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ROLE OF A CONSISTENCY CONDITION IN MACROSCOPIC-
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A relation between the deformation of a single-particle potential of a nucleus and the
deformation of the density of matter, generated by this potential, is discussed in derail.
Relative difference between the two deformations amounts up to a dozen or so per cent.
It is an increasing function of the multipolarity of the deformation. An account of this differ-
ence in macroscopic-microscopic calculations of the collective potential energy of a nucleus
corrects (increases) its deformation energy.

PACS numbers: 21.10.-k

1. Introduction

In the standard macroscopic-microscopic description of the dependence of the collective
potential energy of a nucleus on deformation, the same deformation (specifically, the
deformation of the single-particle potential describing the internal structure of the nucleus)
is used for both parts of the energy (cf. e.g. Refs [1-3]). It seems, however, more proper
to distinguish between two deformations corresponding to these two parts. The micro-
scopic part, which is a shell correction to the energy, is directly connected with the single-
-particle potential and can be in a natural way described by the deformation of this potential.
The macroscopic part represents the smooth behaviour of the energy and is connected
with the density of the nucleus, averaged over shell effects. This part is usually described
by such phenomenological models as the liquid-drop (e.g. [4]), droplet (e.g. [5]) or Yukawa-
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-plus-exponential (e.g. [6]) models. It is more natural then to connect the macroscopic
part of the energy with the deformation of the density of a nucleus than with the deforma-
tion of the single-particle potential.

Such treatment has been proposed around ten years ago [7]. The condition that the
density, the deformation of which is ascribed to the macroscopic part of the energy, is the
one generated by the single-particle potential describing the microscopic part, may be
considered as a simple consistency condition between the two parts of the energy. It may
be regarded as a step towards making the non-self-consistent macroscopic-microscopic
method self-consistent. In the calculations based on this idea, there was, however, a nu-
merical error [7], which resulted in an overestimation of the effect of the simple consistency
condition. The effect of the condition, when the error has been removed, has been discussed
in Ref. [8].

The scope of the present paper is to perform a detailed discussion of the consistency
condition and its role in the macroscopic-microscopic calculations, especially in the calcula-
tions based on the Nilsson single-particle potential.

In Sect. 2, description of the method of the calculations is given. Sect. 3 gives the results
and Sect. 4 presents a discussion of various effects. Main conclusions of the study are given
in Sect. 5.

2. Description of the calculations

As stated in the Introduction, the idea [7] of a modification of the standard
macroscopic-microscopic calculations of the potential energy of a nucleus is to use, for
the macroscopic part of the energy, the deformation of the density generated by the single-
-particle potential and not the deformation of the potential itself. For the phenomenological
single-particle potentials (mostly used in practical calculations), as those of Nilsson or of
Woods and Saxon, the two deformations, although expected to be close to each other,
are not identical.

The deformation of a nucleus can be completely specified by its multipole moments.
As we are mainly interested in the deformation of the nuclear surface (i.e. in the dependence
of its distance from the center of the nucleus on the direction, R(#, ¢)), we will limit our-
selves to the “surface” moments, with only one (quadratic) power in their dependence on
the radius r,

q,=2r’P, for L#1, .1

the same for all multipolarities 4 (4 # 1).

We assume, in the whole paper, the axial symmetry of a nucleus. For convenience,
as we are mainly interested in the calculations with the Nilsson potential [9, 1], we will
work in the stretched space, i.e. in the coordinates

¢ =xMoh, n= yJMchfi, ¢ = zVMao,/h, 2.2)
by which the potential is defined. Here

w, =w(l-%2g) and o, = w(1+5¢) (2.2a)
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are the frequencies of the harmonic oscillator, appearing in the Nilsson potential, along
the symmetry axis Oz and an axis perpendicular to it, respectively. Thus, we will use the
multipole operators g, defined in that space, i.e.

g, = 20°P,(cos 9) for A #1, (2.3)

where ¢ = N/ E2+n%+ (% and ¥ are the polar coordinates in the stretched space.
Only for A = 1, the (dipole) operator is defined by

g1 = 2¢P(cos ¥) = 2(, (2.3a)
as we would like it to be connected with the position of the mass center.

2.1. Microscopic moments

By microscopic moments, we understand the muitipole moments calculated microsco-
pically for a given deformation of the single-particle (Nilsson) potential. They describe
the distribution of the density generated by this potential.

The deformation is specified by the Nilsson deformation parameters &,. They are
defined by the form of the oscillator part of the Nilsson potential, i.e. the only part which
depends on the deformation. This form is

Vese = 3 hado(e,)e*F(cos 95 ¢,), 24

where
Amnx

F(cos 9; &,) = 1+2¢,P(cos $)—3 eP,(cos $) + 123 2¢,P,(cos 9). (2.4a)

Here, we have denoted traditionally ¢ = ¢,.
. o . . o .
The total Nilsson hamiltonian, expressed in units of hw, is [1]

H' = (Hkin + Vnsc + Vco:r)/h(?"o

. . 9* 0* &2 )
=zom(E)s —A+5e|2— — - — =) +e"F(cos 9; ¢,)

or* o on
—x[21 s+ (PP~ (2.4b)
where
om(g,) = coo(e")/c%o (2.4¢)

with &g = @(0).

Thus, besides the parameters k¥ and p, the only parameters of the hamiltonian H’
(which is to be diagonalized) and, consequently, of the wave functions, are the deformation
parameters &,.

The microscopic moment Q™ is usually calculated as

07%(s,) = (BCS|Q,IBCS) = ¥ (419205, (2.5)
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where |BCS) is the Bardeen-Cooper-Schrieffer wave function of a state of a nucleus in
which the moment is calculated and 2u2 is the particle-occupation factor for a single-
-particle Nilsson state |v). The moment Q7' is, similarly as the single-particle wave func-
tions |v), a function of only the deformation parameters ¢, and not of the frequency 8’0-
The multipole operator Q; is

0, = ¥ 4.,

where the summation extends over all nucleons. The diagonal matrix element (g;),, in
a state |v) is
(@)w = Olaavy = T KVINIAZY (NIAZ20°P,INTA'E") ANV A'E v

NiAz
NTAL

=2 3 ahuasalrasKNIQPIN'TY ARSI 4D, (2.6)
where |NIAZ) are the usual spherical (in the stretched space) harmonic-oscillator wave
functions [91, multiplied by spin functions, and a}, s = {v|NIAZ) are the projections
of a Nilsson function |v) on the basic functions [N/AZ). In Eq. (2.6), there is used the
fact that

(NIAZ|@*P,N'V ALY = (NU@*IN'T"Y (A|P, I’ AYS 4 4655 (2.6a)

Presence of the even-multipolarity deformations A = 4, 6, ... in the potential (2.4)
results in a coupling of a spherical oscillator shell N with the shells N' = N+2, +4, ...
For the potential which has only the quadrupole deformation 4 = 2, one avoids these
couplings just by the use of the stretched space. This was the reason to introduce it [9].
Presence of any of the odd-multipolarity deformations 4 = 3,5, ... results in a coupling
of a shell N with the shells N' = N%1, +3,.

One can see from Egs (2.5) and (2.6) that to calculate the multipole moments QT°, one
needs the same matrix elements, {(Nl[@?|N'I'> and {/A|P,|lI'’ A}, which are needed for the
diagonalization of the Nilsson potential in the hamiltonian H' of Eq. (2.4b). It is because
of our adjustment of the definition of the moments to the form of the Nilsson potential.

The microscopic moments of Eq. (2.5) contain the effects of the shell structure of
a nucleus. The effects are only partly smoothed by the pairing interaction manifested in
the formula (2.5) by the occupation factors 2v2. As in our calculations, the microscopic
moments are to describe the density deformation which is to be used in the macroscopic,
smooth, averaged over shell effects part of the energy, a more consistent procedure is to use
moments in which the shell effects are completely smoothed. According to this, instead
of the moments (2.5), we use the moments

T e = Z (a)w27,, 27

where n, are the occupation factors corresponding to the case when the shell effects are
smeared. For the smearing, we use the procedure of Strutinsky [10]. The formula for
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n, is then

A

f e "*F(u,)de. (2.7a)

oK

~

1
n, = ———
v \/7[ ‘y
where u, = (e—e,)/y, e, is the energy of the level |v), y is the smearing parameter (taken

equal to 1.2 hw, in our calculations), F(u,) is the correction polynomial (see e.g. [1]) and
7 is the Fermi energy corresponding to the smeared level density

. S N T
2(e) = NeT Z e F(u,), (2.7b)

v

where the summation extends over all single-particle levels. The relation between the factors
n,, the number of nucleons / and the smooth density g(e) is

1=Y 24, =2 f g(e)de. (2.7¢)

2.2, Macroscopic moments

By macroscopic moments, we understand here the moments of a model nucleus (e.g.
the liquid drop) for which we already know the radial distribution of the density. We will
parametrize the shape of a surface of constant density by &} in an analogous way to that
of the parametrization of the shape of a surface of constant potential, Eq. (2.4). Thus,
we put

Vy =% haoo®F(cos 9; e}), (2.8

where Fis the same function as that of Eq. (2.4), but now depending on the density-deforma-
tion parameters sZ instead of the potential-deformation parameters ¢,, appearing in Eq.
(2.4). The idea is to have the equality e“’, = g, when, and only when, the shape of the equiden-
sity surfaces coincides with the shape of the equipotential surfaces. The equation for an
equidensity surface is

L hidg0? = 1 hwgo®F, (2.82)

0 : . .
where @, and g, are the values of @, and g, respectively, for the spherical shape of the
surface. The value g, specifies the surface (and thus the density, if there is one-to-one
correspondence between the two). Thus, we get for the radius o(9)

o(9) = gpom ™~ M2FTI12, (2.8b)

where om = wo/c?)o, according to Eq. (2.4¢).
The standard definition of the multipole moment, connected with a given density
distribution, together with our definition of the multipole moment operator g,, Eq. (2.3),
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gives then
Q= .‘- g q:dr = 2 5 gtgz(S)Pl(COS 9)dx 29)
for A# 1 and
07 = 2 [ g,0(8)Py(cos 9)dt (2.92)

for 4 = 1, where g, is the density of matter. Assuming, for simplicity, a sharp surface of
a nucleus and a uniform distribution of the density inside it, we get

07" = % & [ @°(9)P;(cos 9)dQ (2.10)

for A # 1. After using Eq. (2.8b) and the assumed axial symmetry of the nucleus, the for-
mula becomes

1
QT (eh) = ¥ logom; *'* 51 F™3(x; e8)Py(x)dx, 2. 1)
where
T
I= “3‘ legf

is the number of nucleons of one kind (/ = N or Z for neutrons or protons, respectively),
corresponding to the density g, and g, is the radius of the sphere (in the stretched space)
occupied by these nucleons. According to Eq. (2.2),

Qo = Rot VMg’mlh- (2.12)
We assume, as usual,
RON == Roz = Ro = roAlls, (2'13)

i.e. that the effective radius for neutrons is the same as that for protons. Thus, the
expressions (2.9) and (2.9a) become

1

0
M
macr 3 |R2 ;"“’ om; %/ f F™%2(x; eb)Py(x)dx (2.14)
~1
for 1 # 1 and
1
0o
M 1/2
Qr:tacr — ‘i— IR()( ;:)O‘) om‘—Z ‘[F—Z(x;E:)Pl(x)dx (2.143)

-1

for A = 1, both formulae being valid for one kind of nucleons.
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2.3. Consistency condition

Now, we can already write the equations relating the density-deformation parameters
e:i with the potential-deformation parameters ¢,. The equations are obtained from the
condition that the total multipole moments Q7% of a nucleus, determined by the density-
-deformation parameters £3, are the same as those calculated microscopically (by Eq. (2.7))
with the potential described by the parameters ¢,, i.e.

micr

[}] 0 d
Qﬁz‘t:r(wONa OMmpy, Wz, OMig, 8“) = Qltut eu) (2.15&)

for A=1,2,3,..., A and

acr, 0 mic
Q55 (o1, omy, &) = Q5i(e,) (2.15¢)

for A=0, with [ = N, Z.
For A = 1, we additionally require

(e, = 0, (2.15b)

to keep the center of mass of a nucleus at the origin of the coordinate system, when the
nucleus is being deformed.
We have used in Eqs (15a) and (15b) the total multipole moments

Quot = Qv+ 05z, (2.15d)

as we are interested in the distribution of the total nuclear matter. The deformations are
assumed to be the same for neutrons and protons, both for the potential and the density.
For given deformation ¢,, v = 2, 3, ..., A0 EQ. (2.15b) allows us to calculate

8 = £,(8,) (2.15b")

and thus, by Eq. (2.7), all Qpisi(e) = QTiales(e,), 6,1, 4 # 1. Thus, for given e,
v = 2,3, ..., Amax Eqs (2.15a) and (2.15¢) constitute a set of (A, +2) equations for (4., +2)
unknown quantities: & (4 = 1,2, ..., Apad)s @y OF omy(e) and Doz OF omy(e3). This
is because for each deformation &,, oﬂly one of the quantities wq, and om; is unknown.

For the deformation zero, om, = 1 and only c%o, is to be determined. For other deforma-
tions, only om; has to be obtained from Eqs (2.15¢).

As the quantities 3)0, and om; enter to QF el in a simple (and the same for all 4, A # 1)
way, the solution of the set is simplified if we divide all Q; s 4 # 0,1, by Q¢ Then
Egs (2.15a) become

macs mier

Atot d Atot
m:cr (eu) = mier (av)9 (2.163)
Otot Otot

where , p =1,2, ..., Agars V= 2, 3, ..., Apax- A solution of this set of 1,,,, coupled equations
gives all the density-deformation parameters ¢} as functions of the potential-deformation
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parameters &,, i.€.
& = &i(e,). (2.17)

With these, the solutions for c%o, and omy, | = N or Z, are obtained explicitly from Eqgs
(2.15¢)

1

om;'*(s,) M 1 _
:% =3 o IR} — s )j F737[x; s‘:,(ev)]dx, (2.16b)
ol Ev

where p = 1,2, ..., A and v = 2,3, ..., Ay similarly as in Eqs (2 16a). For the deforma-
tion zero, om; = 1 and Eq. (2.16b) dlrectly gives the value of wo, or hwo,

hZ mxcr(o)

2.18
MRZ | (218)

hoog = §——

For other deformations, Eq. (2.16b), together with Eq. (2.18), leads to the value of omy(e,)

1

micr, 2/5
omy(s,) = {gmlcr((); J F~3[x, aﬁ(sv)]dx} . (2.19)
=1

The value h(?)o, of Eq. (2.18) may be compared with that for a pure harmonic oscillator
with closed shells (cf. e.g. Ref. [11])

3, (2.20)

hw()l
which, for r, = 1.20 fm, gives

0
(1+DHY? MeV, (2.20a)

hawg = VEE

or in the first order [1] in the relative neutron excess I = (N—Z)/4

41.0
hrg, = s (13 D) MeV, (2.20b)

where sign plus holds for neutrons (! = N) and minus for protons (I = Z).

The dependence of om; on deformation, obtained in Eq. (2.19), may be compared
with that used traditionally, when it is deduced from the condition of the conservation
of the volume contained inside an equipotential surface. This volume (calculated in the

normal, physical space) is
h 3/2
for- (o
g T

T
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in accordance with Eq. (2.2), where

1
2n .
dt = — | ¢'(x)dx,
2
-1

T

and should be equal to the volume 47R3/3, contained inside the spherical surface, from
which the given surface is obtained by deformation. With the use of Eqs (2.2a) and (2.8b),
this gives

1
om(s,) = (1+3&)7 3 (1-23e) V(L | F73%(x; ¢,)dx}'. (2.21)
-1

The result of Eq. (2.19) can be also compared with that obtained from the condition that
the volume contained inside an equidensity (and not equipotential) surface should be con-
served when the potential is deformed. Such condition leads to the result

om(e) = (L +38) P12 97 | F32[x; el(e)]dx} ', 222)

where sf, are the density-deformation parameters. The numerical results are given in Sect. 3.

24. Details of the calculations

The Nilsson potential with the “4 = 225” parameters [1}, i.e.
K, = 0.0590, u, =0.639 for protons,
Kk, = 0.0635, pu, = 0.346 for neutrons,

is taken to calculate the microscopic moments Q}'" of Eq. (2.7). All oscillator shells
from N = 0 up to N = N, are included. In most calculations N,,, = 12 is taken. The
influence of the variation of the value of N, on the results is extensively discussed in
Sect. 4. Direct coupling between 4N = 8 shells is taken into account.

When calculating the microscopic part of the energy, the pairing interaction is treated
in the same way as in Ref. [1]. The only difference is that we use here another formula for

the strength G of the interaction. The present formula is [11]
N*3. Gy = 0284 hayyy, Z%*- G, = 0.290hw,,. (2.23)

It seems that this formula describes better, in a more natural way, the isotopic dependence
of G than the formula of Ref. [1], as discussed in Ref. [11}. Numerically, however, the
values of G obtained from both formulae are close to each other, for considered nuclei.

3. Results

Most of the results presented in this Section are obtained for the case of Z = 88

protons of the nucleus 2§Ra. The results for other numbers of protons or for neutrons

are similar, as discussed in subsects. 4.2 and 4.6. The largest multipolarity accounted for,
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when solving the consistency equations (2.16a), is A, = 8. The influence of this number
of the results is discussed in subsect. 4.4.
Fig. 1 shows the difference

de, = ei—¢, (3.1

between the density deformation, &5, and the potential deformation, ¢,, plotted as a function
of g;, for multipolarities A = 2, 3, 4, 5, 6. The density deformations &3 are obtained by
solving Eqgs. (2.16a). The value of /,,, = 8 has been taken, as already mentioned above.
One can see that the dependence of ¢, on ¢, is almost linear. This means that the ratio
de,fe; is almost constant, what can be directly seen in Fig. 2, where J¢,/e, is plotted as
a function of ;. One can learn from the figure that the density deformation is, in absolute
value, always smaller than the potential deformation and that the effect has a tendency
to increase with increasing deformation (see 4 = 2, 3, 4, 5). The effect regularly increases
with increasing multipolarity A. In fact, for A = 3, the absolute value of dg,;/e, is smaller
than 1%, it is about 49 for A = 4, about 8%} for A = 5 and about 129 for 1 = 6. The
only exception in this regularity is the lowest multipolarity 2 = 2, for which the effect
is already relatively large, around 119%,.

The oscillator energy hc?;o is illustrated in the upper part of Fig. 3. Its value, obtained
for 224Ra from the consistency condition for the monopole moment, Eq. (2.18), is 6.417 MeV

ol  —ee-o—-- Seytey 4
[ —_ ]
-020 | A=2 ]
4 1 i
-0.4 ' [1] e 04
O b -—— -y
L A=3 ]
-0.20
1 e 1
“oa 0 ¢, 032
Of wocorzemwmmnoae 4
_0_20: A= ]
<036 0 ¢, 086
0 U -]
b - -
-020 [ A=5 ]
d 1. i
-008 0 ¢ 008
Op —=-=mmomm o b
020 [ 1ot ]
1 i3 1 1 1
~0.08 0 ¢ 008
Fig. 1 Fig. 2

Fig. 1. Dependence of the difference d¢;, Eq. (3.1), on the potential deformation £; for multipolarities from
A =2 up to 4 = 6. The dependence is obtained at deformation &5, 4 +# 4, specified in text

Fig. 2. Same as in Fig. 1 but for the ratio dez/ey
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Fig. 3. Upper part: oscillator energy 1’:3)0 obtained from the consistency condition for the monopole mo-
ment (solid line) and from an analytic estimate, usually used (dashed line), both for neutrons and protons.

o
Lower part: dependence of the retio we(e)/wo on pure quadrupole deformation ¢, obtained in three cases
(@), (b) and (¢), described in text

for protons and 7.370 MeV for neutrons. The corresponding values, obtained analytically
for an oscillator with closed shells, Eq. (2.20a), are 6.230 MeV and 7.202 MeV, i.e. by 2.9%
and 2.3 smaller, respectively. The valucs corresponding to the expression (2.20b), linear
in I, are 6.269 MeV and 7.233 MeV, respectively, i.c. by about 0.6% and 0.4% larger,
respectively, than the latter values. They are not distinguishable, in the figure, from the
values obtained from Eq. (2.20a), which is exact in I. The lower part of Fig. 3 illustrates

the dependence of the oscillator frequency w, on the deformation. The ratio wo(e)/c?)c,
is calculated for the case of a pure quadrupole deformation ¢ from three different condi-
tions: of the consistency condition for the monopole moment (a) (Eq. (2.19)), of the volume
conservation inside an equidensity surface (b) (Eq. (2.22)) and of the volume conservation
inside an equipotential surface (¢) (Eq. (2.21)). The dependence (¢) is usually used. One
can see that all the three dependences are very close to each other. In fact, the curves (@) and
(b) are not distinguishable in the figure, although the scale of it is much enlarged. The
curves (a) and (c) differ by less than about 0.15%,. Such difference is practically of no signifi-
cance for the dependence of the microscopic energy (in which the oscillator frequency @,
appears) on deformation. Thus, the simple condition (c), usually used, is practically as good
as a more exact condition (a) for the determination of the dependence of the microscopic
energy on deformation, at least for deformations investigated here (i.c. around the equilib-

rium point). Also the improvement of hc(z))o by the consistency condition does not seem
to be of any practical significance, although it is influenced by the condition more than the
dependence of w, on deformation. The energy h(?)o is modified by the consistency condition
by about 0.2 MeV, i.e. by about 3%, as can be seen in Fig. 3.
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One can also add that the curves (a), (b) and (c) plotted in Fig. 3 for protons differ
only negligibly (by less than 0.049;) from the respective curves for neutrons.

Figs. 1, 2 and 3 are plotted for deformations close to their equilibrium values for
nuclei in the radium region. Specifically, &, = 5 is taken for A = 2, & = €°, &, = &3 for
A=3e=eforl=4,6 =2 ¢, =&3,e, =e2forl =5ande = ¢ &, = &} for i = 6,
where €© = 0.20, ¢3 = 0.12, £ = —0.044. Deformations not specified here are taken zero.

An important question is the effect of the difference d¢, on the dependence of the energy
on deformation. It is interesting to see how much is the dependence of the macroscopic
part of the energy changed when the deformation of the density, instead of the deformation
of the potential, is taken. In other words, when the energy

Eje;) = E[ei(ed)], (3.22)
scaled by the relation & = &i(¢,), is considered instead of the non-scaled energy
E(g,). (3.2b)

We study this problem for three kinds of the macroscopic energy, mostly used at present,
i.e. for the liquid-drop, droplet and Yukawa-plus-exponential energies.

Fig. 4 shows the energies E and E, for the droplet (DT) and Yukawa-plus-exponential
(Y) models. The parameters of these models are taken the same as in Refs. [5] and [6],
respectively. The relations between ¢, and 8,., €3(e;; €2) are those of Fig. 1. As they are
calculated at the deformation points ¢, = s“ # 0 (for some yu # A), the minimal values

=K
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r \\\ 4 / Y ~
0 C i 1 A &
-008 o g 008

Fig. 4. Dependence of the scaled, Ej;, and non-scaled, E’, energies (cf. Egs (3.2) and (3.3)) for the droplet
(DT) and Yukawa-plus-exponential (Y) models, as functions of the deformation s for A =2, 3,4, 5, 6
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of the energy E(e;; 82) are not equal to zero and are obtained at e, = ¢7'* # 0. The same
also concerns the energy E,(e;). Thus, to make a comparison between the energies easier,
we have shifted these minima to a common point: the origin of the coordinate system.
In other words, we have plotted the energy

E'(}) = E(e;—&3 ") — E(e7™) (33

(and the same for Ej(¢})) instead of the energy E(e;), where

e =g~

min

The values €} are rather small, e.g. £2'" is equal to 0.010 for (DT) and to 0.012 for (Y).
One can see in Fig. 4 that the effect of the scaling increases with increasing A. The only
exception to this rule is the multipolarity 4 = 2, for which the effect is remarkably large.
This is a consequence of the behaviour of d¢;/e;, as a function of A, shown in Fig. 2. The
scaling effect is naturally stronger for the energy (DT) which is a steep function of ¢; than
for the energy (Y) which is less steep. (In the limit case of a constant energy, E(c,) = const.,
there would be no effect at all of the scaling). To be more specific, the scaling reduces the
(DT) energy by about 219, 2%, 8%, 16%; and 23% for A = 2, 3, 4, 5 and 6, respectively.
This is a significant reduction, but is still much smaller than the reduction obtained when
the (Y) energy is used instead of the (DT) energy (except for the case of 1 = 2). The latter
reduction is by about 149, 26%, 39%, 489, and 599, for 2 = 2, 3, 4, 5 and 6. Naturally,
the largest reduction is obtained when one uses the scaled (Y) energy instead of the non-
-scaled (DT) energy. This amounts to about 349, 27%, 449, 57% and 709 reduction,
for A = 2, 3,4, 5 and 6. Thus for 2 = 6, the scaled (Y) energy is about 3 times smaller than
the non-scaled (DT) energy.

The above statements and numbers are almost independent of a specific value of ¢},
because for not too large &) (i.e. not too far from the equilibrium point &} = 0), as those
considered in Fig. 4, the energies E’ (both scaled and non-scaled) are approximately of
the form

E'(¢) ~ % C;.(b';.)z-

Thus, the ratio of any two of them (e.g. E;/F’) is approximately equal to the ratio of the
corresponding stiffnesses C; and, consequently, almost independent of &).

Concerning the effect of using various macroscopic parts of the total energy on the
absolute value of this energy at its equilibrium point, one can state the following. If one
assumes rather large values of the equilibrium deformation of the total energy &, (which
is equal to the shift de, of the equilibrium point, due to the shell-correction energy):
&5 ~ 0.20 [12], 0.12 [13, 14], 0.08 [12] and 0.04 [15] for 2 = 2, 3, 4 and 6, respectively, one
gets from Fig. 4 a lowering of the total energy at this deformation (as &) ~ ¢;) by about
0.3, 0.1, 0.3 and 0.4 MeV, respectively, by using scaled (DT) instead of non-scaled (DT),
and by about 0.2, 1.0, 1.2 and 1.0 MeV, respectively, by taking the non-scaled (Y) energy
instead of the non-scaled (DT) energy. Thus, the gain in the deformation energy by
scaling (DT) is expected to be smaller than 0.5 MeV, while this gain can be even larger
than 1.0 MeV by using the energy (Y) instead of the energy (DT).



60

4. Discussion

In this Section, we discuss effects of various factors on the density deformation &} and
on the smooth part of the collective potential energy.
4.1. Effect of the number of shells included

Fig. 5a illustrates the dependence of the ratio Q,/Q, on the number of shells included
in the calculations. All shells from N = 0 up to N = N,,, are taken. The calculation

is performed for the deformations of only even multipolarities (¢° = 0.20, £2 = —0.08,
Q,/Q, - micr =020 £ =-008
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Fig. 5. Microscopic (solid line) and macroscopic (dashed line) values of the ratio Q;/Q, (@) and of the differ-
ence de; or —dey (b), Eq. (3.1), as functions of the number of oscillator shells Nyay (taken in the diagonali-
zation basis), for the case of only even-multipolarity deformations

eg = —0.04). Thus, the odd-multipolarity moments Q,, 4 = 3, 5, ..., are equal to zero.
The values of both microscopic and macroscopic ratios Q,;/Q, for 1 = 2, 4, 6, 8 are given.
One can see that sufficiently large basis (Np,,) should be taken to get proper (independent
of N,,,) microscopic values of Q,/Q,. Higher the multipolarity A, larger N, is needed.
This is for fixed deformation. Concerning the dependence of N, on deformation, one can
expect that N,,,, increases with increasing deformation, as the basis is made of the spherical
oscillator and higher and higher shells of this oscillator contribute to the levels of the
deformed potential, close to the Fermi level, when the deformation increases.

The differences between microscopic and macroscopic values of Q,/Q,, visible in
Fig. 5a, determine the differences d¢;, Eq. (3.1). The latter are explicitly shown in Fig. 5b.
One can see that although to calculate d¢, for A = 2, it is already enough to take N, ~ 8,
one needs N, ~ 10 for A = 4 and N,,, ~ 12 for 1 = 6,
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Fig. 6 illustrates the situation when the odd-multipolarity deformations are included
(e = 0.12, €3 = —0.022). One can see that the convergence of both Q,/Q, and J¢; to their
stable values, when N, is increasing, is slower than in the case of only even-multipolarity
deformations. To calculate d¢, with A < 5, one needs N,,, ~ 10. To get, however, proper
values of de; for higher multipolarity, even N, = 13 does not seem to be completely
enough.
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Fig. 6. Same as in Fig. 5, but for the case when odd-muitipolarity deformations are also included

4.2. Effect of a change in the single-particle spectrum

To see the effect of the single-particle spectrum on the difference d¢;, we have calcu-
lated this quantity for protons and for neutrons, separately. The single-particle spectra
differ much in these two cases. The results are given in Fig. 7. The ratio d¢,/¢; is obtained

T ¥ T T 11 T ¥
Se/e
0 =
L n 4
040 L
7
- p -
L 1 L t 1

02 0 02 ¢

Fig. 7. The ratio ds/e calculated for both protons (p) and neutrons (n) as a function of the potential deforma-
tion ¢
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here for the main (lowest-multipolarity) component of the deformation, 4 = 2. One can
see that it differs only a little between the cases of protons and neutrons. The difference
is about 5 to 10 times smaller than the value defe, itself, for any of the two cases. For protons,
the density deformation is smaller than that for neutrons, for considered single-particle
spectra (A = 225” parameters of the Nilsson potential {I]) and considered nucleus
(Z = 88, N = 136). This small difference between protons and ncutrons simultaneously
demonstrates that the results obtained and shown in the present paper for protons are also
representative for a total nucleus.

It is also interesting to see the role of various parts of the Nilsson potential in generat-
ing the difference defe. According to Eq. (2.4b), the potential has the form

Vaises= Vase —Kh@o[2L * 5+ (I =)

To see the role of the separate parts, we have calculated de/e in the following three cases
of the potential: (a) pure oscillator (x = 0), (b) oscillator plus spin-orbit term (¢ = 0),
(¢) total potential. As in almost the whole paper, the results are obtained for the system
of 88 protons. They are given in Fig. 8. One can see that pure oscillator gives less than
about half of the value of defe obtained with the total potential. More precisely, it gives
from about half, for e = ~0.3, down to about one third of that value, for ¢ = 0.3. The
contribution of the spin-orbit term to d¢fe is small, so that the curves (a) and (b) are not
distinguishable in Fig. 8.
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Fig. 8. The ratio d¢/e calculated in three cases of the Nilsson potential, described in text

4.3. Effect of a change in the multipole moments subjected to the con-
sistency condition

In our whole paper, the consistency condition is imposed on the “stret¢ched” multipole
moments @;, i.e. on the moments corresponding to the operators g;, Eq. (2.3), in the
stretched space. One can ask for the effect of imposing the condition on the “normal”
moments Q', corresponding to the operators g}, Eq. (2.1), defined in the normal space,
instead of the moments ;. A study of the effect is easy in the case of a pure quadrupole
deformation ¢, i.e. for the case of ¢; = 0 for  # 2. In this case, the density distribution
of a nucleus is characterized by two microscopic moments Qp and Q3 which can be
expressed by the “stretched” moments Q, and Q,. For given deformation & of the
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potential, we have
Qo = h(e) {1 -5 &)Qo+3 £Q5},
Q> = h(e) {5 eQo+Qa}, 4.1)
where
h(®) = (1+5 )7 (1-5 &) "h/Mog(e).

Thus, having calculated microscopic moments Q, and @,, we also have at our disposal
microscopic moments Qg and Q5. From Egs (4.1), one gets

% _ _e+3(2:/00) 1)

0,  (3—8)+28(0,/Q0)

In the pure quadrupole-deformation case, the “normal” macroscopic moments,

Qe = j' g(rNg(rHdd, 21=0,2, “4.2)

are simple functions of the deformation parameter ¢* of the macroscopic density distribu-
tion. In particular,

Q™ (+heY—(1-3 e

Q™ (L+3e)+201-F ) @2
Thus, the solution of the consistency condition
§EE Q™ = Q™ Qp™ @4)
is explicitly given by
& = m+H [(m+DEA+m=2m*"], 4.5)

where m = Q™[ Qg™ (Only one of the two solutions (4.5) exists in the physical region.)
Fig. 9 shows the result for d¢fe in the case when the consistency condition, Eq. 4.4, is
imposed on the ratio Q5/Qp of the “normal”” moments (nor). The result, when the condi-

-0.10 + —_—

1 1 L I i

-0.2 0 02 ¢

Fig. 9. The ratio d¢/e calculated in two cases: when the consistency condition is imposed on the “normal®
multipole moments (nor) and on the “stretched” ones (str)
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tion is imposed on the ratio Q,/Q, of the “stretched” moments (str), is also shown, for
comparison. The latter result is the same as that of p in Fig. 7 and c in Fig. 8. One can see
that the ratio Sefe (and thus also the difference d¢) is about two times smaller in the “nor”
case than in the “str” case. This stresses the importance of a proper choice of the moments
to be subjected to the consistency condition.

The fact that d¢/e is about two times smaller in the “nor” case than in the “str’ case
is mostly due to the form, itself, of the multipole operators ¢; and g,, and thus has a rather

/rmacr

general character. Really, using the expression for Q4™/ Q™" in terms of ¢, Eq. (4.3),

macr

and the similar expression for Q7*°"/Q7*,
0I5 = o3 —¢), (4.6)

one can relate the solution (¢)™ of the consistency condition in the “nor” case, Eq. (4.4),
with the solution (¢%)™ of the condition in the “str” case,

:;acr/' xgacr - r;icr/leicr, (47)

taking additionally into account the expression for the ratio Q5/Qg in terms of the ratio
0,/0,, Eq. (4.1a). For not too large deformations &, the relation obtained this way is

(3e)™" ~ L (de)*. (4.8)

The relation is almost independent of a particular value of Q,/Q,, i.e. of a particular
deformation, single-particle potential, etc. To check this, one can perform direct calcula-
tions of (5¢)* in e.g. the three cases of the potential a, b and ¢, for which the values of
(6¢)**" have been obtained (Fig. 8). The calculations, performed by us, show that the relation
(4.8) really holds in all these cases and in the whole deformation interval, —0.3 <{e < 0.3,
considered.

4.4, Effect of the number of multipole moments subjected to the con-
sistency condition

As the potential with even no deformations of multipolarities u, &, = 0 (u = 4o),
generates the microscopic moments Q3 ““(¢,) # 0, on one hand, and any of A << A,
consistency equations (2.16a) for the density deformations e;’, is coupled with each other
by the functional dependence of Q‘,{‘“’(s,‘i) on sz, on the other hand, the results for sf‘ generally
depend on the number of equations A,,, == ;.

To study this, we have taken the deformations of the potential: e = 0.20, e = —0.08,
eg = —0.04and &) = Ofor i # 2,4, 6(in particular, £ = 0). We have solved the equations
(2.16a) in two cases: with A,,, = 6 and with A,,, = 8. It appears that the solutions for
&s, u < Ao = 6, obtained in the two cases are practically the same. It is important for this,
however, to take sufficiently large number of the oscillator shells N,. For example,
with N, = 8, the difference between the values of £f obtained in the two cases amounts
to about 6 %, while it reduces to only about 0.1% for N, = 14. The effect on the deforma-
tions of a lower multipolarity is even smaller.
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4.5, Effect of the number of coupled oscillator shells

The Nilsson potential couples generally all shells of the spherical oscillator, taken
as a basis. Naturally, the coupling between the nearest shells is most important [16]. Coupl-
ing between the neighbouring AN = 8 shells is usually taken into account in calculations.

To see the effect of a change in the number AN on the values of the density deforma-
tions &2, we take the same deformation point as in the preceding subsect. 4.4: ¢ = 0.20,
e = —0.08,¢2 = —0.04, and find &} in two cases: AN = 8and AN = N, = 13 (i.e. when
all shells are coupled). It appears that the difference between the values of &% obtained in
the two cases is negligible: it amounts to only about 0.1%. For &} of lower multipolarities,
the difference is even smaller.

4.6. Dependence on the proton and neutron numbers

micr

As the microscopic moments Q7'°", used in our calculations, are averaged over the
shell effects, they are rather smooth functions of the proton Z and neutron N numbers.
Additionally, the moments QP"(A # 0) and Q™ depend in about the same way on
Z and N. Thus, the ratios O™/ Q2 which determine the density deformations &} (through
Eqs (2.16a)), are almost independent of the numbers Z and N. Due to this, also only a very
weak dependence of the deformations ’SZ on these numbers may be expected.

To check this, we have taken the potential deformations: &° = 0.20, & = 0.12,
e = —0.04, 2 = —0.08 (and zero for other multipolarities) and calculated &5 for the
proton number Z varying from Z = 84 up to Z = 94. The neutron number N has been
kept constant, N = 136. It appears that the deformation &§ changes by only less than 1%
with a change of Z inside the above limits. The changes of the deformations &4 of lower
multipolarity are even smaller.

A similar dependence of & on the neutron number N is expected.

4.7. The condition for the center of mass of a nucleus

As stated in subsect. 2.3, to keep the center of mass of a nucleus at the origin of the
coordinate system, the condition (2.15b),

QTi(e) =0, (2.15b)

isrequired to be fulfilled for each deformation of the potential. In real calculations, however,
it is much easier to fulfil the condition

Qi (&) = 0, (4.9

as 0™ js a much simpler function of deformations than the function Q7**". Due to this,
for given potential deformations ,, v = 2, 3, ..., 4., instead of Eq. (2.15b), the equation
(4.9) is solved to find

él = E1(“3")'

With this value, we find all multipole moments Q7 °'[&,, ¢,], A # 1and the further procedure
is the same as described in subsect. 2.3.
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To see how good approximation is the use of &, instead of ¢;, we study the difference
&, —¢& and also the effect of this difference on the density deformations 82, > 1,and on
the energy of a nucleus. As the smoothed multipole moments are rather insensitive to the
single-particle structure (cf. subsect. 4.2), it seems sufficient for the study to perform it for
only one kind of nucleons, e.g. for protons.

Fig. 10 shows ¢, which is a solution of Eq. (2.15b) for the deformation of the potential:
£ = 0.20, 3 = 0.12, €3 = —0.08, &2 = —0.022, ¢J = —0.04 and zero for other multi-
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Fig. 10. Solution of the microscopic Eq. (2.15b), ¢, as a function of the number of the oscillator shells
included Nygax. Solution of the macroscopic Eq. (4.9), &, is shown for comparison

polarities, as a function of the number of the oscillator shells included N,,. One can see
that the solution depends significantly on N_,,, especially for lower values of N,,. The
value of £, approaches the value §, when N, increases. This stresses once more the im-
portance of including a sufficient number of shells in the calculation of the microscopic
moments Q7. For N,., = 12, ¢, differs from &, by about 9%. This difference results
in a difference in the density deformations eﬁ. The deformations, obtained with &, differ
from those obtained with &, by less than about 5%. The difference is larger for higher
multipolarities (it is about 3% for A = 5) and smaller for lower multipolarities (it is smaller
than 1% for A = 2). Due to this, the effect on the energy is rather small. It is smaller
than 0.13 MeV for all three kinds of the smooth part of the energy considered by us (i.e.
liquid drop, droplet and Yukawa-plus-exponential energies). As the deformation ¢, also
enters the microscopic part of the energy (shell correction), we can also speak about the
effect of using &, instead of ¢, on this energy. The effect is, however, around only 0.02 MeV
(for protons) and may be completely disregarded. Thus, the use of £, instead of ¢; may
be considered as a sufficiently good approximation.

5. Conclusions

Our study has been performed for particular (Nilsson) single-particle potential with
particular (“A = 225”°) parameters and for particular nuclei (in the radium region). Still,
due to an extensive discussion of a sensitivity of the resuits to various changes (changes
of the potential, of the number and kind of nucleons, etc.), a number of conclusions of the
study are probably of a general character. The conclusions are:

(1) Deformation &} of the density distribution, generated by the single-particle potential



67

is always smaller, in absolute value, than the deformation of the potential itself. At least
in the deformation region, around equilibrium values, investigated here.

(2) For not too large deformation ¢,, the difference d¢, = 4 —¢, is approximately pro-
portional to ¢;. Thus, the ratio de,fe; is approximately constant.

(3) The ratio d¢,/e, systematically incrcases with increasing multipolarity 4, from about
1% for 2 = 3 up to about 129 for 1 = 6. An exception of this regularity is the lowest-
-multipolarity (quadrupole) deformation, 4 = 2, for which the effect is already large,
around 119,

(4) The difference de, obtained for protons is close to that for neutrons.

(5) A large contribution to d¢ comes from the correction term — u(l2—{I?)y) in the
Nilsson potential. An omission of this term reduces the difference é¢ (i.e. for A = 2) by
about (50-70)%.

(6) Scaling of the macroscopic part of the total energy by using the density deformation
¢} instead of the potential deformation e, makes the total energy surface E(e;) = E™[ei(e,)]
+8E*"!(¢,) more flat, i.e. more soft with respect to the potential deformation ¢,. In partic-
ular, it increases the deformation erergy Ey = E(0)—E(s7'") of a deformed nucleus
in the radium region by up to about (0.3-0.4) MeV.

(7) The difference de; depends on the kind (on the exact form) of the muitipole mcments,
on which the consistency condition is imposed. For example, a use of the “normal” surface
moments Q) = {2r2P,(cos #)) instead of the “stretched” moments Q; = {20%P,(cos 1)),
for £ = 0,2, reduces d¢ by a factor of 2.

(8) An important point in the calculation of the microscopic moments Q;, and thus also
of the differences d¢,, is to use sufficiently large basis for the diagonalization of the single-
-particle potential.
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