method for atoms. As a result the
number of radial functions needed to describe an atomic system is significantly reduced.
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Besides the method employs the modified relativistic corrections from the Pauli Hamilto-
nian in the one-particle equations. This feature allows one to incorporate the relativistic
rearrangement of orbitals during the self-consistent-field process. In the CG method the
spin-orbit correction is omitted from the quasi-relativistic orbital equation and therefore
the total wave function can be written in LS coupling instead of jj coupling characteristic
for the DHF method. This is a very desirable feature of the quasi-relativistic method since
most atoms and fons in their ground states are well described by LS coupling. Results of
various calculations made within the framework of the CG method [18-25] have shown
that this method is capable of reproducing the major relativistic effects and yields total
energy, orbital and excitation energies, spin-orbit parameters, oscillator strengths, r-! and
r-2 mean values in good agreement with the DHF results. Recently it has been successfully
used to calculate interaction between external fields and atoms [26, 27] and also to calculate
total cross-sections and phase shifts in electron and positron scattering by heavy atoms
[28]. Also by means of the CG orbitals relativistic effects have been included in molecular
calculations [29-32].

Pyykko commenting in his review paper [2] on the use of the quasi-relativistic method
wrote: “The theoretical justification of the quasi-relativistic method is not clear but the
results must be deemed good”. What seems to be most obscure in the quasi-relativistic
approach is the very fact that the apparently nonorthogonal quasi-relativistic orbitals are
manipulated within the HF scheme which assumes strict orthogonality of orbitals. Also
the absence of small components from the self-consistent-field process has so little effect
on the quasirelativistic results as compared against the relativistic values. It is rather
surprising especially when one notes that the small components of inner orbitals of heavy
atoms can hardly be considered small at all. For the 1s orbital of mercury (Z = 80), for
example, the ratio of radial part of the small component to the large one is 0.32 at the
origin and is nearly constant throughout the range. Therefore small components should
not be treated as small and their absence in the quasi-relativistic formalism should produce
a marked effect. But the above mentioned results of the quasi-relativistic calculations exhibit
no sign of such expected deficiencies.

In what follows we will try to clearify these points and give a rationale for the quasi-
-relativistic Hartree-Fock method. We begin with pointing out approximations necessary
to reduce the DHF one-particle equations to the corresponding quasi-relativistic ones.
These in turn simplify into the CG equations when the spin-orbit correction is omitted.
We further show a close relationship between the one-electron integral in both schemes
and give reasons allowing us to interprete the quasi-relativistic expresion for total atomic
energy as an approximation to the relativistic DHF one.

2. Quasi-relativistic Hartree-Fock equations

Within a single configuration approximation the equations of the DHF method
take the form [1]

N
opdi—2c[1+(E;" V)2 ]y, = jZi Eijx;le, (1a)
*
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N
opri—(EXT =V P )dijc = — ; Eijgjle,
j#Ei

(i=1,..,N). {1b)

¢; and y; are, respectively, the large and small components of the one-particle bispinors
y;; ¢ is the vector of the Pauli matrices and EPF — the relativistic orbital energy of the
i-th electron. The total potential ¥°F = ¥, + V& — V'PF is the sum of the nuclear (—Zr),
Coulomb and exchange potentials, respectively. Let us evaluate y; from Eq. (1a) neglecting
nonhomogeneous terms due to the off-diagonal Lagrange multipliers E;; and the nonlocal
part of the exchange potential. Thus, approximately, the small component reads

% = Bapgi/2c, 2
where

U= 1+ (EPT-VDD)2c”

with VPF = V,+VEF — VOF being a local approximation to the potential ¥°F [33-36].
Now the small component can readily be eliminated from Eq. (1b). After some manipula-
tions the following 2nd-order integro-differential equations for the large components
¢; can be obtained:

P2+ Vo +VE = V)~ EF (32)

~(1/*) (7"~ VP")*+ B(pV,"")p—io B[ (pV:"") % p] (3b)

+(1/e?) (EPT =W 0T = ViD)i¢s (3¢)

Z Ej¢; (3d)

+(1/2¢HEPT — PR ): EXé¢;,, (i=1,..,N). (3e)
Jj#i

The left-hand side of the above equations comprises: (i) operators familiar from the
nonrelativistic HF equations, (3a); (i) the one-particle relativistic corrections, i.s. the mass-
-velocity, Darwin and spin-orbit terms, respectively, (3b), and (7ii) the relativistic correction
due to nonlocal part of the exchange potential, (3c). The right-hand side sums up contribu-
tions due to the orthogaqnality constraints imposed upon the one-particle wave functions
;. It can be seen that in addition to the term (3d) which has its analog in the HF equations
there is also the relativistic correction to the off-diagonal Lagrange multipliers (3e). However
the terms (3c¢) and (3¢) may be discarded since thay are of the same order of magnitude as
terms which had not appeared in Eq. (3) because of the approximate character of Eq. (2).
Note that in the case of configurations leading to zero-diagonal Lagrange multipliers the
system of equations (2) and (3) with terms (3¢c) and (3e) being neglected is exactly equivalent
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to the equations of the Dirac-Hartree-Fock-Slater method, i.e. the local exchange approxi-
mation to the DHF method. In the general case Egs (2) and (3) are an approximation to the
equations of the DHF method. If, in addition, the small components are neglected in Eqs (3)
then the following set of the quasi-relativistic Hartree-Fock (QRHF) equations follows:

N
(P R+VaA VE-VI)-EF + V[V 1} s = Y ETGy, (i=1,..,N). (4
J#i

‘The two-component functions ¢; being their solutions are referred to as the quasi-relatii/istic
wave functions. They can be taken exactly in the form of the Pauli spinors. The small
components no longer enter the Coulomb and exchange potentials. This is denoted by
superscripts QR added the corresponding symbols. Since the quasi-relati\(istic potential
Vor contains the spin-orbit term solutions of Eqs (4) are classified by j? and j,
operators.

Quasi-relativistic wave functions are taken to form both the Coulomb and exchange
potentials and so to allow for any practical application of Eqs (4) one has to know
how to normalize them. The equations of the DHF method are obtained from the
variational principle under assumption that the orbitals are mutually orthogonal and
all are normalized to unity. As a result the total energy expression assumes a simple
form and the total relativistic wave function is thus normalized in accordance with
its statistical interpretation. The above assumptions, however, are not essential and
could be relaxed leading to analogous but computationally more complicated scheme.
But Eqs (4) for the quasi-relativistic orbitals that approximate the large components of
DHF spinors have been derived from the standard DHF equations. So one could argue
that the quasi-relativistic orbitals should be normalized accordingly with small components
taken into account. But since small components do not appear in the QRHF scheme
explicitly the problem of normalization is not at all trivial. Thus to complete the formula-
tion of the QRHF method one has to find out, firstly, how to normalize the quasi-relativistic
orbitals and secondly, how to compute the total energy within the QRHF method. As it is
shown in the next section the most consequent approach is to take {¢;|¢;> = 1. In this
case the probabilistic interpretation of a one-particle density is retained and the correct
energy expression results.

3. Total energy in QRHF method

Egs (4) have the form of the nonrelativistic HF equations with the additional local
potential Vor which takes into account the relativistic effects. This potential modifies the
nuclear potential ¥,. Consequently the one-electron integral in the CG method has been
‘taken in the form 18}:

I® = (PR 2+ V,+ V[V 162, )

where ¢ means that (P®|p®) = 1. The two electron integrals have been evaluated
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as in the nonrelativistic case with‘the quasi-relativistic orbitals instead of the Hartree-Fock
ones. But in order to fulfil the requirements of the HF method, the quasi-relativistic orbitals,
used to evaluate total energy according to such modified expression, should be orthogonal
and normalized to unity. This is the reason why Barthelat, Pellissier and Durand [22]
orthogonalized the quasi-relativistic orbitals before constructing the total potential and
evaluating the total energy. But as the derivation leading to Eqs (4) shows, thé quasi-
-relativistic orbitals cannot be orthogonal and their ex post orthogonaliqation is in fact
unjustified. In order to be consistent one should start with the DHF energy expression
and apply to it the quasi-relativistic approximation.

The two-electron integrals are functionals of one-particle densities: for the Coulomb
integrals exactly and for the exchange ones approximately. As has been shown in [37]
the Dirac one-electron density o is very well approximated by the corresponding quasi-
-relativistic density ¢ obtained from a quasi-relativistic wave function normalized to unity.
This normalization assures that the part of the small component being proportional to the
large one is implicitly taken into account. For the nodeless functions. (15,2, 2ps)2, 3ds)5;
etc.) the quasi-relativistic density includes nearly the whole contribution due‘to the small
component (in the case of relativistic and quasi-relativistic solutions for the Coulomb
potential — Z/r both densities match exactly [38]). As the model calculations for thorium
shows [37] in these cases ratio (o° — g)/® is of order 10-2 in the entire range. For the otherl
orbitals a greater contribution of their small components are not included when g is evalua-
ted. The ratio is 10-2 in the main maximum region of ¢° and (1-5) x 10-! near the origin
where the contribution of the small component to the relativistic density is largest. Since
the DHF and QRHF orbitals are determined mainly by the one-electron density distribu-
tion the relativistic orbital densities are well reproduced by their quasi-relativistic counter-
parts, i.e. ¢°F &~ o®. The results gathered in Table I may serve as an indirect illustration
of this property. Note that the orbitals ¢; approximate the large components of the DHF
spinors and in consequence cannot be orthogonal. Thus the density ¢ is defined in terms
of the nonorthogonal quasi-relativistic orbitals.

TABLE 1

Comparison of DHF and QRHF r—* and r? mean values for two configurations of U+87

15225%2p, 1, 1522522p, 2

DHF a0 DHF 4°

1s 123.39 —0.03 123.44 ~0.05

'y 2s 32.20 ~2.18 32.23 -2.19
2 32.01 ~2.08 23.72 0.03

1s . 0.01358 0.0000 0.01358 0.0000

orry 2 0.05469 0.0008 0.05464 0.0008
2p 0.04402 0.0007 0.05340 0.0000

2 A = value (QRHF)—value (DHF).
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The one-electron integral of the DHF method is
EF = (ypideap(B— D+ V, iy, 6

where v, is a bispinor. In principle one can use Eq. (2) and eliminate the small component
from Eq. (6). However, it is still needed to ensure a proper normalization of the large com-
ponent ({pld)> +{x/x), = 1). Eq. (5) has been set on a basis of rather intuitive considera-
tions [18]. Yet it turns out to be a proper quasi-relativistic limit of the DHF expression.
Eq. (6). In order to prove this let us start from Eqgs (1) which yield the following:

I, = {yiicap+(B—Dc+V,+ Vv

N .
= P+ 3 B (= (il +Culx) = B+ LY, ©)
j#i
where VOF stands for V2F — VPF. Combining the above expression with the definition
of IP¥, Eq. (6), we have

IPF = —(plVE >+ EXT+ LY. ®)
Similarly Eq. (4) and Eq. (5) lead to
I = =< @FWSIPT>+ X+ L. ©)

Now, in order to establish a relationship between I7F and I® we have to know the value
of AE, = EPF — E® + [PF _ L Comparison of Eq. (4) and Eq. (3) (without the terms 3¢
and 3e) shows that AE; can be evaluated as

AE; = (QEWEF —VE+ V[V ] = Var[V] 182 (10)

by treating the above integrand as a perturbation in Eq. (4). This can be done since gP°F ~ ¢@®
holds for all the orbitals. Thus combining Eqs (8), (9) and (10) we arrive at the following
relationship between the one-electron integrals, namely

Y = IR =<l VE 1w +<NVET BT + (T AVrl D
= IR+ AL, + AL, (11)

where AVop = Vorl VT 1=Vl V¥, 1y = — [ VEF dodr, AL, = [ AVgodr and
Ao; = @PF — o, Al is in fact the two-electron integral which depends upon Ap rather
than ¢ or ¢°F. We already know that 4¢ is about 2 orders of magnitude smaller that
o°F or o®®. This in turn makes Al;; small compared to {v;|VEF |, being itself a small
fraction of IPF. Moreover, a closer inspection of 47, show that it depends on integrals
whose integrands are proportional to either (EPF —E*)/c? or (VPF — ¥, ®)/c2. Thus we
conclude that I® should provide a very good approximation of I°F.
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Now, considering the two-electron part of the total energy it is straightforward to show.
that

CpilVER ) = (BEIVEIBTD + il Vil — <@ VSR I Gy
+ [ Vi o+ (Var — V3D o}, (12)

where V¢, = Ve— Vi, The difference between the two-electron integrals is due to integrals
which depend on either nonlocal part of the exchange potential ¥V, = Vi~ ¥, or on
4¢. All these integrals are thus small and so we see that one- and two-electron contribu-
tions to the total relativistic energy are well approximated within the QRHF approach.
It must be noted again that these considerations apply only under the assumption that
¢ approximate the large components of the DHF bispinors. Thus ¢2® have to be left
nonorthogonal during the self-consistent-field procedure and should be normalized to
unity to yield the approximate relativistic orbital densities. This normalization is very
desirable since on the one hand it allows one to retain the standard interpretation of a one~
-particle density and on the other hand it makes the QRHF one-electron integrals to be
a good approximation to their DHF counterparts. In order to illustrate approximations
involved in the QRHF method the results of the relativistic and quasi-relativistic calcula-
tions for 15?2s?2p, ,, and 1s?2s°2p;,, configurations of U+87 have been compared in Table II.

TABLE II

Comparison of DHF and QRHF calculations for two configurations of U+®7, I(nl) and E(nl) denote one-
-electron integrals and orbital energy for nl electron, respectively. Total energy is given together with its
one-electron, Ej, Coulomb, Ec, and exchange, E,, contributions. All values are in atomic units

1522s%2p, /2 1522522p3;2
DHF A2 DHF a2
I(1s) —4861.04 —-1.08 —4861.06 -0.89
1(2s) —1256.61 0.56 —1256.66 0.51
12p) —1256.22 0.27 —1088.78 —0.66
E(1s) —4716.18 —4.05 —4722.09 —-2.39
E(2s) -1177.61 —1.62 —1179.21 —1.46
EQp) —1165.84 —3.54 —1013.49 ~1.05
E —13491.50 —-0.76 —13324.22 —1.43
Ec 280.17 —17.47 265.11 —4.93
Ex —11.13 0.41 -9.77 1.26
Ey —13222.47 —7.82 —13070.15 -5.09

2 A = value (QRHF)—value (DHF).

4. Conclusions

Starting with the DHF equations we have derived their QRHF analogs which lead
to the quasi-relativistic orbitals being the approximate large components of the DHF
spinors. It has been shown that although the quasi-relativistic orbitals of the same symmetry



T8

are not orthogonal the total energy within the QRHF approach is to be calculated by means
of the standard HF expression with (i) modified one-electron integrals, (i/) without the
contributions due to small components but (iif) with the quasi-relativistic orbitals normali-
zed to unity.

Although the QRHF method could in principle be used as an alternative of the DHF
scheme we do not think it would offer much advantages. It seems quite obvious that the
minor numerical simplifications would not outbalance an inevitable loss of accuracy.

The widely used relativistic HF approach of Cowan and Griffin [18, 19] belongs to the
class of quasi-relativistic methods. In fact due to the negligence of the spin-orbit term
in the quasi-relativistic potential the QRHF method reduces to the CG one. This in turn
means that the quasi-relativistic potential is formally allowed to appear in the HF equations
provided the orbitals are allowed also to be nonorthogonal. Thus the considerations of the
present paper have given the theoretical justification of the CG method. The QRHF method
provides the link between the DHF and CG methods and mainly to this reason it has been
analysed in this paper.

The author wishes to express his thanks to Professor J. Karwowski for his stimulating
discussions and constant encouragement during the course of this work.
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