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The properties cf the axial-vector current are investigated using dimensional regulariza-
tion. The modified version of anti-commuting ys in n dimensions is proposed. The VVA
and AAA triangle diagrams are precisely calculated. The resulting amplitudes obey the naive
vector Ward identities. In the axial vector Ward identities the Adler-Bell-Jackiw anomalies
appear.

PACS numbers: 11,10z

1. Introduction

In proving the renormalizability [1] of gauge theory, it is crucial that the renormalized
lagrangian is itself locally gauge (or BRS [2]) invariant after introducing a gauge fixing
term. To preserve gauge invariance the most suitable method is to use dimensional regulari-
zation [3] which has-also very good algebraic properties. In particular the method admits
[4] commutativity, distributivity, associativity and change of integration variable. In the
absence of axial coupling the method is straightforward but there is some confusion in the
case of fermion loops with one or more factors of ys. There is no satisfactory generaliza-
tion of ys to arbitrary dimension. Natural generalization [5] gives ys which in an even
(odd) dimensional space anticommutes (commutes) with all the Dirac y* matrices.

Attempts at resolving the problems of 75 in dimensional regularization may be divided
into two categories. In the first approach the authors try to give some definition of the y5 in
n-dimensions. In the second method the y5 is not defined, but all the necessary properties
for calculating any of the Feynman diagrams are given. ’t Hooft and Veltman [3] definition
belongs to the first category. They define

Ps = iy%yp?yd. (1.1)
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Then from the properties of the Dirac matrices ¥ in n-dimensions
My =28" gu=n (12)
the y5 has the characteristic peculiarity
(47"} =0 for u=0,1,23,

[75,v"]=0 for u=4,5 ..,n-1, (1.3)
and

s = L.

Several subsequent attempts were made to introduce an appropriate generalization of
ys to n-dimensions [6]. All these approaches are essentially similar to that of 't Hooft
and Veltman but the authors claim to have provided a more consistent formalism.
The Bardeen, Gastmans and Lautrup [7] method was the first approach where the
authors do not define precisely ys but give only its properties. Their y5 has the properties

{y5,7"} =0 for u=0,1,..,n—1,
s = L (1.4)

The latter authors considered diagrams with mixed loops containing both boson and
fermion propagators (the fermion line is not closed). They found that the Ward identities
are not satisfied if they use definition (1.1). However they found that the Ward identities
are consistent with definition (1.4).

Chanowitz, Furman and Hinchliffe [8] have shown that using the definition (1.4)
for single closed fermion loop diagrams with an even number of ys’s all Ward identities
are satisfied. The latter authors observed also that adopting the property (1.4) it is possible
to express any trace of ys with greater than four and even numbers of Dirac y, matrices,
by one arbitrary parameter b. Changing the value of this parameter it is possible to satisfy
vector Ward identity, axial vector identity or none of them. The authors consider this
b dependence as a reflection of the fact that the four-dimensional integration is not well-
-defined [9)]. As the integral defining a triangle graph is linearly divergent, the value of the
triangle graph is ambiguous and depends on labeling convention and the method of evalua-
tion of the integral.

Gottlieb and Donohue [10] disagree with the previous result for a triangle graph
with one ys (VVA amplitude). They calculated once more the VVA amplitude without
using any property for 75 and found that dimensional regularization yields a VVA graph
which automatically satisfies the vector current conservation, leaving the anomaly in the
axial vector divergence (ABJ anomaly {9, 11]).

Ovrut [12] also adopts the definition (1.4), but to remove the b dependence ambiguity
from the paper [8] he does not anticommute ys with any Dirac matrix inside the trace
(if these contain more than six Dirac matrices). In this way he proved that for his kinds
of diagrams Ward identities are valid independently of ys definition in n-dimensions.
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It is not convenient to fix positions of ys inside a trace if the number of ys is odd and
greater than one. The ZZZ and ZZW vertices in the electroweak theory are of this type.
We found the properties for ys which allow us to calculate explicitly any kind of Feynman
diagrams with any number of ys. Our prescription for ys renders divergent Feynman inte-
grals finite, and honors the Ward identities so it satisfies all necessary conditions which
a regulator should have. These were checked explicitly for one loop triangle diagrams.
The only problems appear sometimes with Bose symmetry, so after regularization we have
to make symmetrization in these cases.

In the next Section our definition for ys in n-dimensions is described. In Section 3 we
show that Ward identities for all interested triangle diagrams are satisfied. In Section 4 we
summarize our results.

2. Properties of ys in n-dimensions

As we described in the Introduction the methods of using ys in dimensional regulariza-
tion (which are consistent with Ward identities) which we found in the literature allow us
to calculate:

I. diagrams with mixed loops containing both boson and fermion propagators [7, 8],
IL. diagrams with only internal fermion lines but with an even number of ys’s [8],
III. diagrams with internal fermion lines with one ys inside traces {10, 12, 13}.
Taking the definition (1.4) it is possible in case I to anticommute ys’s outside the internal
part of Feynman integral where the normal n-dimensional Dirac algebra is used. In case II
using (1.4), 75 matrices are eliminated inside the trace. In both cases canonical Ward identi-
ties are satisfied without any abnormal parts [7, 8, 10].

Case III was the most controversial one. Taking different definitions of ys different
results for the VVA amplitude (Fig. 1) were obtained (see e.g. Ref. [10, 12, 13]). Fixing
the position of ys inside the traces and using only normal s#-dimensional Dirac algebra
the first correct result for IT4"* (Fig. 1) was got in Ref. [10]. It was found that the IT%"

vy

r
b P, ~P,=4

Fig. 1. The VVA diagram IT**}(p,, p,) with two vector and one axial vector couplings
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satisfies vector Ward identities (2.1)

Plungu(l’u p2) =0, vaH‘;w‘.(pla p2) =0 (2.1
but axial Ward identity has an abnormal part which does not depend on mass [9, 10]
—(p1+ P25 (p1s p2) = 2mIT5(py, py), 22

where I1%'(p,, p,) is the diagram like IT%"*(p,, p,) but after removing y* matrix (for more
details see Appendix and Fig. 3).

Without any other information about ys there are problems, for example, in how to
calculate a triangle diagram with one y; in each of the vertices. We will give here the four
conditions which are enough to calculate all Feynman diagram which are interesting from
a physical point of view.

For convenience we describe all properties of ys in #-dimensions, even the well-known
ones.

A. Anticommuting property in n-dimensions

{ys, 7} =0, wu=0,1,..,n—-1,
s =1,
Trys =0. (2.3)

From this property it is easy to prove [8] that
(n—4) Tr (ysy™%7"5") = 0, (2.4)

and from this equation follows that Tr (y5y%y%y%y°), can be different from zero only for
n = 4. So it is impossible to consider this trace as a smooth function of » e.g. it is not
possible to have

Tr (psyy""y) = —4ie 7+ (4—n) AP £ (d—n)?A¥" + ..., 2.5)

where 4, and A4, are some unknown tensors. But if we consider finite Feynman diagrams,
they do not have poles (4—n)~*, and we can use the trace (2.5) because the parts with
unknown tensors A; vanish for n — 4. All one fermion loop Feynman diagrams, with
odd numbers of ys, are finite (see next Section). Using our prescription for ys we are able
to calculate those diagrams only for n = 4. If one tries to consider the diagrams in n-dimen-
sions, it is necessary to reject (2.4), but then there is a contradiction with conditions (2.3)!.
From conditions (2.3) it follows that

Tr (psy™y™ ..., y7) =0, (2.6)
and

Tr (ys7*'y™) = 0. (2.7)

! The definition of 5 with which the formula (2.5) does not contradict (2.4) was given by Thompson
and Yu [14]. But their definition is very difficult to apply. We have also checked that this definition does
not agree with the Ward identities for even numbers of y5’s [15].
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(The equation (2.7) is easy to prove, taking into account the property of charge conjuga-
tion matrix C in n-dimensions: Cy,C-1 = —y, and Cy;C-! = y%.)
B. We use normal Dirac algebra in n-dimensions

{v, v} = 22", g =n,
Trl = 4. (2.8)

C. For an even number of y; inside a trace, using (2.3) we can eliminate them com-
pletely. In an odd number of ys only one survives. Then we calculate

Tr (ys7*72 ... ¥)  for 2i =6,8, ... 2.9

using normal Dirac algebra in n-dimensions. But if the trace (2.9) is contracted with an
integral which is infinite then:
— we first calculate the trace using the appropriate form of y; in 4-dimensions (see Appen-
dix)

i

Vs = — 4,-am/7v, (2. 0)

— and we integrate over momentum.
Using (2.3), (2.8) and (2.10) we express the trace (2.9) as a combination of metric tensor
clements g** product with antisymmetric tensor ¢*7°. If g* from a dimensionally regular-
ized integral is contracted with g** from a trace (2.9) we give to it the value n. If the trace
(2.9) is contracted with the finite integral then all above restrictions are not necessary.
D. Using the properties A, B and C sometimes we get diagrams which do not satisfy
Bose symmetry. To restore this symmetry we have to make appropriate symmetrization
after dimensional regularization.
In the next Section we will show that all diagrams which we calculate using conditions
A, B, C, and D are consistent with canonical Ward identities for anomaly free theory.
Abnormal parts (which vanish after summation over all loop fermions) appear only in
axial vector Ward identities.

3. Triangle diagrams and Ward identities

We will not calculate Green’s functions where y5’s can be eliminated. In this case
we need only conditions A and B (Eqs (2.3) and (2.8)). These diagrams were calculated
and Ward identities were checked [8, 10]. Application of the dimensional regularization
to triangle diagrams with three vertices was more controversial. Let us consider the sum
of diagrams given in Fig. 2 where vertices are denoted by '}, I',, '3

IS (o) = d"k L
S (2) l:’+132—-m *h—-m k- pi—m 3

d'k 1 1
| —Tr| = I = r2 r3 3.1
(27[)” k+ﬁ1_m
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Fig. 2. The general triangle diagram I77:17203(p,, p,) with couplings I',, I, and I; in the vertices. Normal
and crossed diagrams are shown

Each I'; can be given by
Iy=1,y57 and y9s (3.2)

Altogether there are 64 diagrams but only 6, which are given in Fig. 3, are not trivial
(part of the diagrams can be got from these 6 after changing of variables). All graphs in
Fig. 3 occur in the clectroweak theory in the couplings between Z, photon and Higgs:
Z7Z7, 7ZZA, AAZ, ZZH, AAH and ZAH. To find canonical Ward identities let us define
four kinds of current I'{x)

S(x) = P(x)p(x),

P(x) = P(x)ysp(x),

VA(x) = p(x)r"p(x),
AXx) = POy ysp(x). (3.3)

Each 1PI Green’s function in Fig. 3 can be described by

(2m)*6“(py + po+ I (py, ps)
= [ d*xd*yd*ze'"* PP e'P* (0 T(I ((x)I (y)['3(2)) [0). (G4
Formulae (3.4) can be treated more generally than Green’s function in Fig. 3. We get
diagrams of one loop approximation in Fig. 3 taking y(x) and u(x) in the currents (3.3)
as a free field. Generally I17'7?'3(p,, p,) are full 1PI Green’s functions with fermion loop

outside and all possible internal lines depending on an interaction Lagrangian. Let us
assume that, in theory, one fulfilled

8,V*(x) =0, 3.5
and
0,4%(x) = 2miP(x). (3.6)
From the equal time anticommuting relations for ¢ fields we get

[V, Ti(»)16(xo~yo) = O, (€))
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Fig. 3. a) The VVA diagram IJ ;“”' and the VVP diagram J7%” which are connected by the axial vector Ward

identity; b) the AAA diagram JT¢7? and the AAP diagrams I747,, IT i and IT}2,. All diagrams are connected

by Ward identities; c) the AAS diagram I7%} and the APS diagram which satisfied the Ward identity

for any I'(x) from (3.3) and
[4°(%), S(16(xo—yo) = —2P(x)0V(x~ ),
[4°G0), P(1)]6(x0— yo) = —25(x)6V(x—y),
[Ao(x)’ V*(»)]6(x0—yo) = 0,
[4°(x), A*(»)]6(xo— yo) = O. (3.8)

From (3.5)-(3.8) we get for 1PI Green’s function in Fig. 3 the next Ward identities:
Green’s functions in Fig. 3a:

plungvj’(pl, p2) = 09 szH‘gv}'(pl, Pz) = 03 (39)
—(p1s Pz)AH‘gﬂ(PL, p2) = 2mII5(py, P2)s (3.10)
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Green’s functions in Fig. 3b:
P d1555(ps, p2) = 2mIT%55(py, p2),
P2d1555(p1s P2) = 2mIT555(py, P2),
—(p1+P2)al1555(p1s P2) = 2mIT5%5(py, P2)s (3.11)
Green’s functions in Fig. 3c¢:
P1ul155(py, p2) = 2mIl55(py, P2)+2iQ%ss(p2, — P2)s
P2JI155(py, P2) = 2mIT5s(py, P2)+2iss(pys — P (3.12)

where Q%s(p,, —p,) and Q%s(p,, —py) are two point Green’s functions defined by

8“Yp+1)Ks(p, 1) = § d*xd*ye™*Pe™ (0] T (A(X)P(y)) 0. (3.13)
From (3.13) we have
1
m
2iQ55(p, —p) = — Dy (Cuv_ fdx In Dz(x)) %
0
where
2
Dy(x) = m*—p*x(1—x), Cyy = . —y+In 4n. (3.14)

Using our 7y, definition from Section 2, we calculate in the Appendix all necessary Green’s
functions.
From (Appendix A.8) there is

PLIT8X(py1, p2) = Tt 957Y"7") (P1aP2g) [~ B2+ Bspt + Bepyp,],

and
P2JI84(py, p2) = Tr (579" (P1aP2g) [—Bi+B3pipa+ B,p3l, (3.15)

and from (Appendix A.9) we see that vector Ward identities (3.9) for triangle diagram
11%%(p,, p,) with one ys are satisfied. For the axial current we have

—(ps + P)dTE M (py, P2) = Tr (7s¥*7"7") (PraP2p) [— By + B2]

1
= 2mII5(ps, p2)+ = Tt @7V (P1aP2)s (3.16)

where I15%(py, p,) is given by formula (Appendix A.13), so axial vector Ward identity
(3.10) is not fulfilled. We obtained the mass independent anomaly part (the ABJ anomaly
{9, 11]) and as we know, this term has the ability to destroy unitarity and renormalizability
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[16]. In an anomaly free theory, because ot summation over internal fermions, anomaly
part vanishes and unitarity and renormalizability are restored [16].

It is worth mentioning that our three boson amplitude obeys Bose symmetry for the
vector current vertices, and we have

54(py, p2) = O34(py, py). (3.17)

The problem with Bose symmetry appears in the diagram with three y5’s, IT%% (Appendix
A.10). As we chose p, and p, as two independent four momenta, our diagram possesscs
a symmetry as in (3.17).

1%54(pys P2y 9) = IT¥5(P2, P1s Q). (3.18)

In the other vertices (u <> ) and (v <> 2) the diagram has no proper symmetry

1%%(py, p2s 9) # 1524, D2, p),
and

I555(ps, pa2s @) # 55501, 4, P2)- (3.19)
To restore Bose symmetry let us define
Q555(p1s P2, @) = & [I555(Py, P2 @) +IT¥55(P2, P15 )

+I3%(q, pay P)+HITERN(Py, 4, P2)+IT544(Da, a4, py) +TTH55(a, P1s D)), (3.20)

which by definition has proper symmetry in each pair of vertices (it <> v, pt «> 1, and v <> 2).
From formulae (Appendix (A.10), (A.11) and (A.12)) one gets

Q55(p1s p2» @) = Tr (75¥9"9"y") [C1P1o+ Capiil
+ Tr (ys7"9"y"y") (P12P2g) [Capi‘*‘ C.p3]
+ Tr (psy™"y"y") (P12P25) [Csp1+CeP3]

+ Tr (rs7°Y*1"") (P1aP25) [C7Pt + Caph], (3.21)
where
1 1-x
1 1
C,=—\d d 3p29(1—y) Qy— D)+ p2x(x—1+5y—6
1 lznzf xf yps(x_,y)[ply( y) Qy—1)+pix(x—1+5y—6xy)
0 0

+P1P2y(y —1—4x(1-3y))],

1 1-x

1
jdx J dy ——— [piy(y —145x—6xy) +3p3x(1 —x) 2x —1)
D3(x9 y)

0

+pipax(x—1—4y(1—3x))],
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1 1+x—
C3 =— dx dyy_(_J_c._y) ,
12n Di(x, y)
0 0
1 1—-x
1 * 1—x
C4 = -——2 dx dyw .
12n J Di(x, y)
0 0
1 1-x
1 i —-14+2
s=— ax | ay yy 2
127 Dy(x, y)
)
1 1—-x
1 f (" 2—2x—
Co=— | dx | dy X2—2x—y) i
127[ o D3(X, y)
0 0
1 1—-x
1 ¥ 2-2y—x
ey~ fax [ 4y,
127° | Di(x, y)
0 0
i 1-x
1 [ § x(x—1+42
g = — — dx dy_(—_.....X} .
12n* J Ds(x, y)
0 0

Now, we can check Ward identity (3.11)

Plug'g‘;)'s(l’p P2 q) =Tr (Vs)’a}’ﬁ)’v?l) (P1ab2s) [—Ca+ C1pi+Csp1p,]

= 2’"”‘5’155(171, D2

1
24n®
where IT%%, is given by (Appendix (A.18)).

Similarly

D@Dy, Pas @) = Tr (57 P*¥"y") (P1aP2p) [— C1+ Cspip2+Cepi]
1
= 2mIT4%5(py, p2)— R\ 2 “Vr'v*) (P1aP2s)>

—(P1+P2):25%5(p1, P2» D)

= Tr (s77*y"y") (P12P2p) [-C1+C2— Cy(p}+p1p2)— Co(p3+P1P2)]

1
= 2mIl555(pys P2)+ —— Tr (7577*7"7") (P1aP2p)s

(3.22)

(3.23)

(3.24)

(3.25)



31

where IT4%5(p,, p,) and IT%%5(p,, p,) are given by (Appendix (A.16)) and (A.14), respectively.

Using our prescriptions for ys we got the triangle diagram with three axial vector
couplings IT%5% which does not satisfy Bose symmetry. After symmetrization our new
trianle diagrams Q%%5(p,, P, ) have proper Bose symmetry and satisfy abnormal Ward
identities (3.23), (3.24) and (3.25). The abnormal terms do not depend on mass, so after
summation over internal fermions they vanish in anomaly free theory.

In the end, using (Appendix (A.19), (A.20), (A.21)), and (3.14) one finds that Ward
identities (3.12) are satisfied. The proof of the infinite part is trivial, but in order to check
that the finite parts obey relation (3.12) we nced some algebra.

4. Conclusions

We have been considering the method of using dimensional regularization for theories
with ys couplings. We proposed a modified version of anticommuting ys in n-dimensions.
It was checked before in the literature that totally anticommuting ys is consistent with
Ward identities for diagrams with an even numbers of y5’s and for diagrams with mixed
loops containing both boson and fermion propagators.

In the case of odd numbers of ys couplings we calculated precisely the triangle dia-
grams with one and three ys matrices. They are useful in the ZZZ, ZZA and ZAA couplings
in the electroweak theory. The resulting amplitudes obey the naive vector Ward identities.
In the axial vector Ward identities Adler-Bell-Jackiw anomalies appear which vanish
however after summation over internal fermions if a theory is anomaly free.

APPENDIX

For convenience we give some details in how we use our definition from Sect. 2. Any
diagram in Fig. 3 can be got from (3.1) which we rewrite introducing Feynman param-
eters

d"k 1
Qn)" [—k*-2kP+D]

1 1-x
o (p, p,) = =2i de J dy
4] (4]

X {Q14kp Q[ Tr V*T1¥ T 29T 3) = Tr (YT 39T 1y°T3)]
+mQ kg[ Tr (T 1Y°TT3)+ Te (DT 9T 5)]
+mQ1,0,5[Tr °T, T2y°T3) + Tr (T, Ty°T5)]

+mk, Q5[ Tt (LY T2Y°T's) + T (¥T'2y°I'1T5)]
+m2Q [ Tr (y°T Tyl 3)—Tr (Mol y°T3)]
+m?k,[Tr (I'y°T2T'3)—Tr (Fyy°T4T3)]
+m?Q, [ Tr (I T2y T'3)—Tr (v, T5)]

+m?[Te (L Lpl3)+Tr (03]}, (A.1)
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where
Qy =k+p;, @y =k—p,, P=yp—xp,,
and
D = m?—ply—pix.

To calculate I1%* from Fig. 3a we put to.(A.1) I', = y*, I', = y* and I's = y*ys. Using
property (2.3) and (2.8) we easily get

1-x

1
1% py = —2i [ax [ ay [ £F !
y) = —2l 2 { T3
s AP P ‘ Y| @ny [—k*=2kP+D]?
4] 0

% {012k Qay(Tr (7Y ¥"¥7"¥"y5) = T (79" y"y'y"y5)]
+2m*(k+ py = p2). Tr (559°9""vH)} (A2)

To calculate the traces in formula (A.2), we shall use the property C in Sect. 2. Then
generally, one can obtain:

Aeu;f[?v_._ gv%smuﬂy

Tr (y%""y"y"y"ys) = —4ile’
+gvyérzuﬁ}.+ gﬁ),grxuvy_gﬂygauv}.
+gﬂvgacuy,l+guy8aﬂvi_gﬂlgaﬂvy
+guﬁsavy).__ guvgaﬂyl_'_galguﬂvy

+ gavauﬂy)._ gayeuﬂvl__ gaﬁsyy»y).+gallsﬁvyl], (A3)

and
Tr (,Y“/,Yv,y ,))I—l,ya,ylys) ‘: _4i[gyﬁb_szuvﬂ_ gyvgauﬂ}.
+gyaeuﬂv}._gyusaﬂvl_*_gy).sauﬁv

+gv“g“ﬂ“—-g"ﬁg““w‘——g"“g“pﬂ

+gﬂaeuvy}._gvlgaupy_gﬁugavy).

+gﬁ}ts¢uv7+ galguﬁvy_guasﬂvy}._ gulsaﬁvy]. (A4)

From (A.2) we see that we have to contract the traces (A.3) and (A.4) with the terms
kokgky, kikypays proksk, and pikgps,. The fourth term p,ksp,, gives a finite integral,
so we can calculate it in any wa/. We obtain:

keoke gk, [T (77 P99y p5) — T ("7 y®y"y™ v’y 5)]
= —2k%k, Tr (ys7"y"7"7"), (A.5)
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Piaksk LT (9" ¥* 'y y5) = Tr 'y ¥"v"y"v™y5)]
= —4K(piakg) Tr (ys7™"y"7") =2k p 1o Tr (vsy*9™y"y") (A.6)
and
kg D2, [Tr v "y v ys) —Tr "y v*y"y"v™ys)]
= —4k"(k,p2p) Tr (7577 7v") — 2k p2o Tr (357797 (A7)

For the product p,.k,p,, we at first make integration and then contraction with the
trace tensor. Putting now all parts together we get:

%%(py, py) = Tr (vsy"y""y") [B1 P12+ BaP2s]
+Tr (7syY"y"y*) (P1aP25) [ B3P} + B4p})

+Tr (757"7"1*7*) (P12P2p) [BsPi + BsPhl, (A8)
where

1~-x

B, = —fdx f dy {lnDs(x y)(3y—1)+ —

1
5.3 [piy(1—y) (1—2y)

+4pypaxy(1— y)+ pix(1+(1—-y)1 —2x))]} ,
1 1
—zfdx J dy {ln Dy(x, 3) (- —=3x)+ ——— [pIy((1 —x) 2y—1)—-1)
" 0 0 3( ’ )

~4p; poxy(1—x)+ p3x(1 —x) (2x — 1)]} 5

B3—MJ j (x,y)

1 x(1=x)

B,=— |dx dy ,
4r p Di(x, y)

0

1 1—-x
1 y(d—y)
Bi=——ld dy ——2~ |
: wj xj Y D 9
0 0
B 1 jd fd
= — — |dx
¢ n? Y D,(x, }’)
0

[
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where
Dy(x, y) = m*~piy(1—y)~ p3x(1 —x)—2p1 P,xy.
Using a similar procedure as in Ref. [10] it is easy to get
B, = B3p,p,+B,p3,
and
B, = Bspi+BspPa- (A9)

Thus our result for IT%"* is the same as in Ref. [10] in spite of different ys definition.
Putting now I'; = 9%, I', = y"ys, I's = y*p5 into (A.1) we get

n gg‘s(l’n p2) = Tr (757“’)’"?"71) [A1p1.+A4202.)
+Tr (757"7*7*7") (P1aP2p) [B3p: +Bap}]
+Tr (7577°7"y") (P1aP25) [BsPi + BsP4l, (A.10)

where B;,, i = 3, 4, 5, 6, are the same as in (A.8) and

dx (A.11)

Ay

S(x’ }’)

and

m? 2x—1
A, = By~ d d . Al12
om0 (12
(4]

0

The other diagrams in Fig. 3 are simpler. Putting I'; = y*, I', = 9", I'; = 75 into (A.1)
we get 115°(p,, p2):

I5(py, p2) = — Tr (71 (Panp)jdx ‘[ Ds( D (A.13)
In the same way putting I'; = y“ys, I'; = 9"ys, I's = 75 into (A.1) we obtain
-X
2(x+y)—-1
I%555(pys p2) = — -3 Tf (ysy YﬂV “y) (Pszp) J\dx I —— (A.14)
D3(xs y)

After changing the variables in (A.14) we easily get the other diagrams in Fig. 3b. To
obtain IT%%5 we change

g2, vopu, pi>qg=-—p—py PP X—1-x-y, y-ox (AlS)
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and then

1~x

o 1-2y
Hsss(Pn D) = Tl (ysy"y ')’ '}’ﬂ) (P1aP2p) J‘dx j dy
0 0

D3(x’ Y) |

(A.16)

To get II%;s we substitute
L=V, voA piop, Proq=—p—py XxX—-y y-ol-x—yp (Al

so we have

2x
Dy(x, )

V. rn FC3
hs(py, p2) = — o Tr (9s7°Y" YY) (Prab2p) [ dx j dy

- (A.18)

Putting I', = y*ys, ', = 7"ps and 'y = 1 we obtain II55 from Fig. 3c.

1 1=-x
o5y(ps, p) = g (Cuv"l— de '[ dy In D3(x, y)
0 0
1 1-x
m
+§;‘ dx J dy D%, ){P1P12Y(2Y D)+ psp32x(1 —x)+ pipa(1 —4xy)

+pADN(2x + 2y —dxy — D)+ g”(piy(1 = 2y) + p3x(1 —2X)+p1pz(4xy—2x-2y+1))}> ,

(A.19)
where

2
Cyy = - —yg+In4n and y; is Euler constant.
-1

The second diagram in Fig. 3¢ is obtained by putting I'; = y*ys, 'z = 75, and I'; = 1
into (A.1)

%5(py» p2) = D,pi+Daps,

where
1 1-x
1 1
D, = i Cowwt — Py dx dy(3y—2) In Dy(x, y)
4] ]

1
) [piyv1-» 2y—-1)
3 ’

1 i-x
1 d d
27 x 4 D
[+] 1]

+p3x(y +2(1—y) (x—=1))+2p;p2y(1—y) A1 =2%)], (A.20)
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and
1 1-x
1 1
D, = = (Cyy—1D— == | dx | dy(1+3x)InDy(x, y)
2n 2n
0 1]

1 1-x
+1 dx drl [pixy(1-2y)
2n? YDy p T
o 0
+p2x(1—-x) (2x— )+2p,poxy(2x—1)]. (A.21)
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