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The quark-antiquark plasma near equilibrium is studied. The results are based on the
Heinz kinetic equatfons with the Boltzmann collision operator approximated by a relaxation
term with the relaxation time, 7, treated as a small parameter. Linear in t solutions of these
equations are used to calculate the transport coefficients: the non-abelian version of Ohm’s
law and the shear and volume viscosities. We introduce new chemical potentials which deter-
mine the color density matrix of quarks (antiquarks). Gradients of these potentials generate
color currents.

PACS numbers: 05.60.+w, 12.38.Mh

1. Introduction

There is a considerable interest in physics of the quark-gluon plasma (QGP) which
might be produced in ultrarelativistic collisions of heavy ions; it presumably existed at the
carly stages of the Universe and might even now exist in some exotic astronomical objscts
[1, 2}. It is therefore of importance to know the kinetic coefficients of such a plasma.
There exist already quite a few attemps to calculate them [3, 4]. The purpose of the present
paper is to calculate all kinetic coefficients which can be obtained from the transport
equations of the quarks (antiquarks) moving in a classical gauge field. In this approach there
are no gluons (as particles) thus, strictly speaking, we are not dealing with a quark-gluon
plasma but, rather, with a quark-antiquark plasma (QQP). Although this is still not “the
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real thing” it is — in our judgment — an interesting and useful enough object to deserve
a careful and complete analysis. ‘

Our starting point are the drift equations for the quark (antiquark) distribution func-
tions, f*, in the phase space of space-time x*, momentum p' and color Q°

Lifi(xa p, Q) = C:ta (11)
Li = pﬂa,ai gQaF:np#a;—gfabcAzp“Qqaa> (1‘2)
F:v = 6uA‘vz_avA::+gf;lbcAzA5' (13)

Here g is the coupling constant, a = 1, 2 ... n are the color indices (for color indices we do

not distinguish the lower and the upper ones, z is given by the gauge group). Repeated
a—(}ﬁ , 04 = % , 0g = 6—Q—“ C. are the collision terms so far

unspecified. Later on we shall approximate them by a relaxation-time expression.’

The consecutive terms of the Lh.s. of (1.1) represent the drifts of quark’s (antiquark’s)
positions, momenta and colors and thus are, formally, quite straightforward generaliza-
tion of the QED expression of the Lh.s. of the Boltzmann equation to the case of QCD.
They were to our knowledge, first written down by Heinz [5] and then, together with the
field equations, applied to study some properties of QQP [3, 6] in the Vlasov self consistent
description.

In this paper we show how (1.1), treated classically (i.e. with most of quantum effects
neglected), leads uniquely to all kinetic coefficients in an internally consistent manner
and we obtain analytic expressions for them. Althcugh many of our formulae are correct
for SU(3) color group, we do all specific calculations for SU(2) color group.

Since f* and C are, in pur treatment, invariant functions with respect to rotations
in color space, Eq. (1.1) is covariant under such transformation. E.g. one can see it in the
case of the infinitesimal SU(2) gauge transformation by substituting in (1.1)

indices are summed. 0, =

a a amnam 4n 1 690
Au =A.“+8 ) 6 Au—‘g ‘ax—u,
Qa’ = Qa_saanmen’
F&, = Fa,—&™Fp0"
f,(x’ P, Ql’l) = f(xs p! Qa) = f(xg pa Q;+8achl'70r:)9 (14)
where 6, = 0,(x*) is an arbitrary infinitesimal function of x".
Since we are dealing with nonequilibrium processes, the process of production of

entropy is of fundamental relevance. We adopt the following expression for the flux of
entropy [7]:

S*(x) = — § dPAQP[&(f ")+ (S )], (1.5)
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where
o) =T Inf* -7 (I+ef*) In(1+ef%), (1.6)
so that the derivative is
+ + f*
¢(f)§y(f)=ln1+8fi. Ln

We work with the units where ¢ = kg = 1 (¢ — light velocity, k3 — Boltzmann constant).
Since we are dealing with fermionse = —1, but most of our results are for the classical
limit ¢ — 0. [ dPdQ in (1.5) denotes integration over the momentum and color sector of
the phase space and is given explicitly in Appendix 1.

Another basic ingredient of our analysis is the form of the distribution functions in
equilibrium. We get

1

fi = TuE s
J(0) e"*—e

yE = —71,— [+utpQ—u;p*] (1.8)
where T is the temperature, p is the baryon chemical potential, u® are the colored chemical
potentials and u, is the four-velocity of the matter in equilibrium.

One should stress that in 2 quantum mechanical description of color, @, become the
generators of the color group. The form u+ p*Q, in the exponent (1.8) suggests that u and
the vector y, in the color space determine the density matrix of the color quarks (anti-
quarks) [6). This means that g, u” not only determine how many quarks have a definite
color, but also how many are changing their color from, say, j-tb to k-th, j, k = 1,2, 3.
The quantum mechanical version of calculations of the transport coefficients is being
prepared [12].

The organization of the paper is as follows. In Section 2 we introduce thg currents,
energy-momentum tensor and their conservation laws. In this Section we also construct the
equilibrium distributions. The equilibrium distribution function depends now — besides
the temperature, the chemical potential and the Iccal velocity — on a new thermoedynamic
potential which we shall call the colored chemical potential. In Section.3 some consequences
of entropy production are discussed. When entropy is prcduced, we have to have increasing
entropy and this leads to some conditions which the currents must satisfy. Section 4 intro-
duces an explicit expression for the collision terms in the relaxation time approximation
and constructs the solutions of the transport equation (1.1) near the equilibrium in the
form of an expansion in powers of the relaxation time [8]. All calculations which follow
are limited to the lowest correction (linear in the relaxation time) to the equilibrium expres-
sions. This Section gives explicit expressions for the baryonic and color currents in terms
of gradients of the standard chemical potential and the colored chemical potentials. These
relations lead to the definitions of the kinetic coefficients. Section 5 gives our results for the
shear and bulk viscosities. A discussion of the kinetic coefficients is contained in the Sec-
tion 6. Our conclusions are listed in Section 7. Six Appendices close the paper.

We use the metric g,, = diag (I, —1, —1, —1).
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2. Conservation laws. Equilibrium distributions

~ For the sake of completeness we list in this Section the conservation laws which we
will need later. The space-time densities of the macroscopic .quantities are the following
moments of the distribution functions. The baryon number current

b(x) = [ dPdQP'(f* —f"), (2.1)
the color current

Jax) = [ dPAQP*Q(f" —f7) (2:2)
and the energy-momentum tensor

T*(x) = | dPAQP*p"(f* +f"). (2:3)

We require that they satisfy the conservation laws

a,b" =0, 24)
aujg_’-gsabcAz.i‘: = 09 | (2.5)
8,T* = gF™je, (2.6)

Clearly, (2.4)(2.6) follow from Eq. (1.1) if Cy = 0. When C # 0, imposition of (2.4)—(2.6)
leads to the following constraints on the collision terms (for calculational details
see Appendix 1)

§dPdQ(C, —C_) = [ dPdQQ,(C. —C_) = | dPdQp(C,+C_) = 0. @.7)-

~ These equations find immediate application in construction of the equilibrium distribu~
tion. Indeed, in the equilibrium there is no production of entropy thus

8,8" = 0. (2.8)

From (1.5)~(1.7), assuming that the equilibrium distribution, f(%), satisfies the transport
equation (1.1) we obtain (the relevant integrals are given in Appendix I)

§ APAQIN(f@)C + +¥(fo)C-] = 0. 2.9

Thus, to have no production of entropy, the Lh.s. of (2.9) must be a linear combination
of the relations (2.7), consequently the exponents, y(f ff,)), of the equilibrium distributions
-of quarks and antiquarks are

Yoy = £EX)F r(x)Q—Bax)p’. (2.10)

‘When &, x° B, are taken as arbitrary functions of space-time constrained only through
the conservation laws (2.4)-(2.6) (see Appendix 4), we are dealing with the local equilibrium:
the entropy is conserved but £, do not satisfy (1.1). By demanding that /3, satisfy (1.1)
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we introduce constraints on &, x*, f§, given by (3.2) (see below), and are dealing with the
global equilibrium.
Since
f& = {exp [£EX) £ (X)Q,+Bi(x)p*] +1} 7 (2.11)

we identify (compare e.g. [9]) ¢ = %x) and B, = 1(x)

, where p(x) is the stanidard chemi-

cal potential, T — temperature, and u,(x) is the hydrodynamic four-velocity of the fluid.

a

p(x)

It is natural therefore to set y* = — and interpret p” as a colored chemical potential:

u° is related to the color current, (2.2) in a completely analogous way pu is related to the
baryonic current (2.1). In Appendix 5 we show that the equilibrium distribution (2.11)
implies (in the limit ¢ — 0) thermodynamics of a mixture of substances whose chemical
potentials are u(x) and p“(x), a=1,2...n. '

u? is, in our interpretation, a vector in the color space thereforz y(f(g)) is an invariant
of rotations in color space (Eq. (1.4)). Thus f(g) is an invariant of the gauge transformations
(1.4). Since (¢ — energy density, s — entropy density, ¢ — density of baryon current,
0. — density of color current, see Appendix 5 for details)

de = Tds+udo+u°do,, (2.12)
we have

¢ ( ae> 2.13
= . .
aga s=const ( )

¢,0p=const, b¥a

So, indeed, p” is the energy gaihed by the system when the color changes by one unit —
in complete analogy with the standard chemical potential p.

3. Production of entropy

Now, let us consider the distribution functions f * which satisfy the conservation
laws (2.4)~(2.6) and are not far removed from the equilibrium functions f(f{). For the pro-
duction of entropy we get (see Appendix 2) to first order in deviations from an equilibrium

0,8* = —0,E3b" + éuﬁzéT“‘
(0,2 + 8eac ALX" + 8B F )2, (3.1)

and it must be 9,5* > 0. Here 6b* = b*—bly), 6T™ = T —~T 54 = ji—jk , are the
differences between the currents and the energy-momentum tensors off- and at the equilib-
rium. Eq. (3.1) implies that there is no production of entropy when

aué = auxa-l'gsabcAzxc_l_ gﬁAFalu = a(uﬁ).) = 0’ (3~2)

where (us) denotes symmetrization. Egs. (3.2) give the constraints which &, y* and g, must
satisfy in order to have the global equilibrium.
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It is convenient to collect various components into multicomponent obiects
Gg = —aué9 G“ = a‘IXa+g6abcA X +gﬂlFau
GY% = (G}, G, =0,1...n. (3.3)
And, similarly,
djg = Ob*,  &j% = (6b*, §j1). 3.4
Now (3.1) takes a more compact form
3,S* = 6j4G1+06T™8,8,. (3.5)

Both terms of the r.h.s. should be non-negative. As will be shown in the following Section
(and in Appendix 6) one can express dj% through the gradients G4

0jy = AL G, (3.6)

where A% = g*,—uu, is the projcction operator. The first term in (3.5) is positive definite
when M, is negative definite. Indeed, in the local rest frame we have u°® = 1, u* = 0,
and A5 = diag (0, 1, 1, 1) thus

5j4Gh = MM ,,G*°GL = — GAM 5GL. 3.7

Ll
B

In the next Section we give a specific realization of 9 45 when the collision terms are given
by the relaxation time approximation.

In order to exhibit the positive definite nature of the second term of the r.h.s. of (3.5)
we write  T* in the standard form (see e.g. [7, 11]) exhibiting the shear, 5, and the bulk,
{, viscosity coefficients which are non-negative:

ST™ = nAlAy@ " + U~ 2 AP 40 u,) + (o 0" 4™, (-8

In Section 5 we evaluate explicitly # and { in terms of the equilibrium parameters also in the
relaxation time approximation.

4. Non-equilibrium baryon and color currents in the relaxation time approximation

We are going now to express explicitly the currents through the gradients (3.3) for the
following transport equation

i
Lofe = —upt S f“”) @.1)

where 7 is the relaxation time and is a free parameter. As in Ref. [8], we seek the solution
in form of a power series in t:

= fot O+ 5t s (4.2)
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where [, is taken as a local cquilibrium distribution function and limit ourselves to just
the lowest order corrections:
L: o)

B
uﬁp

+
Jon= -

4.3)

We also restrict our consideration to the (classical) limit £ — 0, hence
[&\(x, p, Q) = e SFFLTI = F o (x, Q)G 1 (x, p),
Fi(x, Q) = e¥¥%,  Gy(x, p) = e*¥7", (4.4)

It is convenient to introduce the following moments of Fi(x, Q) (x = (¢} +x5+x3)"%
g — Casimir invariant characterizing the representation, for SU(2) one can take
g* = Tr 0,0° = 3h?)

sinh (xq)

F*) = JdQFi(X, Q) =
x4

= F, 4.5)

Fix) = JdQQaFi(x, D=7 f:- [Cosh (x9) - i}sinh (Xq)] = +F,

~ 1 1
Fax) = J d00.0,F*(x, Q) = 04— . [Cosh (xa)— o sinh (XQ)]

+ XaXb

1
{/q sinh (xq)—3 [cosh (xq)— I~ sinh (xq)]} = Fu.

Substituting the approximate form of f;f,*‘) (4.4) into (4.3) we get _/ﬁ) in terms of f(ﬁ) and the
gradients (3.3)

ﬁO)

fiy = — =5 [+p"0.8-p"P*6,8, F p"Q.GL]- (4.6)

Employing (4.6) we get for the correction to the baryon current

8b® = by, = 1 | dPAOP*(f1,~ /1))

- 1[_ dedQ f((:ﬂ (P"0,5— p"P'0.8:— P'Q'Guy)
Ug

+ j dPdQp* f“”g( pro,E—p'p a8+ P"QdGa,'.)]- @7

Now follows a very lengthy but straightforward calculation whose cssential ingredients
are listed in Appendix 6 and whose many analytical results are taken from Ref. [8]. One
also uses the baryon number and energy-momentum conservation (Appendix 4) and the
end result is the following

0b* = Myo(—4"0,8)+ My, 4G, (4.8)
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where
o0

Mo = tFm>8n cosh é{ 2120(’}) tanh? ¢ -1 [—27(7—) ~K )+ fdeo(z)]}

¥
=]

- K32 K
My, = tF,m8x sinh ¢ {ﬁ% -g[ zy(”) K+ f deo(z)J}. 4.9)

14

Similarly, one gets for the correction to the color current
dje = 1§ dPAQQ.P(fi)—/ 1) = Reo( ~ 4%0,8) +M 4™ G, (4.10)
where M., = Mo., and

o0

—K,+ J deo(z)]}. @.11)

¥

FFy K3 = [K:)
M., = tm>8n cosh ¢ {—:— —~—— —F, l[
‘ F oKy 7
- m -
The F’s are given by (4.5) and y = T (T — temperature, m—mass of q, q), K,(y) —

modified Bessel functions of the second kind. Hence we expressed R 5 through the equi-
librium parameters u, y,, the temperature T and the relaxation time 7.
Note that we do obtain a symmetric matrix

Myp =Mp; A,B=0,1..n (4.12)

These are the relativistic Onsager relations [10] generalized to a colored system.

5. Non-equilibrium correction to the energy-momentum tensor in the relaxation time
approximation

In the near-equilibrium state the correction to the energy-momentum tensor reads
OTH = TT(l) =1 j deQPlpn(f(J{)'{'f(I)')- ¢

Similarly as in the case of currents, very lengthy calculations (Appendix 6) lead to identifica-
tion (through (3.8)) and evaluation of the two viscosities: The shear viscosity is

tF 8n cosl I TK m 3T2K m
= — — m® cosh — — ) -3 = —_
T=T 15 T \'m *\F m? 3\

o

5 T K m m
~2— 2(?> +K, (?) — szKo(z)}. (5.2)

m
T
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The bulk viscosity howevér is given by a much more complicated implicit expression

v 8¢ [T _ (m T? [m T 'm
r= T Lk (B Sk (2 Sk (™
: apu"s"'[m (F) - (%) m"‘(T)]

x | Fsinh (£ ) u,0e (L) = F, cosh { ) G2u®
T T T

. T p\ T m m T
~F — 16am* cosh [ — | — K5 [ — ) u,8*[ — } +5 1, )
o,u* 608 (T)m2 3<T)u (T)+3Tn 5-3)
1
where 5 is given by (5.2) and the five gradients #,0° (g—,), 10" (»7:) and G u" (@=1,2,3)

are to be calculated from the five linear equations (see Appendix 4, Egs. (A4.5), (A4.9)

and (A4.14))
T T m T

2\ 2 . 1
—tanh (~T—> F,[Gu*] = F tanh (—77) o,u”,

s (2)( ) o (2] (e ) (3]

m - . m
— (1_ - h> F[Gw*] = -F T ho,u",

o ()2 o ()] (- D)ol ()]

- F,[Gu*) = —Fau", (5.4)

where A= ———_ . ‘We can solve (5.4) for all gradients in the brackets [...}, which

“(7)

can then be written down as ratios of determinants, and come out to be proportional to
o,4". Thus all gradients in (5.3) can be eliminated and we end up with { expressed through
the equilibrium parameters u, p,, T and the relaxation time . We shall not write down
this final explicit .expression for { because it is very complicated.
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6. Discussion of the transport coefficients

The matrix M 45 gives the relationships between the all possible “strains” G% and the
npon-equilibrium currents Jj5. It describes diffusion and conduction of both color neutral
and colored matter. As we can see from (4.8) and (4.10) the neutral and colored diffusions
are coupled in general: colored gradients may generate neutral currents and neutral gra-
dients may generate colored currents. They are related through the Onsager relations (4.12).

We are not aware of such relations existence in the literature. Perhaps the exceptions
are the papers by Heinz [3] who discusses the generalization of Ohm’s law for color current
induced by an external color electric field. In our case, when the covariant derivative of
¥° vanishes and the baryon chemical potential £ is constant we obtain from (4.10)

ofy = MehiF"”, (6.1)
or, equivalently, in the local rest frame

a g
ojp = — -f?RbEl’i (6.2)

where E¥ = F{° is the chromoelectric field. (6.2) is 2 non-abelian version of the Ohm’s
law. It differs from the one discussed in Ref. [3] because in our case the off-diagonal ele-
ments of I are in general different from zero. The expressions for Mz (compare (4.9)
and (4.11)) simplify in some limiting cases, e.g. when

—>1 6.3
P>
m ’ (6.3)

i.e. for negligible quark masses (or high temperature). In this limit we can use the asymptotic
expressions for the Bessel functions K,

K, (%) > 1 (n=1)! (2 7:—)

and we obtain the following expression for I in the limit of vanishing quark masses:

dzKy(z) = 0, (6.4)

'ﬂl5!__—}8

F (tanh2 — ——i;-) cosh % —1 F,sinh —;—f—
lim9M,p = 4ncT? ~ , (6.5)
m=0 T . F.Fy | - u
—3 F,sinh — — —% Fg Jcosh —
1 F T

where the F’s are given by (4.5). The Ohm relation now takes the form

. F,F
lim 8% = 4ntTg (% F,— ?—b) cosh (‘;‘T) E}. (6.6)

m—0
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Note that the F’s have additional temperature dependences through their arguments
1/2 ’
q = (ﬂ"—l—lj)—— g and that (6.5) and (6.6) are good, for m — 0, with finite temperatures,

Indeed in the limit of very high temperature xq — 0 and
lim F=1, limF,=0, Ilim F, = 1¢%,. 6.7

T T=w T~

Also: thg, - 0, sinh —; — 0, cosh ;——» 1, and wz get the leading order contribution to

M5

. -4 0

lim M5 = 4mT3[ 3 ], (6.8)
b

T- o0 0 —% q 26:1
which is negative definite, as it should. Hence, in the rest system of the fluid, we have

lim &j% = 18 ntT?gq*SE,. (6.9)

T

The off-diagonal matrix elements of m are zero only to leading order in T.
m
Another well defined limit is the limit of very heavy quarks y = T — o0. Employing

the expansion

1/2 — _ _
K,,(y)=(3) e‘7(1+ wol | =D k=9) +) w = an?

2y 8y 21(8y)?
and
- n\? 5 129 ‘
dzK(z) = | — - S /5 — 6.10
J 2Kol2) (27) ¢ ( sy 1287 ) (5.10)
V4

we get from (4.9) and (4.11)

~ 0
12 sz | F (tanh—— -—-1) 0
lim M, = 8nrm® cosh—lf— il l e T T ~
T F,

m-

(6.11)

Again, we decouple the neutral and colored transports in this case. Note that the limit
T - 0 is more complicated because it depends on the relative ratios of m, pu and p°
The same limits (i.e. m = 0 and m — o) can be found for the shear viscosity

lim 7 = 12.87cFT* cosh % (6.12)

m—0

. m\’2 m u ‘
lim 5 = 0.135~tFm* (7> e Tcosh T (6.13)

m=* o
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In the case of the bulk viscosity, the only limit which simplifies (5.3) and (5.4) is the
limit of high temperature

lim ¢ = 0.74tam*. (6.14)

T—oo

7. Conclusions

We have constructed an equlibrium distribution function of quarks and antiquarks
interacting through classical gauge fields. This distribution is determined completely through
the color chemical potentials yu, u, which, in turn, define the density matrix of the color
for quarks and antiquarks.

For the global equilibrium distribution there exists a global co-moving frame
(u; = (1, 0,0, 0)) in which g, p, and the energy-momentum tensors of qq and of the gauge
field are all constant.

‘From near-equilibrium distributions we have computed the kinetic coefficients, of the
qq plasma in terms of the equilibrium distribution characteristics: The chemical potentials
I1, U4 the temperature 7, and the Casimir invariant characterizing the representation of the
color group.

The Ohm law has the form of the Ohm law for anisotropic conductors in Flectrody-
namics: that is to say, the relation between the applied color field and the direction of the
color current in the color space is given through a tensor of the color conductivity. We give
this tensor explicitly.

The authors thank Andrzej Dyrek for checking the calculations and for many interest-
ing discussions, and Professor A. Bialas for his interest in these investigations, stimulating
remarks and encouragement.

APPENDIX 1

a) Phase space

All calculations are made for SU(2), n =3
d*Q
2

dQ = Z_gd, (AL.1)

Q% = Q,0%and q is the length of the color vector. It is very useful to derive the following
lemma

abcfdQM(Q)Q =5 N(Q) +8ane [dQN(Q)Q M(Q) = (AL2)

g

M and N are arbitrary functions of Q. Indeed

2Q°

43 3
0= emj 25 30°F [6(Q% — 4%)Q.M(QIN(Q)]
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d’ &’
= Egpe j > Q (e qz)ZQanM(Q)N(Q) + Egbe j- Q 2- qz)éabM(Q)N(Q)
nq 2nq
+ Eabe JdQQa [ Q M(Q):l N(Q) + €abe JdQQaM(Q) [ Q N(Q)]

The first and the second terms vanish in the above equation (they contain products of
symmetric and antisymmetric tensors and we get (A1.2)).

1 p° =0,

0 p° <0, (A13)

dP = 2H(p°)d(p*p,—m*)d*p, H(P") = {
see also Ref. [8] and Appendix 3. The second lemma, analogous to the first one is as follows

F;, { dPM(p)p*d,N(p)+ F}, | dPN(p)p'04M(p) = 0. (Al.4)

b) Conservation laws

One can derive (2.4)(2.6) multiplying (1.1) with 1, p*, 0° integrating over p and O,
taking into consideration (Al.2) and (Al.4), assuming (2.7).

¢) Equilibrium distributions
The third lemma which helps us to find equilibrium distributions is
8, [ dPdQ@(f*)p" = [ dPdQY'(f*)Cy, (AL5)

where ¢ = ¢(f*) and f* = f¥(x, p, Q). To show it one uses the transport equations to
transform the Lh.s. of (Al.5), and the identities

o' (P01 = poyd(f),
' (fHQGHS* = Q°d(f*), (A1.6)
and then (Al.2) and (Al.4).

APPENDIX 2

Entropy production

We shall derive Eq. (3.1) which gives production of entropy in an arbitrary state f*
to first order in (f*—f3)), where f§, is a local equilibrium distribution.
S* is given by (1.5) and (1.6). Using (1.7) we may write [7]

GfF) = fEy* —e"n (1+¢f7), (A2.1)

so that
S* = — [dPdQp*[—¢ ' In (L +¢&fg)+yionf "
—e ' In(1+efo)+yo S ) (A2.2)
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and
9,8* = — [ dPAQP[(f* —f&)3uyiny+(f ™ —Fionduyoy
+y(-'(-))auf+ +y(_0)au.f_]:

where y(, are given by (2.10).

3,8* = — | dPAQP"{[3,— 001"~ p0,8:1 (F " —Fsy)

+[ = 0,6+ Q01— 0,81 (F ™ ~fio) +(E = Q%= P BIOS T

+(=E¢+Q%— B0, S}
Taking into consideration (2.4)-(2.6) we obtain
9,8" = —0,88b" +(@,x" + gfuar Ax” + 8B1F " )05

+0,B:9 T+ gj flg)ﬁiabAZXb-

(A2.3)

(A2.4)

(A2.5)

The last term vanishes so we recover Eq. (3.1). Note that when f* = f(ﬁ), 8b* = ojf
= 6T* =0 and 0,S = 0. Thus, to conserve entropy, we do not need the more restrictive

global equilibrium, it is enough to have local equilibrium.

APPENDIX 3

List of integrals

K, is the nth-order modified Bessel function of the second kind. These functions satisfy

the relations

2n
Kn+ 1()’) = Kn—l(?)'l' - Kn(?):

?
dK,(y)  nK,(y)
- = — Ky a(9)-
dy ?
All integrals over p are calculated in Ref. [3].
K
a) f dPG, = A (x), A.(x)= 4nm2ei¢ﬁ.
K
b) deGip“ = n (Xu* ny(x) = 4nm3ei‘:ﬁ.
©) ). ap G:tPlP" = Tli(x)“)'uu— Tf(x)g“‘,
K K
TE(x) = 4nm*e** 3 . TEx) = dnm*e*® 2(3 ) .

14



2
d) fdPGi I_’,ﬁ_" = Tli(x)“l“”" Tf(x)g)“‘,
u

TE = 1 [4ny —4nm®e* (K, — K],
%zi =1[n, —4nmPe*%(K, ~K;)]

-~

Tli_Tzi = Ng4, K“ = s KQ(Z)dZ.

e) §dPG P D" = SY(x)u'utu®—S3(x) (u'g"* +u"g™ +u’g™),
K K
Sf = 47zmsei§——i?,), S = dnm’e*® 3?),
7 7
siY o1
m
p’*p“p“ g A p,& Gt A _pa road , a Aw
f) dPGy ——5 = Sy(xu'u'u’—S3(x) (u"g" +u"g™" +u"g™),
ugp

St = ATE-TF)-m?4,, S5 =L (TF-TH-1m’4,,

3-§2i“'§1i = “(Tli“‘Tzi)’ Tzi = Szi, hy = -:;Tzi-
'y’
g) dPGy ———— = OF(x)u’u*uu’
ugp
nx Ao

— 05 (x) (g™ u’u® + g u"u® + g*utu’ + g""utu
+ ghoutu® + g utu) + 05 (x) (Mg + g g + 8 + ),
0f = L1685 —485% —12m*n, +4ne**m’(K, - Kiy)],
0f = A [65F—18S% —Tm?n, +4ne**m*(K,— K],
0F = & [SE-38F —2m*ny +4ne** m* (K, —K;y)],
0505 = S5

o -
|

APPENDIX 4
Conservation laws in the lowest order
a) 0,050y = 0
where
(0 = [ dPdQD(fi0)~fio)) = ou",
e=F.n,~F_n_.

833

(Ad.1)

(A4.2)
(A4.3)
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Properties of the Bessel functions give (see Appendix 3)
VY oar an 1Y
e = anid- Losi-sn (1), (A4.4)
Y

The dot denotes operator 4“0,. This operator represents the change of any quantity in the
co-moving frame, i.e. in the frame where the local velocity of the plasma vanishes. Using.
(A4.4) we get the following form of the baryon current conservation

- v . . 1Y
F, |:n+€— “‘(35;—Sf) (“‘) +n+0]
m Y

- . 'y2 ~ ~_ 1Y et -
—F_ [—n_{’—- -r-n——(SS2 _Sl)(—?—) +n_6] — L (F/n,+F,n_) =0, (A4.5)

where 0 is the divergence of the four-velocity .

b) For the color current we obtain similar relations:
Ondiore+ 8fearAzii0) = O (A4.6)
Jioe = J APAQP* QS —fioy) = @t (A47)
0= Fln,—Fn_, (A4.8)

and finally the conservation of the color current results in the following relation

- .y e o (1Y
F! [mg— y (35;—51)(}—) +n+9]

m

- .V Al 1y
—F; [—n_é- — (35 -S1) (—) +n-6]
m ?

—(Fon s+ Fon )+ gfeay A’ (Fyn, —Fyn_) = 0. (A4.9)
©) 05Ty = 8F 3 iCows (A4.10)
where

T3y = § APAQP* P (fioy +/@)
= (e; + P s’ —P,g* +(e_+P_Yuu?—P_g*
= (¢+ P)u’u® - Pg*, (A4.11)
and

es+P. = F, T P, =F,T;, (A4.12)
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2
- ~ 1
aa(st +Pi) = 'T‘FS:Tliatxxa'{‘Fi [iTliaaf_ —yn'j{ (zszi_sli)aa (Ty")] H

- - 2 1
0Py = FFETFo,0°+F* [i TE0.8+ v_m S¥e, (3,—)] (A4.13)

From Eq. (A4.10) we get
u 05Ty = 0. (A4.14)

Substituting (A4.11) into (A4.10), using (A4.13), (A4.14) and (A4.7) we obtain the following
relation from the energy-momentum conservation

Y

L A%t = ——
4 F'S;+F"S;

1 ( ; ) LV —AMEE T - F T+ AMGUE T —F Ty
m m

(A4.15)

APPENDIX 5

Colored chemical potentials

Integration of the equilibrium distribution functions (4.4) gives (sec (A4.2), (A4.7),
(A4.11) and Appendix 3)
bioy = eu*,  Jjloya = 0att",
T, = (s+Pu’u - Pg. (A5.1)
The above equations identify ¢, P, ¢ and g, as the energy density, pressure, baryon density

and color density, measured in the rest frame.
Eq. (1.5) yields (¢ = 0)

e+P
Stoy = (—T— —c"e+x"ea) u = su* (A5.2)

Here s is the entropy density and

1

T ?=8p, T=-—.
BB 3

(AS5.3)

Taking into consideration (A4.12) one gets
T~ 'dP+(e+P)d(T™ ') = odé— o, dy". (A5.4)
Egs. (A5.2) and (A5.4) lead to the first law of thermodynamics in the following form
de = Tds+TEdo—Ty do,. (AS.5)

Substituting € =— , " = — %we recover Eq. (2.12).

~NI®
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APPENDIX 6

a) Non-equilibrium currents

Let us consider Eq. (4.7). Integration over the color and momentum sections of the
phase ‘space gives

4 = (—F1 0,8+ Ff Gl (T uw" — T, g
+(=F 0,6+ F7 Gp) (TT "~ T5 g™)
+F*0,B,[ST ututu— S5 (ug" + u"g** + ug™)]
— F7a,8,[ ST u*u"u®— §; (w*g"* +u' g™ +u*g™)]. (A6.1)

Functions T/*, T, S§, §§ are defined in Appendix 3 (following Re‘f. [8D). Mutltiplying all
the terms in (A6.1) one obtains

bey, = (BT + F T —(FF i3+ Fr T)6™
+u[—(F* T+ P T E+(FS T +F )G
+BO(F™85 —F*83)]—(F*8; —F~8;)"B—(F* 85 — F~ 57 yu"B
+u'[F*B(ST =253)-F B(St —287)], (A6.2)
( = %, 0 =04 p= u“@,‘[}). Using the baryon number conservation (Appendix 4)
the last term in (A6.2) may be replaced and consequently Eq. (A6.2) reduces to

2

a Y e Y o2\, = n ~ o~

= <_—Au0“<‘> - —u)(F+S;—F S2)
m m

Y
+ AU E(F T, +F~ T, ) - A" GUF T, + F7 1)
+8(Finy +F7n YufuASuy’. (A6.3)

The last term in (A6.3) vanishes so that taking into consideration the energy conservation
(Appendix 4) one gets Eq. (4.8). Similarly we obtain Eq. (4.10).

b) Non-equilibrium energy-momentum tensor.
Using (5.1) and integrating over p and Q one gets

Ty = what{[F* (2835 —§7)— F~(28; —87)]¢
+[F (ST —287)—F; (87 —287)]Gau" + F*[B(0F —503 +203)
~ O3 +3 01+ F A7 —50; +207)—B0(05 +% 0]}
+g{(F* 85 —F~85)¢—(F; 87 —F; 85)Gw*
+FT[B07 —03)—4 BO031-F[f(0; — 05)—3% BOO3 T}
+(F* Q3 +F~Q3)BA2 A4(0UP + 2Pu"~2 A 40 ). (A6.4)
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Egs. (4.3) and (A4.10) lead to the condition
Tu, = 0, (A6.5)

so that terms standing beside the tensors #*v* and g** must differ only in sign. Therefore
we conclude that

T = A™(F* 85 —F~8:)¢~(F 55 — F; §7)Gw"
—F*[B(Q; —03)—% 0031 F[A(Q7 —05)—% pOO3 T}
+(F Q3 +F~03)BAL AN U —Pu™—2 440 u)). (A6.6)

We see that § T** has such a decomposition as was suggested in Section 3.
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