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The electric charge of the vacuum around a magnetic monopole is calculated using
fermionic states normalized in a spherical box of radius R — oo. The results are compared
with results of other authors, who used continuum normalization and with the results for
one-dimensional chiral bags. New components of the charge density, which are omitted
in the continuum approach, are found.

PACS numbers: 14-80. Hv, 11.10. Qv, 12.40. Aa

1. Introduction

Many authors have described systems, where deformations of fermionic spectra by
external fields produce fractional fermion numbers, or fractional baryon numbers, or
fractional charges. The fermion number of a fermion vacuum can be calculated from the

formula [1]
= —11im Y sign (E)e” V", o)
¢~0* E
where the summation extends over all the single particle fermionic energy levels. This
formula is unambiguous, if the fermionic spectrum is discrete. For instance for the inside
of a chiral bag sum (1) can be explicitly evaluated [1, 2] and yields the baryon number
of the vacuum inside the bag. The same formula, or its analogue for the fermion number

density
o(x) = —% lim 3 sign (E)¥P; (x)P(x)e” """ 2
10+ E

* Address: Katedra Informatyki, Uniwersytet Jagiellofiski, Reymonta 4, 30-059 Krakéw, Poland.
#+ Address: Instytut Fizyki Jadrowej, Kawiory 26a, 30-055 Krakow, Poland.

(839)



840

is, however, also used for systems where the energy spectrum is continuous. Examples
are: calculations for a one-dimensional soliton [3], or for magnetic monopoles [4, 5].
For a review with many references cf. [6].

A calculation of the fermion number from a continuous spectrum may be risky, as
shown by the following example. Consider a system with single fermion energy levels

. n+d
E, = asign (n)+ R "= +1, +2, ..., (3)

where R > 0, a > 0, and —1 < 6 < | are constants. Substituting into formula (1) we find
after summing geometrical progressions that
B=9 @

independent of R. The continuum limit corresponds to R — co. The energy spectrum
in this limit is

o(E) = @o0(E*—a?), &)
where g, is a constant and 6 is the step function. Formula (5) being symmetric with respect
to E — —E suggests (wrongly) that B = 0 independent of 5. Even if it were possible to
define some non-zero “spectral asymmetry” (cf. [6]) for the spectrum (5), all information
on ¢ has been lost in the continuum limit and a correct calculation of B, using only (5)
as input, is impossible.

In the present papetr we calculate the electric charge distribution around an Abelian
magnetic monopole. We use a model proposed by Yamagishi [4], but instead of starting
with a continuous spectrum, we follow another suggestion from Ref. [4] and enclose the
monopole in a spherical box of radius R. The monopole is-in the centre of the box. We
find that the charge density has two components. One, which is neglected in the continuum
approach, is

Q 1

er) = R a2’
where Q is the total electric charge around the monopole. For R — o g, locally tends
to zero, but its integral over the whole box yields Q. The other component g,(r) = o(r)
—0.(r) yields zero when integrated over the whole box. For non-zero fermion mass,
however, the limit of o,(r) for r fixed and R — oo differs from zero. This, when integrated
over all space, again yields Q. In the continuum calculation only this limiting distribution
(further denoted as g,,) is calculated [4]. The obvicus question is: can one in general replace
the density o(r) by the limit g,,(r) of the component g,(r). If such a rule exists, it cannot
be quite general, because for zero mass fermions both g, and ¢,, vanish, while Q # 0.

©)

2. The model

The model used in the present paper for the Abelian monopole is taken from Ref.
[4], where further details and references to earlier work can be found. The Dirac equation
for a fermion in a spherical box with a monopole in -the centre of the box is separable.
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The solutions of the spin-angular equation define the partial waves. Only the lowest partial
wave

J=lqi-172 )

contributes to the vacuum charge. Here ¢ = eg, where e is the electric charge of the fermion
and g is the magnetic charge of the monopole. From the quantization condition for magnetic
monopoles g = 1/2x integer. The radial equation is

. d :
Hox(r) = (—iqoy - +ma)y(r) = Ex(r), ®)

where g = sign (q), m is the fermion mass and E is the energy eigenvalue. The wave function
(more precisely wave section cf. [7]) of the fermion (¥) has as usual four components,
but » has only two, because when forming ¥ each of the components of y is multiplied
by a two-component spin-orbital part. Equation (8) is formally identical with the Dirac
equation for a fermion with a fixed spin projection (Z, ¥ = A¥)in a one-dimensional bag
along the x-axxs (cf.e.g. [8]). In the bag case A replaces sign (g). The normalization condition
for function y is

{ 1 (x(rydr = 1. ®

Thus the contribution to the electric charge density from a filled shell corresponding to one
eigenvalue E is

z (¥ = . S O, (10)

n

where p is the angular momentum projection and (7) is assumed.
The boundary conditions for x must be chosen so as to make the operator H, self-
-adjoint. Following [4] we assume

i sin (6,/2 +/4) isin (Og/2+7/4)
x(©0) ~ ( cos (92/2—!—7:/’4)) ARy~ ( cos (ax/2+7‘/4)) (11

where 0, and 8, are constants. A more general boundary condition guaranteeing the self-
-adjointness of H, depends on four parameters [9] ,but the model with the boundary
conditions (11) is sufficiently rich for our purpose. The corresponding condition for the
one dimensional chiral bag is

+iox(x) = exp[+if.0.]x(x) for x = +R,. 12)

Here y is the two-component wave function obtained from ¥ by fixing the spin projection
A = 1, 0, is the chiral angle and R, the bag radius. Identifying r = 0 with x = — R,
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and r = R with x = + R, we obtain by comparison of formulae (11) and (12)
T T
8o = 0+ —(i=1); Og = —6,— — (A+1). (13)

Each of the angles 0, 0z, 6, can be changed (without changing the physics) by adding or
subtracting arbitrary multiplies of 2.

3. Total electric charge
Using the formulae (1) and (7) we find for the total electric charge
Q = —lgle lim ¥ ee”!F¥, (14

t»0*+ E

where ¢ = sign () and the summation extends over all the eigenvalues of the equation
(8) with the boundary conditions (11). These eigenvalues are

E = e Jk2+m?, (15)

where the allowed values of k are the positive roots' of the equation

- tg—1tp
tg (kR) = Gk 1
R = O et (E—m)into (16

with
t; =tg(6;/2+nj4), i=0,R amn

Since the roots k depend on &, the energy spectrum is not symmetric with respect to
E - —E. In the continuum case such a symmetry, according to [6], follows from the ex-~
istence of a matrix which anticommutes with the Hamiltonian. In the discrete case the
matrix o, anticommutes with Ho, butif x is a solution, then in general o,y does not satisfy
the boundary conditions. The symmetry of the spectrum does not, therefore, follow from
this.

For mR sufficiently large equation (16) has no solution for kR < m/2. Let us first
consider the case fotg > 0. Then in each interval (n—1/2)t < kR < (n+1/2)n,n = 1,2, ...
there is one positive energy solution and one negative energy solution. Therefore, the contri-
bution, to sum (14) from the energy levels corresponding to kR < (N—1/2)n, where
N> mR is fixed arbitrarily, vanishes. For kR > (N—1/2)r the fermion mass can be
neglected and equation (16) reduces to

tg (kR) = &g tg (6r—60)/2) 18)
and
|E| = k = nn/R+eqd/R, n=N, N+1,.... (19)

! There may be also energy levels corresponding to purely imaginary & [4, 8]. We will not discuss
them in the present paper.
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Here
4 = (0r—00)[2+vm, (20)

where the integer v is chosen so that {4] < /2. Substituting (19) into (14), summing the
geometrical progressions and taking the limit ¢ — 0 one finds

Q = 2ged|n, for totg > 0. 21)

For t,tg < 0 the interval where E+m+(E—m)tytg changes sign must be discussed
separately. One finds that in this interval one root is added or lost and the corrected
formula for the charge is

O = 2gedfn—qesign [tg ((0r—00)/2)], for to1g <0, tolg # —1. 22)

As a special case we consider the one-dimensional chiral bag model with 10,] < n/2.
From formula (13) one finds

4= —0.+ %sign 0.; sign tg ((Ox—05)/2) = sign 6, (23)

and 141z < 0. Thus, replacing g by 4 and removing the factor 2j+ 1 = 2lq|, one rederives
the well-known formula (cf. e.g. [8])

Opae = — A0 /m. (24)

Formulae (21) and (22) were derived for m # 0. The case m = 0 is much simpler.
Then the denominator in (18) never vanishes and for #zt, # —1 formula (18) is exact
for all the energy levels. Summing the geometrical series and including (for ¢ sign (q tg 4)
> 0) the additional energy level corresponding to kR = {A| < n/2 one finds formula (22)
for all 14¢, # — 1. Thus there is nothing exceptional about the m = 0 case, unlike in the
continuum approach.,

In the continuum approach 0 is undefined and one finds [4]

= —qeby/m, (25)

where 8, = 0,—2nv, and v, is an integer chosen so that |0o{ < 7. This result can be also
derived from general symmetry considerations [10]. Let us note that the result (25) can be
obtained from (21) or (22) by averaging over 8. Indeed, defining 0 for the continuum
case by formula (11) one finds that all the values of 0y are possible there.

4. Charge density distribution

According to the formulae (2) and (10) the charge density distribution is

o® = - ;o5 lim Zaxé'(r)h(i‘)e"”'- 26)

E
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The solution yg(r) of equation (8), which satisfies the boundary conditions (11) can be
written in the form

N o
‘ o sinkry .. (6o m cos kr
xe(r) = Ao | cos (—- + —) E-m +ism (_ + —) ikq o @7

2 4 cos ki 2 4 sin kr
+m
or equivalently
/ ikq

0] n\[—- i 0
xe(r) = H g lcos[ =+ — E—m sin ke tisin( 2+ 2 o cos ke

2 4 cos k 2 4\ - ik sin k

@ E+m e

(27b)

Here A; are normalization constants, which for R — oo behave as 1/\/ R, and ¢ = R—r.
Substituting formula (272) into (26) we obtain ‘

: —E sin 6, +ikq ;
ox) = — ;iq—lé— lim Z eN? [1—Re m(m ~E sin By + ikq 003 B) ez""], (28)

T 1—0+ . E(E—m sin 8;)

where A" is another normalizing constant behaving as 1,/R for R — oo and Re means real
part of.

We have not been able to perform the summation (28) analytically and finally the
sum was evaluated numerically. Some contributions to the sum, however, can be evaluated
analytically and are interesting. We discuss them in turn.

a) Divergent part

The evaluation of the sum including only the leading term 1/R of A" and the first
term (unity) from the square bracket in (28) is a repetition of the calculation performed in
the preceding section. It yields (cf. (6))

i

0(x) = ¢

= —, 29
R 4ur? 29

where Q should be taken from formulae (21) or (22). For R — oo this contribution can
be neglected in any fixed finite region of space. Itis neglected in the continuum calculation
[4]. 1ts integral over the whole box, however, yields the whole charge Q. Nevertheless,
inside the box, the potential due to chargedist ribution (29) at a distance r from the centre is

V(r) = _I% = const — 0. 30)
Thus for r — o it is possible to develop inside the box a scattering theory with noninteract-

ing |in) and |out) states. This supports the calculations performed using formal scattering
theory, e.g. in Ref. [4].
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Sum (28), after the divergent part (29) has been extracted, is convergent for t = 0
and the limit # — 0 can be performed term by term. One finds for the remaining charge
density

|q| , m(m—E sin 0o+ ikq cos 0,) 2
—3 R sN ikr
0:(x) = E(E—msin6y)  * 3D

where corrections O(R~?) to (29) due to the fact that A#™? = R-1+ O(R-?) have been dropped.
In the R — oo limit they do not contribute.

b) Leading term for r fixed and R-

For r fixed and R — oo it is legitimate to replace the sum (31) by an integral over
k from zero to infinity. Extending this integration region from — o to +oo (the integrand
is even in k), deforming the integration path in the complex & plane and dropping a possible
contribution from a pole? one finds [4] the contribution to the charge density

_ gem sin 00 k

m2kr 32
4z JJk2~m2 k+mcos(908 (32)

020(1) =

This is the only term calculated in the continuum approach. When integrated over the
whole box it gives in the limit R — o (cf. (25))

Qo = —qe o (33)

This is the standard result (cf. e.g. [4]). Contribution (32) is peaked at r = 0 and is negli-
gible for r» m.

c) Leading term for ¢ fixed and R—> «

For ¢ fixed and R — oo it would be possible to repeat the procedure described in the
preceding point starting from expression (27b) instead of (27a). It is simpler, however, to
notice that formula (27b) may be obtained from (27a) after the following operations:
(i) Replace r by o. ‘

(iiy Take the complex conjugation.

(iii) Replace 6, by —8z—m.

Since the complex conjugation does not change the product yty, the analogue of formula
(33) is

0
Op = ge 21T (34
T

2 Including this contribution while omitting solution with imagihary k is inconsistent cf. [4].
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where the bar denotes (as before) that 8 + = is shifted by a multiple of 2z so that
[8g+n! < w. The corresponding charge density distribution is peaked at ¢ = 0 i.e. r = R
and is negligible for R—r » m. Contribution (34) to the integrated charge is a priori not
less important than (33). One could argue that since R — co, we are not interested in what
happens at r & R,.but the spectral asymmetry is correlated with the full charge in the box
and if it is used to define the charge around the monopole, it is irrelevant how far from the
origin a contribution to the charge density has its support.

d) Numerical summation of sum (31)

Series (31) converges very slowly, because the n-th term is of order 1/n. It is easy,
however, to extract from each term in (31) the part of order 1/# and to sum the extracted
sum analytically®. The result is

gem | r 1
Q,og(x) = -2-7;2-;5 S [00+ 'E (GR_GO)J In

i . 35

These logarithmic singularities at r = 0 and r = R can be also obtained from integral
(32) and its analogue for the case (6). The remaining sum can be easily performed. even
on a pocket calculator. We find that for some values of the parameters 8, and Gy the sum
in the region r = aR, where a is fixed for R — 00, tends to cancel the contribution g, (29).
We have not made, however, a complete analysis in the full range of the angles 0, and 05,

5: Conclusions

The electric charge distribution around an Abelian magnctic monopole can be calcu-
lated using the finite box normalization and then performing the limiting transition R — oo,
where R is the box radius.

Many details of the resulting picture differ from those obtained from continuum calcu-
lation: The divergent term, which is dropped in the continuum calculation, here gives all
the electric charge. The peak at r ~ 0 gives a contribution which cancels with that of
another peak at r & R and that from the charge distribution at intermediate distances.
The angle 0, which does not appear in the continuum calculation, strongly affects the
results.

Nevertheless, the charge distributions obtained by the two methods for any finite
region around the monopole coincide. The use of scattering theory as e.g. in Ref. {4] can
be justified. An averaging over 8 can remove the extra charge given by the box calculation.
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