Vol. B18 (1987) ACT A PHYSICA POLONICA No 1

THE ONE-LOOP EFFECTS IN THE ELECTROWEAK
GLASHOW-WEINBERG-SALAM THEORY*

By PenkA CHRISTOVA CHRISTOVA
Department of Physics, High Pedagogical Institute, 9700 Shoumen, Buigaria
( Received March 25, 1986)

In the near future the experiment will reach a great precision and will be able to test
the standard electroweak theory. It is important now to put in order calculations of radiative
corrections in this theory and to make correct and exact present theoretical predictions for
the measured quantities. The survey of some results of group working in the JINR, Dubna,
may serve this aim. We discuss here on-mass-shell renormalization scheme in the unitary
gauge; the one-loop amplitudes of both charge and neutral currents-induced fermion scatter-
ings; the large constant effects; the dynamical behaviour of the one-loop neutral-current
corrections; the calculation of the W- and Z-boson masses; the difference between the various
Weinberg parameters sin? fy.

PACS numbers: 12.15.Ti

1. Introduction

The non-Abelian SU(2) x U(1l) gauge symmetry which unify the weak and electro-
magnetic interactions was proposed by Glashow, Weinberg and Salam [1]. Their model
along with the photon contains three weak intermediate vector bosons W* and Z° regarded
as quanta of gauge fields. The gauge symmetry is spontaneously broken down to Abelian
U(1) symmetry of the electromagnetic interactions by introducing the Higgs scalar doublet
with four degrees of freedom
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whose vacuum ecxpectation value is not equal to zero
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Due to the Higgs mechanism [2] three bosons W* and Z°, swallowing one-each extra
degree of freedom acquire masses. The photon remains massless. Correspondingly, one
extra degree of freedom remains free and it is the physical Higgs scalar boson y.

According to ’t Hooft such a non-Abelian gauge field theory with spontaneous break-
down of a gauge symmetry is renormalizable [3]. It permits us to obtain manifestly finite
predictions for the physical quantities order by order.

The Glashow-Weinberg-Salam (GWS) model is not unique. There was a variety of
models for an electroweak theory with the same charge current and various neutral current
structures. But GWS theory called the standard theory is just the one which has received
a significant experimental confirmation on the tree level. Along with the well-known charge
currents this theory contains weak neutral currents which were observed in neutrino scatter-
ing experiments [4]. The weak neutral currents in this theory do not conserve the parity
and this was seen in the atomic transitions [5] and in deep inelastic scattering of polarized
electrons on deuterons [6]. Also a forward-backward asymmetry in the process
e“et — p~p* [7] and a charge asymmetry in the cross sections of deep inelastic p~N and
N scatterings [8] are observed in a good agreement with GWS theory.

A genuine triumph for GWS theory is the discovery of the weak intermediate bosons
W* and Z° [9, 10]. It is remarkable too that theoretical predictions for masses of W and
Z° bosons are in agreement with the experimental values obtained at CERN. Therefore,
we believe there is something very truthful in the standard theory, it is believed to be the
correct theory of the electroweak interactions at present.

Now it is important to test the electroweak theory in the field-theoretical aspect.
We must check how does the standard theory work at the one-loop level and higher.
Therefore, it is necessary to calculate the one-loop radiative corrections and compare the
theoretical predictions with corresponding experimental data.

A number of theoretical groups have calculated radiative corrections at the one-loop
level in the standard theory. At the end of 1979 several of them discovered independently
rather large radiative corrections to vector boson masses My, and M,. It was the group
of Marciano and Sirlin [11], our group known as the “Russian group” {12, 13] (though
not all of the participants are Russians), the group of Veltman [14], the group of Consoli
[15], Japanese group [16] and Oxford group [17]. These groups and other authors carry
out a systematic investigation of the one-loop corrections.

Here arises a problem of the choice of a renormalization scheme. One of the difficulties
in communication between different groups was that many different choices of a renormali-
zation scheme are employed. It is clear that the physics does not depend on how the theory
is renormalized. But perturbative approximations of the physical quantities do depend on
the renormalization scheme.

2. The renormalization scheme

It is well-known that in the minimal standard theory dealing with N; fermion fields
there are N;+4 independent parameters — N; fermion masses my, the Higgs boson
mass M, and three additional parameters which should be chosen arbitrarily from the
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following set: the electron charge e, weak charges g and g’, vector boson masses My and
M3, the Weinberg parameter sin? 6y, the vacuum expectation value 2 of the Higgs scalar
doublet and the coefficient / at the nonlinear term (#*®)? in the Higgs potential. Various
renormalization schemes differ by a specific choice of these independent parameters, specific
generation of counterterms and what is more important, which physical processes are
used to fix the renormalized parameters.

The first renormalization scheme proposed by Ross and Taylor [18] uses the electric
charge e and vector boson masses My and M, as independent parameters. This scheme
has a suitable choice of the independent parameters but is unattractive in our opinion
because the renormalization is done off mass-shell. As a consequence, the external lines
of some particles (which correspond to free particles) give finite non-vanishing contribu-
tions after renormalization [19]. In order to obtain a consistent free particle interpreta-
tion in the theory it is necessary to perform the renormalization on mass-shell.

We can do it very easily in the unitary gauge. The next scheme of Appelquist, Primack
and Quinn [20] was developed just in the unitary gauge. But the choice of the weak charge
g along with the electric charge e and W boson mass My, as independent parameters is not
suitable in our opinion. As it turned out it is very difficult to define a convenient on-mass-
shell renormalization condition for the weak charge g. While the usual renormalization
condition known from QED works very well in the standard theory for the electric charge
e the analogous condition for the weak charge gives unphysical infrared and mass singulari-
ties [21]. To remove them an additional renormalization should be applied using process
W= = p=+v, [20-22] or p~ - e~+V,+v, [12]. Therefore, it is not suitable to regaid the
weak charge g as an independent parameter. On the other hand, in this scheme only W
boson mass is an independent parameter and renormalized My, is the physical W boson
mass, while the Z boson mass is dependent parameter and renormalized M, is not the
physical Z boson mass but a mass which is calculated in the considered perturbation order.
It is not convenient to have the polc of the Z boson propagator not at the physical mass.
Consequently, both W and Z boson masses must be independent parameters in order to
renormalize them equivalently and renormalized masses to be physical masses.

During 1979-1980 the groups of Veltman [23] and Consoli [15, 24] working in the
’t Hooft-Feynman gauge tested several renormalization schemes taking e, My, M, or
g sin Oy, My as independent parameters and various physical processes to fix them
subsequently.

The absence of a conventional renormalization scheme produced essential disadvan-
tages for comparing results and conclusions obtained by different authors. One source
of confusion was the definition of the Weinberg parameter sin? fy. At the tree level all
definitions are equivalent which is not true at the one-loop level. If we take e, My, M,
as independent parameters the Weinberg parameter is dependent and defined in an unique
way by the equality

sin® O = 1 —MZ/M32, 6))

which remains exact at the one-loop level and higher [11]. But if we take e, g, My or g,
sin Oy, My, as independent parameters various definitions for the Weinberg parameter



are possible. For instance, one may define sin? 6y through the ratio of charged to neutral
current neutrino scatterings. At the one-loop level this definition differs from the previous
one by terms of order a.

From 1980 our group and other authors began to work in the unique on-mass-shell
renormalization scheme with independent parameters e, My, M,, M, and all fermion
masses m; [11, 13, 16, 25]). It was showed by the Japanese group that the on-shell renormali-
zation may be carried out not only in the unitary gauge but in the 't Hooft-Feynman gauge,
too [16, 26]. In this scheme, known as Sirlin’s scheme, one has only one independent
coupling constant, the electric charge e, for which the usual renormalization condition
known from QED can be easily extended to the standard theory. The conventional defini-
tion at zero momentum transfer, using Thomson formula, can be adopted to fix the electric
charge and one gets the fine structure constant

o = e*f4n = 1/137. )]

In such a case all expansions in perturbative calculations are done in the only constant
o which provides great advantages in higher order calculations. In this scheme the renormali-
zation of all masses is done equivalently by means of the conventional on-shell renor-
malization conditions, the renormalized masses being physical particle masses. Sirlin’s
renormalization scheme was recognized as the most convenient at the Workshop in
Trieste [27].

Several groups choose the fine structure constant and the physical particle masses
as independent parameters. But there are some distinctions in their renormalization schemes.
Our group uses the momentum subtraction scheme and the unitary gauge, the Japanese
group uses the same subtraction scheme but works in the ’t Hooft-Feynman gauge, as well
as all other groups, the Oxford group uses the minimal subtraction scheme, the group
of Marciano and Sirlin uses both momentum subtraction and minimal subtraction schemes,
and gives the coefficient [28] relating the parameter sin? 8} with the parameter sin2 Oy (My)
defined by modified minimal subtraction with unit of mass p set equal to My,. In spite
of these distinctions in the gauge and in the subtraction of divergences all these groups
have compatible results. By the way, the group of Consoli re-expressed [29] their results
in terms of sin? 0y instead of their previous parameter sin? 0y, defined by the ratio of charge
and neutral current neutrino scatterings and came to a consent with all groups working
with sin® 0. Consequently, ways and means of definition of the paramcters are the most
important characteristic of the renormalization schemes.

Our group works in the unitary gauge and we insist on the use to work in this gauge.
Of course, it is a non-renormalizable gauge but we know that the theory is renormalizable.
So, one expects a cancellation of the ultra-violet divergences on the level of amplitudes.
However, there are some advantages to work in the unitary gauge. Just in the unitary
gauge the on-shell renormalization is quite natural. We have not unphysical scalars
and for instance, boson has its three degrees of freedom explicitly, as the propagator
shows

(Oup+ .95/ MW(G”* +M)- 3



7

In such a case the simple Lorentz condition ¢, W, = 01is available. Therefore, the elementary
vertex WWy obeys on-shell current conservation. As a result of it, the Ward identity is valid

kL (p, p—k, k) = eQ [ Z(p)—Z(p—-k)] 4

what is not true in the 't Hooft-Feynman gauge. As a consequence, in the unitary gauge
the renormalization of the electric charge has a simple form
eo = Z; %, &)
where Z4/? is the photon-field renormalization constant.
We renormalize the boson fields in the following way:

Ao\ (2P ZyA\ (4
Z,) \0 VAL AVAN
Wo = Zy*W, o =21 (6)

It is interesting that the renormalization constants Zy, Z,, Zy and Z, arc not of great
importance because they cancel each other on the level of amplitudes. The photon-field
renormalization constant Z, plays an essential role in the radiative corrections.

Za=Dawie = o= AQ) = = (%--g. Te (g; In i‘%”)) . @
The finite transverse photon self-energy function
(@), = o A (—‘é—) @®
4 \ My,

contains [30, 31] the finite one-loop vacuum-polarization function
[+4
all(¢*) = 2 — Tr(Q7J(a%, m, m)) 9

corresponding to the sum of vacuum-polarization graphs.

N¢ f,
O
i=1

f

l

Fig. 1. The sum of photon vacuum-polarization graphs

The function
1

J(g% mi, m}) = f dxx(1—x) In

o

mZ +x(1—x)q*

7z (10)



is equal to
@ In(mM3) at ¢*=0; (1mn

) (n |g* MG~ for 1% > mi. (12)

This function evaluated at g% = 0 is responsible for large logarithmic corrections of the
form

o, (0) = —2 %Tr <Q} In A%) (13)

f

not only in the amplitudes but in the cross sections of various processes, too.
We use the Weinberg parameter in the form

R = cos® Oy = ME/M3 (14)

instead of (1). It is a dependent parameter and its renormalization is a consequence of the
W and Z boson mass renormalization

R, = R+6R, OR/R = SME|ME—SMZME. (15
We have

(OR/R)ginire = (afdm) (W(—1)—Z(—-1))/(1-R), (16)
where the finite functions W(g*/M%) and Z(g%/M3) are connected with self-energy functions

of W and Z bosons.
The weak charge g is coupled with electric charge e by

g = e/sin By = e(1—R)™ /2, (17)

So, the weak charge renormalization is done by means of electric charge renormalization
constant Z3'/?

g0 = Z;'*(1-3R[(1-R))"'/%g. (18)
We supplement the considered renormalization scheme by an arbitrary unitary mixing

of fermion fields introducing the unitary mixing matrix K with an arbitrary quasidiagonal
structure

K=|0 K, — —1}, (19)
where K, K,, ... are unitary submatrices mixing fermions in separate subspaces, for

example, lepton and quark mixing. All fermions are organized in a big doublet

~(
f"'(fd)’ (20)



where f* and f¢ are columns of up and down fermions. (It does not matter if up or down
fermions are mixed.) To cancel Adler anomalies we adopt the standard theory with arbi-
trary number # of lefthanded lepton doublets and corresponding 3n quark doublets which
should obey the conventional requirement for up and down quark charges

3
T el =1, ey
where / is the colour index. We adopt also the free quark model and believe that quark
masses are physical quantities, well-defined. Following Marciano and Sirlin [32] we regard
mixing matrix elements as finite phenomenological parameters which should not be renor-
malized.
To obtain the fermion mass term in the Lagrangian, it is necessary to consider the
interaction of mixing fermions with the scalar doublet ¢. After spontaneous breaking of
gauge SU(2) x U(1) symmetry the fermions aquire masses. In the unitary gauge we have

—(iMfg+RRM 1), (22)

where M is a fermion mass matrix, in general non-diagonal.
We introduce the fermion field renormalization matrices

142 712
fov = Zg frs Sor = Zghrs (23)
and the fermion mass renormalization matrix Z, with a dimension of mass

Mo = ((Z3) ") ' ZuZi) ™" 24

L

The renormalized mass term is diagonal

—fmef, (25)

m, being the diagonal mass matrix of the physical fermion masses. Hence, the fermion
mass counter term is

- (]LzmrfR +.7RZI:r.fL —'fmff) (26)

3. Finite one-loop amplitudes of spin-1/2 fermion scattering

Because of the precise measurements of the muon’s total decay rate, it is interesting
to consider in detail the fermion scattering induced by a charge current. In the tree approxi-
mation the scattering (or annihilation) of any two fermions through W exchange is described
by only one Feynman diagram

Fig. 2. The Feynman diagram for the scattering of any two fermions through W-boson exchange in the
tree approximation
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The amplitude is

‘Mgicj,k! = CijuOup+a.95/M W0, % Oy, @27
where

Ciju = — i(2“)4(82/'8)Kin1$ [(a*+M3), (28)

K;; being a mixing matrix element. Here we adopt O, = 7,(1+7s) and the direct product
0, % Oy of Dirac matrices stands for the well-known expression #(p;)O,u(p )i (p,)Ogu(p;).
In the one-loop approximation the amplitude has the form

Affgck! - NIOU klEmCC(qza S’ k2)+ Cij,le‘lv (qz, Sa kz)oa X Oau (29)

where ¢ = p;—p; is the momentum transfer and k = p;—p, is the crossing momentum
transfer; S = —(p;+p)? t = —q* u = —k*® being the amplitude invarianis. Explicit
expressions are calculated in our works [13, 33, 34].

The amplitude contains the factorized pure electromagnetic term with genuine infrared
divergences which are cancelled subsequently by the bremsstrahlung at the cross section
level. In the weak part of the amplitude we neglect the terms of order O(umi/M%) where
mg is the mass of fermions. So we have only one finite form factor Fy.

For simplicity we could propose all amplitude invariants satisfying the inequalities

m¢ <8, 1q%, |k*| < M. (30)

In such a casc we mark them by symbol 0. So, the weak form factor F} turns into

F‘,”((A))=l+(oc/4n){—,4(0)+ (W(—-1)—-Z(—- 1))+—1-—[W(0) wW(—-1)

R
(1-R)?

R
~3 RR+ D+ +3 ——In R] + (-—3 in —)(IQ;I 10 +101 lel)} (31)
Here Q; is the electric charge (in units of ) of incident and outgoing fermions. It is seen
from (31), (7) and (13) that one encounters the large logarithmic corrections (13), as a con-
sequence of the weak charge renormalization (18).

As for p-decay, in particular

Fig. 3. The Feynman diagram for p-decay

the amplitude invariants g2 and k? lie in the intervals

2l < mk, 0 <K < (my—m,). (32
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So the weak form factor F} in a good approximation is represented by expression (31)
taking Q; = @, =0 and [Q;] = |Q] = L.

FY = 1 +(a/4n)X = 1—all (0)+0(x), (33)

where

X = %Tr<Q? In Ai) -3+ (W(=1)=Z(= 1)

my

(1-R)*

b [W(O)— W(—D)—gRR+ 1)+ +%

"R In R] . 34

1-R

The pure electromagnetic part of the amplitude should be calculated very precisely. Thug
in one-loop approximation one obtains [13] for the muon’s total decay rate

1 P gt a«
—=— a1+ —(E-r*+X)|, 35
z, 32M;‘V[ a2 TTAD) (35
where

5 2 2

m, ms m
= M (g e V(142 M) 36
192n3< mﬁ)( +5M;~.> (36)

Sirlin in his work [30] discusses in detail the correction to muon’s total decay rate
of order O(a? In (m)), neglecting terms of order O(?) and higher. His final result is [30]

1 P g* o « a \?
—=— 21+ —F-)[{1+2 = EN1-—=x 37
z, 32M;*v[+2n(4 ”)< +37tlnm):|< o G7)

e

where an,(0) is replaced by «lI,(0)+«2[1,(0) — quasicomplete vacuum-polarization
function evaluated at ¢® = 0. By the way, «2IT,(0) give a very small effect negligible in

. . of . . ot . .
a numerical evaluation of o X. Including the weak correction -— X in the denominator
s v

he has summed the leading logarithms (x In (m;))" to all orders in perturbation theory,
as well as the main contributions of order O(x? In m,). Thus the large vacuum-polarization
effects are already summed and will not appear in higher orders.

One can define G, by means of the equation

1
~ =GP [1+ 2 @22 g2 <1+-§-—°31n m")], (38)
2n n m

Tn e

where the correction to the muon’s total decay rate in the previous V-A theory through

m . .
terms of order O (oez In “) is taken into account [35]. Inserting the experimental value
me

of muon’s lifetime one obtains:

G, = (1.1663440.00002) x 10™* GeV "2 (39)
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Comparing equations (37) and (38) one finds a very important relation between My and
sin Oy (having in mind g = e(sin 6y)~")
My = A(sin 85) %, (40)
where
A = Ay(1—(af4m)X)~ Y2, A, = 37.281 GeV. 41)
In the last numerical evaluation of («/4r)X Marciano and Sirlin [36] employ sin? Oy,
= 0.217, M = M,, m, = 36 GeV, the effective light-quark masses m, = my = 75 MeV,

m, = 250 MeV obtained by the Wetzel dispersive analyses, using the process
e~et — hadrons [37], including also QSD corrections. Their result is

(2/4m)X = 0.0696+0.0020 42)

where an estimate of uncertainties in the hadronic contributions has been included. We
see that the weak correction is significant. Thus we receive for quantity 4 the very correct
evaluation

A = 38.65+0.04 GeV. (43)

Neutral current induced fermion-fermion scatterings are proper reactions of the
standard theory. In the tree approximation they are mediated by neutral bosons v, Z and ¢
as it is shown by the Feynman diagrams.

i '2. f; f, ¢ f i ; f;
X
. 0y’ Q%A q,

Fig. 4. The Feynman diagrams for the scattering of any two fermions mediated by neutral bosons 7, Z and y,

The amplitude is

Moi; = Cif(0up+4a45/M7) [Oa—4(1 = R) {Qil.] x [0 —4(L —R) 1Q17,]

+Cljya X vat+Cyl X I, (44
where
C% = —i(2m)*(g?/16R)S;S,/(q* + M3),
Chi = —iQn)*e*Q:i0;/4°,
Cy; = ir)*(g*/4) (mm;IMP)/(q* + My). (45)

Here S; is a matrix element of the diagonal matrix S; = I _(;) equal to twice the third

0
isospin projection of the i fermion with an electric charge Q,, We have S;|Q,| = Q.
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In the one-loop approximation along with a faclorized pure electromagnetic part
the amplitude contains a finite weak part which is organized by means of weak form
factors [33, 34]:

(MY )yesk = CH(0 % O F5—4(1 — R)|Ql7, % O, F5—4(1—R)|Q,10, x y,F5
+16(1 = RY|Q4l 1Q,17, X YoF 2) + C5(0a X ¥oF 6 + 745 X Py sF ). (46)

We have F% = F3(i <> j). All terms of order O(am}/My,) are neglected. The form factors
are functions of the amplitude invariants ¢ and S, k2 being equal to S— ¢2. Moreover,
they contain large constant terms, the large logarithms. The vacuum-polarization function
evaluated at g2 = 0 (13) is included in form factors F, F5 and F% as a consequence of the
weak charge renormalization (18), and in form factor F§ to be renormalized the photon
self-energy function Re IT1(g2) = I1(¢2)—I1(0). Form factors F5 and F% contain the function

M(q*/M3) = —RA(4*/M3) +Tr (807 —21Q¢)J(q°, my, my)) 7

connected with the photon-Z boson mixing. We see here the function (10) corresponding
to the vacuum polarization. The last function gives a large logarithmic contribution when
the amplitude invariants are in the region (30), as the expression (12) shows.

Let us consider low energy values of the form factors. In the region (30) they remain
nearly the same. For instance, we take F;(O) where the symbol O stands for S = 100 GeV?
and g2 = 1 GeV2. We have numerical evaluated them for sin? 6} = 0.218, M, = 200 GeV,
My = 82.5GeV, M, = 93.3 GeV and the usual constituent quark masses and have
obtained:

FXO) = 1.063, FXO)=1.088, F%0O)=1.093 FAO) = 1.025. (48)

.2, 2 6'
F (9,5 /
FZ ()
1.04
1.02
1.00
L | {
1 1 3
%S 55 7S q?

Fig. 5. The ratio Flz(qz, S)/FZ(O) versus ¢? for fermions with electric charges Q; = Q j = —1 and for six
values of S in GeV?2: I) 10%; 2) 2-10%; 3) 5 -10%; 4) 10%; 5) 3 - 10* and 6) 10°. The curve 6’ corresponds
to the asymptotic expression (|¢2}, S, Ik?| > MZ, M3) for the form factor FZ(g?, S), taken at § = 10° GeV?
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z
F, (qZ,S)
Z. =
F, (0)
1.02

1.00

0.98

FLZ(q?S)
FZ (0)

0.98

0.96

A2
F§ (qS)

A, -
Fs (0)
1.04

1.02

1.00

Rl 1 3
) S =S

Fig. 6. The same for the form factor F7

| | |

RPN R

1 1 3
%S 7S 7S

Fig. 7. The same for the form factor FZ

1 ! i

R WU M

-

3
S 7S

Fig. 8. The same for the form factor FéA
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(The form factor F% is very close to zero for every g? and S.) Obviously the constant effects
of the one-loop corrections are significant. They have mainly a vacuum-polarization origin.

~ The ratios F{(g?, S)/F{0) show the purely dynamical behaviour of the form factors
because the large constant terms with In (My/m) are cancelled. Their behaviour is deter-
mined only by the g2 and S dependence, and practically do not depend on fermion masses.
We take for example the fermions with electric charges Q; = Q; = —1 and give these
ratios versus g2 in Figs. 5-8 for six values of Sin GeV2: 1) 102; 2) 2 - 10°; 3) 5 - 103; 4) 10*;
5) 3+ 10%; 6) 10°. The curve 6’ corresponds to the asymptotic expressions (lg2|S, (k2]
> M3, Mf) for the form factors Fy(g2, S) taken at § = 10° GeV?. One can see from Figs.
5-7 that form factor FZ begins to grow only from S = 10* GeV2, i.e. from E; = 50 GeV,
and form factors F% and F% grow slowly even at higher energies. The comparison between
curves 6 and 6’ shows that at S = 10° GeV? form factors FZ are still far from an asymptotic
behaviour. Only the form factor F2 has an asymptotic behaviour even at such low energies.
The genuine electroweak field theory effects due to (In(g¢?)*> appear already at the
S = 10° GeV2. But they are very small as compared with the large constant effects. So one
could not observe them at such low energies. (Our figures 5-8 are correct everywhere with
the exception of the boson resonance points.)

4. Calculation of the W- and Z-boson masses

Our calculation of W- and Z-boson masses uses the following three experimental
fixing points: the fine structure constant o (2), the Fermi constant G, defined from the total
muon lifetime (39) and the experimental value for the Weinberg parameter

sin? 657 = 0.224+0.014 (49)

extracted from the data analysis of the SLAC experiment [6] measuring the P-odd
asymmetry in the deep-inelastic electron-deuteron scattering.

The theoretical analysis of the one-loop corrections to the P-odd asymmetries has
been performed in detail by Bardin, Shumeiko and Fedorenko [12, 38]. It was the first
calculation showing the significance of these corrections. We can use for our aim the one-
-loop corrections to the asymmetry 4~

1 d*e~(A)—d*e™(=1)

AW =3 Pt o (=h)

(50

where J is the longitudinal polarization of the initial lepton, and d2¢- is the double differen-
tial inclusive cross section of deep-inelastic scattering of polarized leptons on nucleons

1=+ N — 1-+anything. (51)

In the kinematical region of the SLAC experiment these corrections happen to be
constant. Therefore, it is possible to minimize them by redefining the Weinberg parameter
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sin? 6y, through the equation

1 2
7 G, sin? 63° = siﬁv sin? O} (1 + %{ Y) . (52)

Here we include the large constant part 1 +(x/4n)Y of the low-energy form factor F% into

the definition of the measured quantity sin? 8®, where

Y = -1—~ 2Tr{ Qi 1In i’f_\_v -2472(0)-w(-1) (53)
1-R}{*® "me) 3 :
The large logarithm effect comes from combining of two vacuum-polarization functions:

of the photon due to the charge renormalization (13), and of the photon-Z boson mixing
(47). Having in mind e? = g2 sin? 0} we obtain from (52) an equation for thc W-boson

mass
Mo = 37.281 GeV 1+ %y 12 s
Y7 sin 0wy 4n ) (4

Using Eqgs. (40), (41) and (54) we find a relation between the two Weinberg parameters

o
1- o Y
n
sin? ) = sin? O3° — (55)
o
1- —X
4r
The definition (1) of sin? 6 and Egs. (54) and (55) give for the Z-boson mass
37.281 GeV % o 12
=1+ Y+ —(X-Y)tg? 05" ) . 56
sin 9$’cos0§{,‘p( 4n 47z( e w) (%6)

The constants X and Y depend on My, M, and M but, in view of small correction
factors, equations (54)—(56) can be solved by iterations with respect to My, and M. As
for M, we observe, as the other authors, a weak dependence of solutions on M, when
varying M, within the limits 10 GeV — 1 TeV, as shown in Figs. 9 and 10. In these figures
the curves @, b and ¢ correspond to threc values for sin? 6% : 0.22, 0.23 and 0.24 respectively,
and the numbers / and 2 correspond 1o the current and constituent quark masses. We are
in excellent agreement with the results of the other authors.

We can redefine the weak charge g, so that the weak corrections to the total muon
lifetime in Eq. (37) vanish, as they do in Eq. (38).

g (1—(/4m)X)™" = gf. (57)
The new weak charge gr 1s related with the Fermi constant G by the simple equation

(712G = (gp)*/(BMY), (58)
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Fig. 9. The mass of W-boson versus M,, M, varying within the limits 10 GeV-1 TeV. In this figure the curves
a. b, ¢ correspond to three values for sin® 63%P: 0.22, 0.23 and 0.24 respectively, and the numbers 1 and 2
correspond to the current and constituent quark masses
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Fig. 10. The same for the mass of Z boson
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where My is the physical W-boson mass. In such a way we derive the third Weinberg
parameter

sin? 65 = e%/g2 = sin® O <1- 4ﬁ X) (59)
T

which is a ratio of the two charges e and gg, each of them defined at momentum transfer
close to zero.

The fourth Weinberg parameter is defined in the modified minimal subtraction scheme
(MS). The connection between the parameters sin? Oy (My) and sin? 6} is given in (28).
Table I illustrates the relationship to order O(x) between the four Weinberg parameters
for three values of sin® 03° both for constituent and current quark masses, M, being equal
to 200 GeV for definiteness.

TABLE 1

The relationship between the four Weinberg parameters sin? 03°, sin* 0‘”",, sin? ()gv and sin® 0 (My,) for
three values of sin® 63P: 0.220,0.230,0.240 both for constituent and current quark masses, M, being equal
to 200 GeV for definiteness

0.220 0.230 0.240
sin? 6P
curr. const. curr. const, curr. const.
sin? OM = 1-—- M3, /M} 0.211 0214 | 0222 0.225 0.2325 | 0.235;
sin? Ow(Mw) 0.210 0.213 0.2205 | 02235 | 0.231 0.234
sin? 0, = e/} 0.195 0.200 0.205 0.210 0.215 0.220

5. About high precision experimental tests of the standard SU(2)x U(1) theory

There is a variety of Weinberg parameters defined quite differently. If we work with
sin2 6%, then Eq. (1) does not have radiative corrections to any order. Using sin? 0y, we
avoid the weak corrections to the muon’s total decay rate in all orders. The parameter
sin? 05;° minimizes the corrections to the P-odd asymmetry in deep-inelastic charged lep-

ton — nucleon scattering. In other processes another parameter sin® Oy quite different

exp

from this will minimize the corresponding corrections. So, parameters sin? 6y® received
from various experiments should not be mixed up.
The SLAC experimental value (49) is reduced to

sin? 0y = 0.218+0.014 (60)
by the theoretically predicted shift
& sin? By, = sin® 632 —sin® 6% = 0.006. (61)

From the neutrino deep-inelastic scattering data one obtains quite different parameter
sin? A5°. Recently Fogly [39] has published the results of a new detailed analysis of all



19

data of this experiment. There are extracted significant radiative corrections
3 sin? By = 0.0097. (62)

It is just equal to our theoretical prediction 6 = 0.01 [40]. The analysis of the other authors
gives the same value [11, 17].

As the other authors (Consoli, Hioki, Sirlin and others) we estimated the dependence
of My and M, on M, and m, (a mass of a heavy up-type quark). Recently Lynn and Stuart
have published a careful evaluation of My, in terms of «, G,, M, with parameters m, and
M,. Our own results obtained from formulae published some time ago [13, 42] are in
excellent agreement with Table 2 of these authors for all tabulated W masses in all four
published digits. This is an impressive example of the level of reliability being obtained in
the calculation of electroweak radiative corrections.

We could receive an important information about masses of the unknown quarks
and of this puzzling Higgs boson from Eq. (41) because the quantity 4 is a function of
them. Sirlin’s analysis gives for the shift of this quantity d4 = 4— A4, = 1.37 GeV [36].
It is a significant radiative correction. The capabilities of the near future experiments to
measure d4 and possibility to estimate the Higgs boson mass are considered in [43, 44].

If the sensitivity to A of the forthcoming experiments could be about 0.05 GeV the
test of the genuine electroweak dynamical corrections becomes possible. It will be a decisive
verification of the standard theory as a field theory of the electroweak interactions.

Editorial note. This article was proofread by the editors only, not be the author.
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