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The SVZ method is investigated within a non-relativistic model with the potential
V = A ctg? nx. Three expansions of the non-relativistic analogon of the exponential moment
are considered: the short-time, the weak-coupling and the quasiclassical (in powers of #%)
expansions. For potentials which have been studied by now these expansions wére indistin-
guishable. It turns out that the SVZ method applied to the potential ¥V = A ctg? zx works
well for small values of the coupling strength 2 only if either the short-time or the weak-
-coupling expansions are used. For large 2 only the expansion in powers of # leads to satis-
factory results.

PACS numbers: 12.40.Qq

1. Introduction

In 1979 Shifman, Vainshtein and Zakharov (SVZ) introduced an interesting method
of predicting the parameters of the bound states of a quark-antiquark pair (e.g. resonances
Jfp, T) from QCD [l1]. The SVZ method relates the masses of the qq resonances to the
value. of the gluon condensate {(Q|GG|Q>, which is a nonperturbative parameter. The
value of (Q|GG|Q> once determined from the data for a fixed resonance (for example
J/p) can be applied to predict the masses of other resonances. The results of this procedure
are in very good agreement with experimental data.

In order to understand the unexpected success of the SVZ method Bell and Bertlmann
[2, 3] as well as Durand, Durand and Whitenton [4] have studied the SVZ method within
non-relativistic potential models, where the qq system is described with use of the Schrodin-
ger equation. In this case the analogon of the nonperturbative effects is'a long range confin-
ing potential ¥ = Av(x), where t(x) » oo for |x| — co. The coupling strength A of the
potential corresponds to the gluon condensate {Q|GG|Q> [5]. The conclusion of Refs
[2-4] is that the SVZ method does not work well in the non-relativistic case (for example
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the gluon condensate is underestimated by a factor 2.5-3). In Ref. [6] Novikov, Shifman,
Vainshtein, Voloshin and Zakharov suggested that the criticism of Refs [2—4] was based
on misunderstanding and they gave their own orthodox non-relativistic version of the
SVZ method, which we shall follow in the present work.

Let us consider the exponential moment

M(B) = =Zo ey, (0)1* = Gg(0,0, B), (1.1

which is the non-relativistic analogon of the Borel-transformed vacuum polarization in
the field theory [2-4]. Gg(x, y, B) denotes the Euclidean Green function. The exponential
moment .#(f) can be calculated by taking the first two or three terms either of the expansion
in powers of the parameter A (the standard perturbative Born expansion [2-4]) or of the
expansion in powers of the parameter g (the short-time or high temperature approxima-
tion [7-9]). Sometimes one can calculate the leading nonperturbative term 8, 9. In the
present work we consider also the Wigner-Kirkwood expansion in powers of the Planck
constant A. The relationship between the above-mentioned expansions is interesting, because
it is not clear which of them is the non-relativistic analogon of the expansion of .#(f)
used by SVZ in Ref. [1].
The sum for n > 1 in (1.1) can be estimated by an integral:

H(B) = e PE o (0) + }0 e PEg(E)dE. (1.2)
Ec

The integral on the r.h.s. is the contribution of higher states and is called the continuum
contribution. The density g(E) is calculated in the approximation of free motion. It can
be also calculated with use of the WKB approximation [8]. If there exists a domain of
B where the approximations are satisfactory (the fiducial region, see the next Section),
it is possible to obtain the ground state energy E, (which is the non-relativistic analogon
of the mass of the lowest resonance) by fitting simultaneously E, and the effective continuum
threshold E, from Eq. (1.2). In the present work we use the partition function Z(f) instead
of the exponential moment (f). Such a modification simplifies the calculations signifi-
cantly and does not affect the final qualitative conclusions about the SVZ methced.

The following potentials have been used in order to test the non-relativistic version
of the SVZ method: the harmonic oscillator potential ¥V = mw?x?/2 [6, 7]; the square-
-well potential ¥ = lim, x" [7-9]; the linear potential ¥ = Ax [7]; the linear plus Coulomb
potential V = ix+a,/x [2, 4]; the cubic plus Coulomb potential V = Ax?+a,/x [2]; power
potentials ¥ = /ix®, where sgn (/) = sgn(s) [2-5]; superpositions of power potentials
V = X sgn (s)A(s)x* or V = | sgn (s)A(s)x*ds, where i(s) > O [2, 4}. For each of these
potentials the exponential moment depends on an expression of the form A°p*h¢. Thus
each of the expansions in powers of 4, § or h yields the same series.

In this work we consider a confining potential

V = Actg® nx. (1.3)
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The potential is chosen in such a way that the expansions with respect to 4, § and % are
essentially different. We analyse how the SVZ method works in these three cases and come
to the conclusion that the expansions in powers of 4 and g lead to similar fiducial regions,
but the fiducial region for the expansion in powers of the Planck constant % is considerably
different. We find the following fact very interesting: The union of the fiducial regions
for the considered expansions covers all values of the coupling constant A (which is the
non-relativistic analogon of the gluon condensate). For small 1 one should use either the
expansion in powers of B (the short-time approximation) or the expansion in powers
of 4 (the weak-coupling approximation). For large 1 it is better to work with the expansion
in powers of % (the quasiclassical approximation),

2. The SVZ method and the partition function
Let us remind of the formula for the exponential moment
AP = T, ey, O)F = Ge(0,0, ) @1
n=

Instead of Gg(0, 0, f) one could put Gg(x, x, f) for any x, because the choice of x = 0
is arbitrary. The dependence on x is not crucial for the SVZ method, thus we propose
to replace the exponential moment by the partition function, which we get integrating
Gg(x, x, B) over the x axis

Z(B) = | Ga(x, x, Bdx = i o5, 2.2)

This replacement simplifies the calculations and does not influence the final qualitative
conclusions.

Let us consider the sum over the higher states

2.p) = Z_',l e PP, (2.3)

We shall call it the continuum contribution. Following the SVZ method we replace the
sum by an integral

ZB) = | e " o(B)E @.4)

with a density ¢(E), which we calculate using the WKB approximation |8]. From (2.3)
and (2.4) one can see that

dn
E)=——. 2.5
o(E) = —— (2.5)
Differentiating the Bohr-Sommerfeld quantization condition

T V2m(E-V(x)) dx = nhn+a (2.6)
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with respect to E (under the assumption that @ does not depend on E) we obtain

d 1 ) m T
apy=dn L[ m T
dE  2rnh | JE-V(x) 2nh

X))
x; and x, denote the classical turning points and Ty denotes the classical period of a particle

of energy E moving in a field of forces with the potential V.
From (2.2) and (2.3) we have

Z(p) = e PR+ Z (). (2.8)

According to the SVZ procedure the continuum contribution Z(f) is calculated from
the approximation (2.4) with g(E) given by (2.7). The partition function Z(f) is calculated
by taking two or three terms of its expansion in powers of a respectively chosen parameter
(B, A or i) and, if it is possible, also the leading nonperturbative term. In order to determine
the ground state energy E, from Eq. (2.8) it is necessary to know the fiducial region, where
the above approximations are good enough. Following the suggestions of the authors of
Ref. [6] we shall use the following criteria: With respect to the leading term of the expansion
of the partition function Z(f)

A) the leading power correction should not exceed 30 per cent;

B) the leading nonperturbative term (if it exists) should ot exceed 30 per cent;

C) the continuum correction should not exceed 30 per cent.

Criteria A) and B) lead to the upper bounds 8, and 5 and criterion C) leads to the lower
bound B¢ of the interval of B (fiducial region)

Be < B < min (B4, Bs), @9

where the SVZ method should work well. The ground state energy E, is calculated by
requiring that Eq. (2.8) with Z (f) given by (2.4) is satisfied in the interval (2.9) and fitting
E, and E_ simultaneously.

3. Three expansions of Z(f) for the potential V = ) ctg* nx

Consider a particle of mass m in one dimension subjected to the potential field
V = ictg® nx. 3.1

The energy levels of such a particle can be calculated from the formula [10]}:

252

[(n+1)?+2(n+Da—a], n=0,1,2,.., (3.2)

"=2m

where
a = 1 [(1+8mi/n*h?H)'? —1]. (3.3)
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Let us put for convenience

B = pr*h*2m, 1 =2im/n*h?, E = 2Emjn*h2. 3.9
We shall apply the SVZ method to the partition function
ZB) = Y e = Y exp{-Bl(n+ 1)’ +2(n+1)a—a]}. (3.5)
n=0 n=0

First of all we calculate the continuum contribution from the formulas (2.4) and (2.7)

1 = dE
Z(B) = — J e PP dE = & (€°pb ——. (3.6)
2nh T
E E-; \/E+/-

The expansion of Z(f) in powers of f§ can be calculated by use of the Poisson formula [7, 8]

5 ¢(n)=k=§ d(k), (3.7)

n= =

wherc A denotes the Fourier transformation. We get the expression

Z(p) = {—%** jexp [ B(x* +2ax)]dx
0

+2 E jexp [ —B(x*+2ax)] cos (2nkx)dx} E _a;"'_ B (3.8)
H
k=1 0

n=0
from which we find the short-time approximation for Z(f)

o

Z(p) = (—3+ £ exp [—B(x2+2ax)]dx)

o

+af(—%+ [ exp [—B(x*+2ax)]dx)
0

+2 | exp [ — B(x* +2ax)] cos (2rx)dx. 3.9)
0
This expression consists of the leading tcrm as well as both the leading perturbative and

the leading nonperturbative corrections.
Now consider the expansion in powers of 2. We shall apply the Born expansion

w© [ Bn B2 1 1
Ge(x, », B) = ;0(—-1)"6[dﬂ,,6f ap,_ ... 6f dﬂlé\'dx,1 ....(de1

GO(xv Xns ﬁ“ﬂn)V(xn)GO(xm Xn—1s ﬁn*ﬁn—l) GO(xls xls BZ’—ﬁI)V(xI)GO(xl, ¥, ﬁl)’
(3.10)
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where Golx, y, f) denotes the Euclidean Green function for the square-well potential with
walls at 0 and 1;

Go(x,y,8) = 2 i sin [(n+ Dnx] sin [(n+ Dny] exp [ —B(n+1)*], (3.11)

and the potential V' = A ctg? nx is assumed to be a small perturbation of the Hamiltonian
describing a particle in a square-well potential. Setting in (3.10) x = y and integrating
over the x axis one can obtain the expansion

L) B Bn 82 1 1
Z(p) = n;o(—l)n({ dﬁné“ Afu-1 ... 6‘ dﬁléf dx, 6[ dx;

GO(xls Xns ﬁ+ﬂ1 _Bn)V(xn)GO(xm Xn—15 ﬁn—ﬂn—l) Go(xz, X15 ﬂz_ﬁ.l)V(xl)' (312)

Since ¥V = A ctg® nx, this expansion is in powers of A. Taking the first two terms of this
expansion and setting the expression (3.11) for the Green function G,(x, y, f) we get
at the weak-coupling approximation

[co]

Z(P) = Y exp[—B(n+1)*1-18 ;io (2n+1) exp [-B(n+1)*]. (3.13)

n=0

The quasiclassical approximation of Z(f) can be derived from the Wigner-Kirkwood
cxpansion of Z(f) in powers of the Planck constant 1 [11]

28 = L Z j j B0, %) exp{ ﬂ[— +V(x)]} dpdx,  (3.14)
Yo =1
_ if’pfav
I == m(g)
_ B4p2 dV 2 ﬁ2p2 dZV ﬂ3 dV) ﬁ2
Xz-‘s,nz(:z;‘)“Lm(Ti;T)%—,;(‘d? (d)

where

(3.15)
Let us neglect in (3.14) all terms for » > 3. This leads to the approximation
¢ - dE 11
ZPB) =1 e —— — (ﬁ\/ + _> . 3.16)
J© VE+I \12 8]
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Fig. 3. Ground state energy Eo as a function of a = [(1 +42)1/2 —1}/2: exact (1); caiculated by use of the
SVZ method from the quasiclassical approximation (4)

Now we can apply the SVZ method using the short-time, the weak-coupling and the
quasiclassical approximations of Z(f). The fiducial regions calculated from criteria A), B)
and C) are shown in Fig. l1a, b, ¢. The ground state energy E, calculated for these three
approximations is compared with the exact values of E, in Fig. 2 and 3.

4. Conclusions

It follows from Fig. 1a, b, c that if either the short-time or the weak-coupling approxi-
mation is used, the SVZ method should work well for small values of A. For large A the SVZ
method is applicable, provided that the expansion in powers of the Planck constant £ is
used. Fig. 2 and 3, showing the values of the ground state energy E, calculated by use of
the SVZ method, confirm this observation. Moreover the three above-mentioned fiducial
regions taken together cover the whole domain [0, 00) of values of A. However the fast
property may be specific for the potential ¥V = 1 ctg? nx.

I wish to express my gratitude to Professor K. Zalewski for his encouragement,
advice and continuous interest.
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