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Lie-Bicklund transformation relating the equation for one-sided type-D vacuum gravi-
tational instanton with the one for self-dual vacuum gravitational instanton admitting the
“rotational” Killing vector field is presented. As the examples, Fuclidean Cahen-Defrise
solution and Eguchi-Hanson-like metrics are examined.

PACS numbers: 04.20.-q

1. Introduction

This paper is a continuation of the previous one given by Przanowski and Baka [1]
in which it has been shown that for each one-side type-D gravitational instanton, Einstein’s
vacuum equations can be reduced locally to a single second-order non-linear partial differ-
ential equation of one real function. The aim of the present paper is to give the Lie-Back-
lund transformation from that equation to the one defining self-dual vacuum gravitational
instanton admitting the “rotational” Killing vector field.

As it has been shown by Boyer and Finley [2] and then by Gegenberg and Das [3] all
self-dual vacuum gravitational instantons admitting at least one Killing vector field ¢an
be splitted into two classes (Sect. 2).

The first class consists of the instantons with “translational” Killing vector fields, to the
second one belong such instantons which admit “‘rotational” Killing vector fields (this
is Boyer and Finley terminology). The metric of any gravitational instanton from the first
class is defined by a real function satisfying Laplace’s equation in Euclidean R®. The metric
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for the second class is determined by a real function fulfilling the non-linear partial differen-
tial equation F,,+F . +(e") .. = 0.

We find (Sect. 3) that the latter equation is related by the Lie-Backlund transforma-
tion to the “master equation” for type-D @ [anything] vacuum gravitational instanton ([1],
Eq. (45)). Therefore, the class of self-dual vacuum gravitational instantons with “rotation-
al” Killing vector fields and class of all one-sided type-D vacuum gravitational instantons
are defined by real solutions of a single non-linear partial differential equation.

We hope that our result affords the tool which enables one

(i) to generate new vacuum gravitational instantons from the old ones,

(ii) to realize the twistor program for type-D ® [anything] complex space-times.

In Sect. 4, we use the ansatz of Gegenberg and Das [3]. We find that this ansatz leads
to the Euclidean Cahen-Defrise solution [10, 11] and to the Eguchi-Hanson-like metrics
[3, 14].

Of course it would be very nice to find the general solution of our fundamental
equation, F, +F 2+(€) . = 0, or the Lie-Bicklund transformation leading from this
equation to a linear one but, at present, we are far from understanding how to do it.

2. Self-dual vacuum gravitational instantons admitting Killing vector fields

In this Section we recapitulate the main results of Boyer and Finley [2], Gegenberg
and Das [3].
1t is well known that each self-dual vacuum gravitational instanton is locally Kihlerian
manifold i.e., for each point there exist local complex coordinates z*, a = 1, 2, such that
the metric is of the form
ds® = 2g,dz"d” )
and
d(gzdz* A d2f) = 0, 03]

where f =1, 2; 2 := 78; g; = g;; (Refs [4-6)).
From (2) it follows that locally

gaﬁ = f(,z“zg’ (3)

where K(z% z%) is a real function and “,” denotes the partial derivation. Then, Euclidean
Einstein vacuum equations are reducible to a single second-order non-linear partial differ-
ential equation

K, iK 25~ K 13K or = 1. @)

Assume that K(z% 2% is of the form
K = K(z'+2%, 22, 29). ©)
Now one can write (4) in terms of differential forms:
dK —xdw—qdz*—gdz* = 0, ©)
dx A dj A dz2—dw A dz? A dz? =0, )
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where w: = z!+z!, It means that the question of solving Eq. (4) under the assumption
(5) is equivalent to the problem of finding three-dimensjonal integral varieties of (6) and
(7) for which

dw A dz® A dz? #0. ®)

Those integral varieties are three-dimensional submanifolds of seven-dimensional manifold
defined by.the coordinates (w, z2, 22, K, x, ¢, §). From (6), (7), and (8) it follows that

dx A dz* A dz® # 0. ©)
Perform the contact transformation
(w, 22, 2%, K, %, 4, §) & (%, 2%, 22, H, —w, g, §) (10)
H = K—wx.
Then (6) can be written in the form:
| dH +wdx —qdz*—gdz? = 0 11

and from (7) and (11) one finds that our three-dimensional integral varietieb are defined
by the solutions of Laplace’s equation

H,xx+H,yy+H,zz = Os (12)

, 5 1 .
with H,, #0; here y: = z2+2%, z: = — (222,
, i
Finally (1), (3), (4), (5) and (10) yield

ds* = —% H, (dx*+dy*+dz?)

—2(H 5) "' H 5ydz—% H ,dy + dv)’, (13)
. 1 -
with 7 1= — (z} —z%).
2i
Substitution
G: = —%Hx
gives
ds®> = G (dx*+dy* +dz*)+(G ) (G dy—G ,dz +dr)?, 14

where G = G(x, y, z) is any real solution of Laplace’s equation (see (12))

Gx+Gy+G,,, =0 (12a)
with G, > 0.
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i)
The Killing vector field for the metric (14) is o and it has been called the “transla-
T

tional” Killing vector field [2, 3]. One easily recognizes in (14) and (12a) the Gibbons-
-Hawking metric [7).
Assume now

K = K (In|2'}?, 22, z%). (15)
Hence (4) gives
K K 25— K 2K 5 = €, (16)

where u: = In [z'{%. Analogously to the previous case we write (16) in the language of
differential forms

dK — pdu —qdz*—gdz* = 0, amn
dp A dg A dz? —e'du A dz* A dz* = 0. (18)
By the contact transformation

w, 2%, 2%, K,p,q,§) v (p, 2>, 2%, L, ~u, q,9)

L =K-up (19)
one finds
Lo+ Ly—(e™7), =0, (20)
where a: = z2+2%, b: = {_—(zz—zi)
Define
x,3,2:=Gp1a,1b), (2D
Fi= = 2 (p(s) a). b@): @)

then differentiating (20) with respect to p we obtain
Foyy+F o 4(€5) 0 = 0. (23)
Using (1), (3), (16), (19), (21) and (22) one easily finds the metric

ds® = F [ef(dy* +dz*) +dx*}+(F ,)"\(F .dy—F ,dz+dt)? (24)
1zt e : )
where 1 ;= % In =- To assure the positivity of the metric (24) we have to assume F, > 0.
1 Z
0 0 . . e apenrs
The Killing vector field is — = ———— . The latter relation elucidates why this Killing

ot 0d(argzh)
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vector field has been called the “rotational” one. As it has been shown in Refs [2] and [3]
the metrics (14) with (12a) and (24) with (23), exhaust all self-dual metrics admitting at least
one Killing vector field.

3. One-sided type-D vacuum gravitational instantons

In a paper by Przanowski and Baka {1] it has been proven that the metric of any one-
-side type-D vacuum gravitational instanton is of the form (1) with

&1 = 8[(K,z’)”*],:—‘: 81z & e[(I(,z‘)_%]’zE = gz_f_,
822 = (K,zl).‘%(e-‘x—%K,zzzi): (25)

where & = =1 is chosen so that g,7 > 0; K = K(z'+2z1, z2, z?) is a real function satisfying
the following equation

K ;1K 25— K 15K 21— 275 (K 11+ 2K 1K ;i) = 0 (26)

and K,: > 0.

The question of solving Eq. (26) can be translated into the language of differential
forms as the problem of finding three-dimensional mtegral varieties in the seven-dimensional
space defined by the coordinates (w, 22, z2, K, u, g, q) where w: = z! +z1, for the following
system

dK —udw—qdz* —qdz? = 0 0%))
du A dg A dz2—2e"X(du A dz? A dz22+2u%dw A dz® A dz?) =0 (28)

with the additional assumption (8).
Perform the contact transformation

w, 2%, 2%, K, u,q,§) ~ (v, 2%, 2%, P, s, 1, D),
v=ut, P=w—Ku' s=2Ku"} t=—qul, T=-—gul 29)
Then (27), (28) can be written in the form

dP—sdv—tdz*—1dz? = 0 (30)

dv A di A dzi+e 2213 [2v™243sv)dv A dz® A dz?+40%ds A d2* A d22] =0.  (31)
From (8), (27) and (28) one easily infers that

dv A dz* A dz? £ 0. (32)-

The system (30), (31) with (32) yields the following non-linear partial differential equation

Pa—Qute P =0 (33)
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for the real function P = P(v, 22, z%). Let T = T(, z2, z) be a real function such that
T, = P. (34)

Then from (33) and (34) we have
T -0 e ¥ = f, (35)

where f = f(z2, z2) is some real function. Without loss of generality one can put f = 0.
Hence,

T,e3—20" e ¥ = 0 (36)
and T is now defined with the precision to the transformation
T & T+ g(z)+g(z%), 37

where g(z?) is any holomorphic function of ‘zz.
By the point transformation

(v, 22, 2%, T) & (x, 2%, 23, ),

x=0"!, Y=-1v'T (38)
Eq. (36) leads to
Y, 2z tel == 0, (39)

Differentiating (39) twice with respect to x and substituting
F:=Y, +2Inx (40)
one finds that the real function F = F(x, z2, z2) satisfies the equation

F a4+ (eP) . = 0. (41)

. . - 1 - .
Using the real coordinates y: = z2+z2, z: = — (22 —z?), and defining F = F(x, y, z) as
i

F: = F(x, 3 (y+iz), 3 (y—iz) (42)
we obtain finally
F,yy+F,zz+(eF),xx =0.- (43)

i.e., the “master equation” (23) for self-dual gravitational instanton admitting at least one
“rotational” Killing vector field. The careful analysis of the procedure leading from (26)
to (43) shows that the latter equations are related by the transformation

- 1 -
x =K% y=2"4:22 z=—(-2), F=-K-lh(K,, @)
' i

(with w = 21+sz) and its appropriate differential and integral consequences.
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The infinite prolongation of (44) constitutes the Lie-Backlung transformation (see
Refs [8], [9]). In that sense one calls (44) the Lie-Bicklund transformation too.

Now we must elucidate what we mean under the words that “equations (26) and (43)
are related by (44) with its appropriate differential and integral consequences”.

Let K = (z'+2z7, 22, z2) be a real solution of (26) with K, > 0. Substituting
w = z'+2z7 we have K,, > 0. Then, according to (44), defining

F(x,y,2) := —KW(x, y, 2), 3 (y+iz), L (y—iz))+2 In x (45)

one finds that F(x, y, z) satisfies the equation (43).
Conversely, assume now that F = F(x, y, z) is a real solution of (43). Define a real
function P = P(x, y, 2)
P:= — [x*F dx+x’F+x*(1-2Inx). (46)

Using coordinates v: = — , z2: = % (y+1iz), 22: = 1 (y—iz) we can easily check that the

- A1 = 1 -
function P = P(v, z%,z%): = P ( —,z24 2%, —(2? ~22)> fulfills the following equation
4

(compare (33))
Pag—Qu e ¥ = b, 47

where » = h(z2, z?). Then one can choose | x2F,dx in (46) such that # = 0. Henceforth
we assume that _[ x?F .dx is defined in such a manner that # = 0. Concluding, P(v, 22, 22)
satisfies Eq. (33).

Assume now that (compare with (49))

FXF,~1#0. (48)

Performing the contact transformation inverse to the one defined by (29), we can find
that (30), (31), (32) and (48) lead to (27), (28) and (8) and then, of course, to (26). Reversing
considerations, one can verify that the real solution K = K(z! +z1, z2, z2) of (26), construct-
ed as it has been just described, is related to F = F(x, y, z) by (44).

Now the main problem is to express the metric defined by (1), (25) and (26) in terms
of F. By simple but tedious manipulations we obtain

ds® = ex(3 xF ,—1) [e"(dy? + dz?) +dx*]
+[ex(3 xF .~ D] 7'[( | x*F ,dx) .dy

—@G [ xX*F ,dx) dz +dt}?, 49)
where ¢ = +1.

This is the analog of self-dual metric (24). (Remember that j x°F .dx is defined so that
P(v, 2%, z?) determined by (46) satisfies Eq. (47) with k = 0. To fix | x?F.dx one has to
solve the Poisson equation in R?. Any function f = f(y, z) added to | xF .dx and such
that 4f = 0 can be absorbed by the coordinate 7). ’
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4. Examples

In this Section we consider type-D ® [anything] metrics generated by the solutions
of (43) which have been presented by Gegenberg and Das [3] for the case of self-dual metrics
admitting “rotational” Killing vector fields (see our Sect. 2).

First consider the trivial solution of (43)

F = const. (50)

Then one can put | x2F dx = 0. Without loss of generality we assume that F = 0.
Hencej

ds? = x(dx*+dy*+dz*)+x"'d7’. (51)

This is the Gibbons-Hawking metric (14) with G = L x2—J y?+2%+ const. Therefore
the metric (51) is of the type D ® [—].
Now let us examine more interesting case

F = f(y, 2)+8(x). (52)

Substituting (52) into (43) we obtain

(€°) xx = 2a, (53a)
FoytSfe = —2a¢, (53b)
where a = const.
Integration of (53a) gives
g = In(ax*+bx+c); b,c = const. (54)

If a # 0 then (53b) is the elliptic Liouville equation with the general solution

1 @,22Y,27
f=1n[-——~ 2 ] (55)
- a (p+y)?
where ¢ = ¢(z2) — holomorphic function and y = (z2) — anti-holomorphic function of
l 2z 2~
the complex variable z2 = } (y+iz). Functions ¢ and y are so defined that — - ;—’;—%{5

is a real positive function.
If a = 0 then (53b) is the Laplace equation in R? and its general solution is

f= 929+ ¢z, (56)

where @ = ¢(z?) is any holomorphic function of z2. Consider- now that latter case, i.e.,
a = 0. Then by (52), (54) and (56)

F = In (bx+0)+ ¢(z%) + (). (57
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It is easy to show that, if b # 0

2
fsz’*dx =1y %x+ ({—) In (bx +¢)—2c|w)?, (58)

where @ = w(z?) is a holomorphic function such that @ ;. = €®. Substituting (57) and (58)
into (49) and defining

(= lbllw, & :=x+cb', l:=clb]™! (59

one finds

2 '52;‘12 2 2 q2 17
ds® = ¢ 2¢ d&”+(sgn &) (¢° —1)2dLdl

2¢ -
+ EZ—-_‘? [d‘t“l'll({d(—ZdC)]z} . (60)
The metric (60) is the Euclidean analog of the Cahen-Defrise solution with k = .0, A=0,
e = 0 (see [10] and [11] Eqs (11.11), (11.42)). The Petrov-Penrose-Plebariski type of (60)
is D ® D. (If b = 0 then (57) ylelds the metric of the form (51).)

Assume now that a # 0. Hence

1 @25
F=1In (ax2+bx+c)+ln[— — =5 ] (61)
a (p+9)°
Then one finds
1 1P 3
J‘sz,xdx =h+ —c—ln[— — qj'zzw’zz]', (62)
a a (p+vy)

where h = h(x) is any rgal function of x such that 2, = x*F . Substitution of (61) and (62)
into (49) and the analysis of the obtained result show that without loss of generality we
can put

Pavs  [—3(+32%2)7F if a>0 (63a)
(p+v)? | 2(-1222H"2 if a<O. (63b)
Then one has
@) if b #0.
ds® = ¢ —fif——ﬁﬂﬁzﬂyiﬁg—
T k(@ +P) -2 B k __\
(s )—2m¢ (1+ ud CZ)

2, 72 T 2
+ k(E"+19)—2m¢ (dt_H.lCdC CdC) ’ (64)

2. 12

& =1
1 —
+2CZ
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where

I: = c|2ab|™, k:=sgna,

b
§i= (% -
The metric (64) is the Euclidean equivalent of the Cahen-Defrise solution with 4 = 0,
e =10,k = +1(see [10]and [11] Eqs (11.11), (11.42)). Fork = +1 and ¢ = +1 the metric
(64) is the well known Taub-NUT metric [12, 13], written in the special coordinates.

k3
) (x+cb™h), = 22, = (2 ‘l_)

a‘}
7.

@ ifb=0
A\t * 2didt
ds2=(k+efz) PN C o
r 4 1+£CZ
2
PR AN
—Nkte— ){dt+ = =21, 65
+4( 8#) 2, kg ©3)
2
where
clt
k:=sgna, ¢:=sgnc¢, oc:=2|—|,
: a
.;. N
r:=2(£x), {i= 22, t:-—'-l—a-l'c.
a ¢

(Of course k+¢& # —2))

Metrics determined by (65) are precisely those obtained by Gegenberg and Das [3]
for self-dual vacuum gravitational instantons admitting *rotational” Killing vector fields
and defined by solutions of Eq. (23) (= 43)) of the form (52). Therefore, we conclude that
the metrics (65) are of type D ® [—].

For k = +1, ¢ = +1, one has the Eguchi-Hanson metric I; for k = +1, ¢ = —1,
(65) is the Eguchi-Hanson metric II. [14].

We thank Dr B. Broda for useful discussions.
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