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DIRAC PARTICLE IN FOUR SPECIES

By W. KROLIKOWSKI

Institute of Theoretical Physics, Warsaw University*
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We establish a formal correspondence between the Duffin-Kemmer-Petian equation
for a spin-0 or spin-1 particle and the Dirac equation for a spin-1/2 particle existing in four
species. We hint at the possibility that any elementary Dirac particle appears necessarily
in four such species (which might be identified with four fermionic generations).

PACS numbers: 11.90.4+t, 12.90.+b

The well-known Duffin-Kemmer-Petiau equation for a free spin-0 or spin-1 particle
can be written in the form [1]

[z (1 +yD)p,~M]y =0, | Y]
where (3f) = (B;, Ba), i = 1,2, are two mutually commuting sets of Dirac matrices,

iy =2¢", DhLnl=0, )
so that

i =9"'®L ¥ = 1@y ©))

with () = (8, fo) and 1 denoting the usual 4 x 4 Dirac matrices and the 4 x 4 unit matrix,
respectively. In fact, the Duffin-Kemmer-Petiau matrices can be represented as
B" = Hy5+7y5) [1]. Note that such a representation of f* leading to Eq. (1) may enable
one to interpret the Duffin-Kemmer-Petiau particle as a formal limit of a tight system of
two Dirac particles carrying equal momenta p, = p, = 1 p and equal effective masses
m =m, =3 M.

In the present note we ask what happens with Eq. (1) if (*) = (B, ), i = 1,2,
instead of being commuting, become now two mutually anticommuting sets of Dirac
matrices,

{}’l?, )’;} = 2g"d,;, @
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so that they can be represented minimally as the 16 x 16 matrices
=181 ¥ =1’ (5)
with y® = i%'y*y>.
It is easy to see that in this case the 16 x 16 matrices I'* = L (¥} +7%) satisfy the

V2

usual Dirac anticommutation relations
{r*, ry =2g" (6)

and so define a reducible represehtation of the Dirac algebra. Thus the equation

1
[\—/5 (v'{+?§)pﬂ—m] py=0 ™

describes now a free spin-1/2 particle carrying in addition to its spin and chirality some
other internal degrees of freedom giving rise to four internal states. Evidently, Eq. (7) is the

Dirac equation for a free spin-1/2 particle existing in four species.
In order to describe these species more precisely it is convenient to introduce the 16 x 16

‘matrices ['* = —\715—()"1'—)12) satisfying the anticommutation relations
{r*,r"} =0, {r~,r} =2g" ®)
Then, changing properly the representation (5) we can write
r'=y'Q1 I =y ©®)
In this representation Eq. (7) assumes the familiar form
@*'pu—m)y =0 (10

with y* being the usual 4 x4 Dirac matrices. Here, the second 4-valued bispinor index of
.y is free [2]. It is evident that Eq. (10) transforms covariantly under two commuting Lorentz
groups generated by the matrices

A, =TIT* = ,®1,

I, =TI’4, = o,®1 (11)
and

A, =TT = 1Qaq,,

3 = TI'%4; = 1Qg0,, (12)
respectively, where

I’ =ir'r'rir® = y°’e1 (13)
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and
FSI = irOrrltr21r31 - l®}’s, (14)

while a, = y°y* and o, = y%%, k = 1,2, 3. Only in the case of the first of these groups
there exist in Eq. (10) orbital variables, x* and p*, so that the total generators of these
Lorentz groups are

i
Jpw=1L,+ T [r,r,] 15)

and
’ i ’ ’
Jy = 7 (r,,r,l, (16)

respectively, where L,, = x,p,—x,p,. The first Lorentz group describes the bebaviour of
our Dirac particle in Minkowski space, while the second is responsible for the existence
of four species of this particle.

The covariance under the second Lorentz group must be spontancously or explicitly
broken if the masses of four species are to be split. There are no a priori reasons why such
a covariance has to be maintained, since the second Lorentz group does not act in the
physical space-time where the theory of relativity holds. In particular, there are no a priori
objections to try to interpret four species of the Dirac particle described by Eq. (10) as
four fermionic generations, three of which being already observed as the leptons e, p, T
and v,, v,, v, and the quarks d, s, b and u, ¢, t (?). The effective mass operator if introduced
into Eq. (10) may break the second Lorentz group as follows:

m = mo‘—mlrs"‘mzzg“*'msrs’Z;, (17)

where my, m,, m, and m; are mass-dimensional constants, while y° = diag (1,1, -1, — 1)
and o3 = diag (I, —1, 1, —1) are to be used in I'* and X}, respectively. In the case of
charged leptons, where

m, 0 0 O
0 m, 0 0

m=181, m, 0 |’ (18)
0 0 0 m

®
Eq. (17) gives
m“,+m,-+-n}”+me = 4dmy,
Mmy+m.—m,~m, = 4my,,
my—m.+m,—m, = dm,, _

my,—m.—m,+m, = 4ms, (19)
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thus m, > m; > m, > m;. The hypothetical mass relation {3]

mg,— m, m,—m

= £~ (3.99)° (20)
m,—m, m,—m,

holds if m, —m, = (m$—m%)''2%. Then m, ~ 28.5 GeV is our prediction [3] for mass of the
fourth charged lepton (for analogical predictions in the case of quarks cf. the second
Ref. [3]).

In conclusion, we established a formal correspondence between the Duffin-Kemmer-
-Petiau equation for a spin-0 or spin-1 particle and the Dirac equation for a spin-1/2 particle
existing in four species (which might be identified with four fermionic generations). This
Dirac particle is described by such a reducible representation of the Lorentz group in Min-
kowski space that corresponds formally (when Eq. (4) —» Eq. (2)) to the familiar reducible
representation describing a Duffin-Kemmer-Petiau particle.

The above correspondence, though formally interesting, cannot be considered as
a convincing argument for the physical applicability of the Dirac equation (10) constructed
along this line. In such a situation an intriguing question arises, whether our Clifford
algebra defined by Egs (6) and (8) (implying four {ermionic species characteristic for Eq.
(10)) could not be justified on some profound level of the elementary particle theory. In
this note we would like only to hint at such a possibility. .

To this end let us imagine that there is a really close analogy between the first (or
particle) quantization level of the elementary particle theory and its second (or field)
quantization level. According to this analogy we should be able to expre\ss all dynamical
variables and observables appearing on the first quantization level in terms of some novel
annihilation and creation operators being functions of the four-vector index u = 0, 1, 2, 3.
(In an analogical way we are able to express all dynamical variables and observables ap-
pearing on the second quantization level by the familiar annihilation and creation operators
being functions of the four-momentum and polarization.) So, on the first quantization
level we should have to our disposal the Bose-Einstein-quantized annihilation and creation
operators defined by

[ew),c" W] = -, [ew),c(m]=0 (21)
as well as the Fermi-Dirac-quantized annihilation and creation operators determined by
{aw,a "M} = g}, {a(w), a(} = 0. (22)

Recall that g** = diag (1, —1, —1, —1) and g} = 6%
In terms of ¢(u) and c*(u) we can construct one canonical pair of orbital variables,

co(w)+c*(u) s Lew—c T
\/2 P T l\/2 ’

where 4 is a length scale. Note that all x* and p* are Hermitian [4]. From Egs. (21) and (23)
we obtain

n

X A

(23)

[(x,x] =0, [x*p]=—igl, [Pup]=0 (24)
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and hence p, = i0/0x". We can see that the representation where c(u) are diagonal is here
analogous to the so called coherent representation frequently used for bosons on the
second quantization level when their collective states are considered.

In terms of a(u) and a*(u) we can build fwo Dirac-type variables [5],

= g0, = ) -g"a O e3)
Note that I'® and I are Hermitian, while I'* and I'*’, k = 1, 2, 3, are anti-Hermitian.
From Egs. (22) and (25) we get our anticommutation relations (6) and (8). ,

At this point the pertinent question should be ask’ed, what are the physical objects
annihilated (created) by the first-quantization annihilation (creation) operators c{u)
and a(u) (ct(1) and a*(u)). At the moment we are able to answer this exciting question
only in a formal way: they are novel Bose-Einstein and Fermi-Dirac quanta whose states
{u) are fully characterized by the four-vector index x4 = 0, 1, 2, 3. The occupation numbers
for the states |u)> are eigenvalues of the operators c*(u)clp) or a*(u)a(y) [6]. The correspond-
ing simultaneous eigenstates span the first-quantization state space for any individual
elementary particle which, therefore, can be considered as a collective state of our first-
-quantization bosons and fermions. We leave to the Reader’s imagination the possible
physical aspects of the first-quantization quanta. In the present note we wanted only to hint
at the idea of such quanta.

In conclusion, under our hypothesis on the first-quantization annihilation and creation
operators we derived the anticommutation relations (6) and (8) providing the existence
of four species for any elementary Dirac particle because, by our hypothesis, it can be
described by c(u), ¢*(u) and a(y), a*(u) treated as dynamical variables.

Finally, we would like to.mention that udder our hypothesis the physical space-time
arises from a background dynamics, rather than being an a priori arena of physical events
[7]. Such a dynamics is based on the Bose-Einstein annihilation and creation operators
() and c*(u) which define via Eq. (23) the space-time coordinates x* for any elementary
particle. Note that for eigenstates of x = (x*) we get the formula

% = X nye ¥R T] (/7 2%n3) ™ H, (441 2), (26)
= k
where n, = 0, 1, 2, ... are eigenvalues of c*(k)c(k) and H, (x*/4) denote Hermite polyno-
mials, k = 1, 2, 3. In fact,
Hmy = (7 2n 1) 2T DT (xR, (%)

since through Eq. (23)
i + 1 1 2 . 1 k2
z[c K)e()+3] = 7\ Apc + FERS (28)

and so it is the energy of a one-dimensional harmonic oscillator of mass 1/4 and zero-point
frequency 1/4.
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