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The paper discusses action principles simuitaneously leading to the general relativistic
Lorentz equations of motion in a given background field and to the electromagnetic deviation
equations of the first and second order of the Lorentzian world lines. Some consequences
of the simultaneous action principles connected with their reparametrization covariance
and invariance under gauges of deviations, as well as the corresponding Hamiiton-Jacobi
equations are also considered.

PACS numbers: 04.20.Cv

Introduction

As is known, the geodesic and geodesic deviation equations can be derived
from a single, so-called simultaneous variational principle [1], which is a particular case
of a general property that there is always a simultaneous action principle leading to both
the Lagrange and the Jacobi equations of a given action [2]. One should thus expect the
same to be true for the general relativistic Lorentz equations of motion taken together
with the electromagnetic (e.m.) deviations of the first and second order, which were a subject
of a recent paper of the authors [3]. The objective of the present paper is just to formulate
such action principles for two types of dynamical systems. The first system consists of
Lorentzian world lines in a background of a gravitational and an electromagnetic field
of general relativity taken together with a first e.m. deviation vector field defined along these
lines, and is a subject of Sect. 2. The next system, discussed in Sect. 3, consists of three
elements, that is of Lorentzian world lines and of both a first and a second e.m. deviations
considered together; all in the same background as before.
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Sect. 1 contains a discussion of Several properties connected with the variational principle
leading to the Lorentz equations of motion. The subject of this Section may be consid-
ered as known, but we include it here for the sake of completeness and for further reference.
The action principles, discussed in Sects 2 and 3 are also justified by means of an approach
introduced in [3] under the name of the Z-approach, which is a particular case of that used
in [2]. In all the sections three types of consequences of the respective action principles
are studied. They are ({) the Hamilton stationary action principles that lead to corresponding
evolution equations; (i) theorems of the type of the second Noether theorem; (iii) proce-
dures that allow one to derive explicit forms of the Hamilton-Jacobi equations directly
from the forms of the actions, without any reference to the canonical formalism.

The results obtained in the paper can be regarded as preparatory measures to a méthod
of explicit solving the e.m. deviation equations, which will be a subject of a forthcoming
work of the authors. In the particular case of geodesic deviations such a method was re-
cently formulated by one of the present authors [5].

1. The Lorentz equations

In a four-dimensional pseudo-Riemannian space-time (¥, g,;) endowed with a back-
ground electromagnetic field, let us consider a time-like Lorentzian world line I': R - ¥,
described in a coordinate system {x"} by the equations x* = £*(r) with t € I being an arbi-
trary scalar parameter along I'. The four functions £%(t) = x* “I'(z) are a solution of the
general relativistic Lorentz equations (cf. {3])

L[&]: = b («u_—_.> —oF u’ =0, (1.1)

dt \/u,lu’1
D . . .
where A () := (),, " denotes the absolute derivative along I', ” := o is a vector
T T

tangent to I', F,, is the electromagnetic field tensor, ¢ = —23 = const and w,u* >0
, pe

is assumed everywhere along I". As is known, Eqgs (i.1) can be derived from a standard
variational principle characterized by a t-reparametrization invariant action given by the
functional

Wig] = § L&, udr, (1.2)
with the Lagrangian
L(&, u®) 1= V goguuP + oA, (1.3)

where the metric tensor g,, as well as the electromagnetic vector potential 4, are evaluated
along the curve I'. For the sake of completeness and for future reference we rederive now
the Lorentz equations (1.1) by a less laborious procedure based on the concept of covariant
variation of geometric objects which was used e.g. in [6].
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Let us take the variations x* = £%(t, £) of functions & along a curve I' and define the
corresponding variation vector 6¢%, which in what follows is for simplicity also called the
variation 8¢% in the standard way as

(4

2oy . g 00
5%() :=¢ 2 O (1.4)

where ¢ takes arbitrary values from an open interval. These variations are components
of a vector tangent to the curve x* = £%(t). The complete variations §¢® of the functions
&%, generated by the variations 8¢* of the world line I' and by the variation 61 of the
parameter 1,

61(1): = ¢ g (z, 0),
O¢

where © & ¥ = f(r, £) are defined to be

5E%: = SE*+u’st. (1.5)

Ryee@y

The covariant variation of a tensor field ¢
introduced as’

given along the line I' can be

a1eeelly

A7) 1=
(r) ==& %

(%, 0), (1.6)

where
oy eeettn B
DEt  an 98
de # 3¢

is the absolute derivative of t**""*" evaluated along I'. Then, analogously to Egs (1.5), the
complete covariant variation of a tensor ¢*""* takes the form

LT

AU = AT or, a.7n
T
which, in particular, for a vector field 7* reads
Dt*
At* = 19,088 + — o1, 1.8
508" + de T (1.8)

The complete variation of the action is equal to

dw
oW 1= e — (0),
de

where

T1(8)
W) = [ L(&%(x, ), u*(z, &))de

to(e)
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and t{e) = f(z5, &), { = 0, 1, in the integration limits. Since

r1(e)

% = J‘ { L(E%x, &), u*(t, €))+ — [L(f’(t, g), u*(t, €)) Ut 8)]} dr,

z0(¢)

we can replace the ordinary derivative of the scalar Lagrangian (1.3) by the absolute one
and take into account that 4g,; = 0. Thence we obtain

T

SW = [g” A+ o(udA,+ A Au™) + — (Lét)] dr.
\/ulu

T0

Due to the commutation of d/d7 and /3¢ and the symmetry of the connection coefficients
I'%s,, the covariant variation of 4" can be expressed by means of §,* as

- D
Au® = — 82, (1.9)
dt

Therefore, after taking into account Eqgs (1.5), (1.8), (1.9), the complete variation of the
action (1.2) is given by

oW = — f(L{«f 1887z + p,E°E, (1.10)

where

Pai = +04,, (1.11)

Vuu
and use was made of the definition Fz:= A;,— A,

The expression (1.10) for the complete variation of the action W finds several applica-
tions. The most common is the Hamilton stationary action principle:

The complete variation W of the functional (1.2), generated by the variations 5&*
and ot satisfying the conditions

= 08%(10) = 8¢*(x;) = 0

and otherwise arbitrary, is equal to zero if and only if x* = £%(z) fulfil the Lorentz equations
(1.1) in an arbitrary parametrization.

Another applications of Eqgs (1.10) are the Noether theorems. Following [7] one can
say that the variations d1(r) and 8&%(z), considered as given functions of 7, generate a dyna-
mical symmetry iff the complete variation W caused by these generators is equal to

d
oW = f— {(6F)dx, {1.12)
dt
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where 6F is a function of the dynamical variables £*, %, the parameter z, and the genetators.
Thus, Eq. (1.10) together with (1.12) impose a condition on the generators 5t and 6¢*
which is the famous identity of E. Noether:

— L[£,]56°+ d%(pﬁf“-kLét—éF) = 0. (1.13)

As is known, the consequences of this identity depend on the degree of arbitrariness with
which the generators dt and 6&% are defined. In the case considered now, the generators
may be given either in terms of a finite number N of parameters or in terms of an arbitrary
function describing arbitrary reparametrizations of the Lorentzian world line. In the first
case the Noether identity leads to N conservation laws, and this will be a subject of a sub-
sequent paper of ours. In the second case we may examine for which Lagréngians L the
action (1.2) transforms in accordance with (1.12) under a transformation of the form

tei=f(1), Visppp =p
or

T=fn, &) =¢0 (1.14)

depending on one arbitrary C, function f: R — R, withf’ # 0. Lét us note that in the neigh-
bourhood of the identity transformation Eqs (1.14) can be written in the form

T =1+00(c), E(t+01(n)) = E(0)+udr(z) = E(3). (1.15)

Thus the infinitesimal generators of the transformations (1.14) are defined by an arbitrary
variation dt(7) and, as it follows from (1.15), by

5E%(z) = —u*de(7). (1.16)
Substituting (1.16) into (1.13) and taking into account that under the transformations

(1.14) we have 6F = 0, one obtains

L&, Ju®6t+ ;1% [(—pu*+L)ot] = 0.

. . d
Since d7(7) is an arbitrary function, in the expression above the coefficients at 7 and p ot

must vanish separately, which gives

L[ Ju" =0, (1.17)
L = pu°, (1.18)

and these are strong identities, satisfied independently of whether the function & is or is not
a solution of the Lagrange equations. Thus, we have arrived at the following well-known
result which will be generalized in the forthcoming sections.
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PROPOSITION 1.1. An action of the form (1.2) is t-reparametrization invariant iff (1.17)
and (1.18) are satisfied as strong identities.

REMARK 1.1. Let us observe that due to Euler’s theorem about homogeneous functions
the identity (1.18) means that L is with respect to #* a homogeneous function of degree
one. This condition is of course satisfied by the Lagrangian (1.3), and the Lorentz equations
(1.1) satisfy therefore the strong identity (1.17) (see also [3]).

A third application of Eq. (1.10) is a method of deriving from the form of the action
(1.2) the corresponding Hamilton-Jacobi equations. Taking this purpose in mind, let us
consider now a family of Lorentzian world lines x* = £%(r), described by Eqs (1.1}, all of
which for T = 7, pass through the same point £ = £%(z,). By means of such a family the
functional (1.2) can be turned into a function U: I — R, called the principal Hamilton
function. The values U(x%, ) of this function are defined as being the values of the integral
{1.2) calculated along the Lorentzian curve I’ which joins the initial point ¢ with the point
X" just for the value 1 of the parameter, and both these values of, x* and t are the arguments
of U. Then, due to the assumptions about I', the integrand in Eq. (1.10) vanishes, and the
differential of the principal Hamilton function is equal to

dU = p,dx°.
Thus
ou
= 0, (1.19)

which could be considered as the Hamilton-Jacobi equation on U. Besides

U u,

Py e A (1.20)
o) \/ uu

which is the well-known relation between the partial derivatives of U and the generalized
momentum p, determined by the action (1.2) usually used in the framework of relativistic

ua

dynamics of charged test particles. Since the unit timelike vector i at the right
uu

hand side of (1.20) satisfies an abvious algebraic relation, a corresponding relation must
also be satisfied by the left hand side. Therefore, we obtain the familiar Hamilton-Jacobi
equation for a charged test particle

[ 0U ou .
7\ oF o4\ 57— ) = 1, (1.21)

which is a partial differential equation on a function U depending, in virtue of Eq. (1.19),
in general on four variables x*. The knowledge of the complete integral of Eq. (1.21) allows
one to determing in the standard way a Lorentzian world line in a given pseudo-Riemannian

manifold ¥V, endowed with a given tensor field F,; (or vector field 4,) determining the back-
ground electromagnetic field.
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2. The first e.m. deviation equations

As it has been shown by one of the present authors in {2], there always exists a unified
variational principle simultaneously leading to both the Lagrange and the Jacobi (i.e. devia-
tion) equations of a given action. For the geodesic problem the appropriate unified action
which leads to the geodesic and the first geodesic deviation equations was given in [1].
We shall derive in this Section an analogous simultaneous variational principle leading
to the Lorentz equations (1.1) and to the first e.m. deviation equations

D 1 u®uy \ Drf 1
L,[r*] :=— [ (é"— # ) ] = R° wrul
' Juut Vgt aut o

Drf
—a( 2 M +F“ﬁ7r—)=o, Q@.1)

which were derived in [3] for an arbitrary parametrization.

Let us take the action
1

W, [éaa ra] = J\ (é u r, Zra> dr, (22)

o -

being a functional depending both on the world line I' and on the vector field r defined
along it and determined at p(r) e I' by its components r*(z), in which the Lagrangian is

D Dr*
L;(Cf', u, %, l’) = (—“—— oA ) "t odutr, @.3)
dt ~Vuu dt

where g,5 and A4, are taken at the world line I described by the functions x* = £%(t).

A heuristic explanation of the choice of the Lagrangian (2.3) can be obtained from
the X-approach to families of Lorentzian world lines which was developed in a recent
paper [3] of the authors. Indeed, let us observe that in the S-approach Eqs (1.2) and (1.3)
along a fixed line I', read correspondingly a

WIE@®] = | LEG, 9, u'(, ))de

and

L(&%(r, €), u%(z, 8)) := J 2.54°(T, )UP(1, £) + 0 A, (7, Ou%(z, £).
. . . .. e ot*
Differentiating this with respect to ¢, taking into account the definition r® (z, €) := N (z, 8

D _ Dr®

Wl [éu, Ta]: = aWéEé ] = J‘L1 (éa: ua, ra, P‘";';_.) d‘t: (2'4)

and the relation
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where

Lo (e ue v Dr®\. OL(&, u“) u, Dr* Y. @5
usrt— = o4, . .
1 u,r dﬂt 68 \/ulu dT ,ﬁu

Such a heuristic derivation of the form of the Lagrangian does not guarantee however
that (2.2) is a correct action simultaneously leading to both the Lorentz equations (1.1)
and the first e.m. deviation equations (2.1). This property must be demonstrated in
a direct way.

Similarly like in Sect. 1, let us compute the variation of the action (2.2) caused by
independent variations 8¢% dr® and dt:

B3 a8 s B d
+our*A4A 5+ A, (uAr" + 1" Au )+‘(T (L,67) | d~,
T

where h,5:= g,5 — %g. Applying the definitions (1.7) and (1.8), making use of Eqs
uu
(1.5), (1.9), and taking into account the Ricci identity

ADt D At*+ R%,5t°3EM° (2.6)
—_—= u’, .
v~ de v
we find the expression -
oWy = — | (L,[r ]+ L[EJArYdr+(niV6E" + por°) 5, 27
70

for the complete variation of the action (2.2), where p, is given by Egs (1.11),
h Drf Uy
= 2 ! +I?, ( e +aA,,) r7+aA,, 7" (2.8)
\/ uut dt Vuu
and use was made of the relation

Ar* = or*+I%,r*6¢ €2.9)

o

)
which followed from (1.4), (1.8) and from the definition 3r” (7) := ¢ —618— (z, 0).

By analogy with Eq. (1.10), the expression (2.7) for the complete variation of W,
finds also several applications, the most common of which is the Hamilton stationary action
principle formulated now in the following form:
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THEOREM 2.1. The complete variation W, of the functional (2.2), generated by the
variations 86£% or® and dv satisfying the conditions

5t = 8E(xo) = 8E(x)) = 3r(ze) = 8r(z,) = 0

and being other wise arbitrary, is equal to zero if and only if x* = £*(z) fulfil the Lorentz
equations (1.1) and r* = r(z) fulfil the first e.m. deviation equations (2.1), both in an arbi-
trary parametrization.

The proof follows from (2.7).

Thus, within the framework based on the unified action (2.2) the dynamical proper-
ties of the first e.m. deviation are not considered as separate from those of the motion
determined by the Lorentz equations. In the terminology used in [2], from Theorem
2.1 it follows that the first e.m. deviation equations are the Jacobi equations of the
action (1.2).

A second application of Eq. (2.7) is again the Noether identity. The variations §1(7),
5&%(t) and 6r%(z), treated as given functions of 7, will be the generators of a dynamical
symmetry iff the complete variation d W, caused by these generators is equal to

d
oW, = J —(6F,)dr, (2.10)
dt

[ 4

Dr
where 8F, is a function of the dynamical variables £°, «", re A the parameter 7, and
T

the generators. If the requirement (2.10) is satisfied, Eq. (2.7) imposes a condition on the
generators of a symmetry which is'the Noether identity

—(L[rJ08*+ L&, 14r) + Jd (7 8¢* + p,dr*+ L6t —3F ) = 0. (2.11)
T

In accordance with the general scheme, if the generators 81(7), 3t°(z) and 6r*(z) are given
in terms of a finite number N of parameters, Eq. (2.11) leads to N conservation laws
which will be discussed in a subsequent paper of ours. Here we restrict our attention
to two particular cases when 67(z), 6¢%(t) and 6r’(r) are given in terms of an arbitrary
function of 7. '

First, let us consider the case when the arbitrary function mentioned above describes
an arbitrary reparametrization of the Lorentzian world line and of the first e.m. deviation
vector field along it. So, we shall examine now for which Lagrangians L, the action (2.2)
satisfies the condition (2.10) under transformations of the form

?Hf=f(7)a Vidp o p' =p, TV43THI"=7',
with TV, being the tangent bundle to the manifold V,, or

T=f(), &@® =@, @ =r( (2.12)
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depending on one arbitrary C, function f: R = R (with f’ # 0). In the neighbourhood
of the identity transformation Eqgs (2.12) can be written in the form

% = 1+01(7),

& +6t(x)) = &) +uor(v) = &(x),

&

(r+61(1) = (D) + -“% 6t(1) = r*(1). (2.13)

Thus, as it follows from (2.13), the infinitesimal generators of the transformations 2.12)
are defined by an arbitrary variation 81(z), by the variation 6&* given in the form (1.16),
and by

d [ 4
5t = — Lo, 2.14)
dt

Substituting these expressions into (2.11) and taking into account that under the transfor-
mations (2.12) we have 6F, = 0, one obtains

b\ - d dar*
(Ll[ra]u“+L[§a] E—T—) ot+ T [(—n,(,l)u“—pa 7} +L,) 51] = 0,

Due to the arbitrariness of dt, one obtains from here the following strong identities

D,
Ly[r.Ju*+L[¢] ——d' =0, (2.15)
T
- ar*
Ll = na u +pa (216)
dz

satisfied independently of whether the functions £* and r* are or are not solutions of the
Lagrange and the Jacobi equations correspondingly. Thus, we have proved the following
statement:

PROPOSITION 2.1. A unified action of the form (2.2) transforms under a t-reparam-
etrization in accordance with (2.10) iff (2.15) and (2.16) are satisfied as strong
identities.

CoROLLARY 2.1. If " is a Lorentzian world line defined by the Lorentz equations (1.1),
then the vector field r satisfies the strong identity

LirJu*=0 (2.17)

independently of whether it is or is not a solution of Egs (2.1) (see also [3]).
Secondly, let us discuss the transformations

toi=1 V,3ppp =p, TV,3rpr =r+ku
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or
T=1 @ =00, @) =rf@+(@u(@) (2.18)

depending again on one arbitrary C, function x : R — R (with ¥’ # 0), but now describing
(in accordance with Prop. 2.2 i from [3]) an arbitrary gauge transformation of r* under
an arbitrary (but fixed) parametrization of I'. In the neighbourhood of the identity trans-
formation the function x(7) should be replaced by dx(z). This gives the infinitesimal genera-
tors of the transformations (2.18) in the following form

1 =0, 8&8=0, r=uk. (2.19)
Inserting Eqs (2.19) into (2.2) with the Lagrangian (2.3), one obtains that
OF, = pudxk. (2.20)

Substituting now' Egs. (2.19) and (2.20) into the Noether identity (2.11) and making use
of the arbitrariness of the function éx, we obtain the strong identity

L[&Ju* = 0. 2.21)

This identity was already obtained in Sect. 1, but as a consequence of the reparametriza-
tion invariance of a different action (1.2). Now the following statement is true:

ProPOSITION 2.2. The unified action (2.2) transforms under the gauge transformations
r* & r*+x(t)u” generated by an arbitrary, differentiable function x(7) in accordance with
(2.10) iff the strong identity (2.21) is satisfied.

A third application of Eq. (2.7) concerns a method of deriving the Hamilton-Jacobi
equations which correspond to the action (2.2). Let us consider again a family of Lorentzian
world lines x* = £%(r) described by Eqs (1.1), all of which for t = 7, pass through the
same point &G = &€%(7,). Along every of these lines one can take a family of the first e.m.
deviation vector fields, with the components r* = r°(t) being a solution of Egs (2.1), such
that every of its members takes the same value r§ = r%(z,) at the point &% for different
Lorentzian world lines passing through &%. By means of such a family the functional
(2.2) can be turned into a function U, : T¥, x R — R analogous to the principal Hamilton
function. The values Uy(x", r* 7) of this principal function are defined by the integral of the
form (2.2) in that the upper limit is replaced by the value © € 7, and the integration is carried
out along the curve I which joins the initial point (&3, r§) with the point (x° r%) entering
the argument of U;. Then, due to the assumptions about I', the integrand in Eq. (2.7)
vanishes and the differential of the principal function U, is equal to

dU, = nVdx"+ p,dr®.
Thus

U _y (2.22)
T
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and
U, hy Drf ( ug )
=t TP | 5= + 04, ) T oA, 7, 2.23
ox® \/ulul dTI ’ \/u;‘u}' g i ( )
oUu u,
_—E = +0A,. (2.24)
Vuut

From a formal point of view, due to the analogy with classical dynamics of charged test
particles, Eq. (2.22) could be considered as the Hamilton-Jacobi equation on U, and
amounts to U, = U;(x* r®). Eqgs (2.23) and (2.24) give relations between the partial deriv-
atives of U, and the generalized momenta p, and ¢ determined by the action (2.2).

Since the unit timelike vector ~\~/»__ and the projection tensor 4, at the right hand sides
uu

of (2.23) and (2.24) satisfy two obvious algebralc relations, the corresponding relations

must also be satisfied by the left hand sides of (2.23) and (2.24). Therefore we obtain two

partial differential equations on a single principal function U,:

oA (55 o) = 1, (2.25)
au U U
=ﬁ<ar; —o-A,)(ax; —I, > ; r—cAg,r ) =0 (2.26)

which could be called the Hamilton-Jacobi equations for the dynamical system consisting
of the Lorentzian world lines and of the first e.m. deviations.

It should be stressed however that if the Hamilton-Jacobi equations are presented
in the form (2.25)2.26), it is not yet obvious whether they are connected with the ordinary
differential equations (1.1) and (2.1) or even with the Hamilton-Jacobi equation (1.21).
To reveal the latter connection, let us observe that Egs (2.25) and (2.26) admit the separation
of the variables x* and r*, which can be achieved by representing U, in the form (cf. [1])

U
+V, (2.27)

X

Ux5 % =1r"

where U and V are functions of x* alone. Differentiating then (2.27) with respect to r* and
x%, one gets

U, U aU, _rﬁ<aU) Y v

Y
—_— i —— —_— = ——— P —
or* ox* ox® Y oxf ox®’

and this, after substituting into (2.25) and (2.26) and taking into account the equality

U\ aU)
).~ ()
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shows that U and ¥ must satisfy the following equations

(U oU
(5 —od) (5 —cAy) =1, (2.28)
U ov
g¥ <3;; —aA,> F =0 (2.29)

in which the first coincides obviously with the Hamilton-Jacobi equation (1.21) for Lorentz-
ian world lines.

3. The second e.m. deviation equations

It has been shown [1] that there exists also a-variational principle which leads simulta-
neously to the geodesic equations and to the first and the second geodesic deviation equa-
tions. In this Section, we shall derive an analogous variational principle for the system
of the Lorentz equations (1.1), the first e.m. deviation equations (2.1) and the second e.m.
deviation equations

D [/ h*® Dw 1
L[w]: = — —= — _.._.R wPwru’ — R% 5.
W] dr (\/ulu" dT> \/ulu o W’ \/u;‘ {( b

. . D Dr" d [ uy D
+Rsy”)u ri+4R,,,5?—ur 2?;; ;;Ti:

d h,,7 prf Drr 1 - uﬂ DrP\?
u® — + — RM& r'ru” —
dr uut dr dr u,u u,ut dr
Drf u, Dr
a X B &
—O'{F Biys P+ Fp [u”w"+2 o r+2ufr” (ulu’l E;)]

FERE g O Ry 4 % | 2 4 27 (4 D
( vie ™ o'+ dt dr \uu* dr

h,; Dr* Dr° 1
+F¢ﬂu3 (u;: d’L’ d‘E + “_'—Ryéetuyrdraut>} =0, (31)

which were derived in [4] for an arbitrary parametrization.
Let us take the action

Ty T

a o a 3 a aDwa 23 @ _a Dra
Wz[é,r,w]=fL,<§,u,w,dt)‘dr+J‘L2(Z;,u,r, dr)dt’ (3.2)

0 o

being a functional depending both on the world line I and on two vector fields » and w de-
D

fined along it; the total Lagrangian L, (é", W, re, o

a@
W .
, w5, —;——) is the sum of two terms
T
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defined as follows

L("‘ . “Dwa) ( +A>Dwa+A “wh, (3.3)
sU, W, — | 1= 0. a;pU .
! dr ‘/uz“ d i
L a o _a Dra) haﬂ Dr* Drf ( uf + Aﬁ>
LT, — ) 1= e — R 1" | —— +0
z dr \/ulul dt dT hre \/u;_u g
br*
+20 405 — 1’ +04,p,u°r"r,

where g,5, Rqp,5 and A, are taken at the world line I" described by the functions x* = £%(z).
* Similarly like in Sect. 2, a heuristic explanation of the choice of the Lagrangian L; can
be obtained from the X-approach. Differentiating Eqs (2.4) and (2.5) once again with respect

(1

r
to ¢ and taking into account the definition w(r,¢) := — (‘L‘, ¢) and the Ricci identity

(2 6), one obtains

71

WLl & 1%, w]: = a_vzl_[__m jL3 <£ u®, 1%, 21—— , W5 D_w) dr,

O¢ dt dt
to
where
D\
oL “u’ r —
Lo (e ue = D7 L DY ‘( d‘c) U, )Dw"
sULF ,— W, —— | = =
} dt dv 3¢ i dt
h g Dr* Drf )
+ 0 Ay g WP ~ —Ry i [ ——— +04® ) ru’
“ \/ u, ut dt dt e <\/ u lu
Dr®
+20A,, o wpyt i

Of course, such a derivation of the form of L; does not guarantee that (3.2) is a correct
action simultaneously leading to Egs (1.1), (2.1) and (3.1). This property must again be
demonstrated in a direct way.

Let us compute the complete variation of the action (3.2) caused by independent varia-
tions 6¢°% 6r% Sw* and ort:

T1

h, DwP Dw® Dw*
oW, = L iy P A4,+ +04 “WaA,,
2 ‘[[ dz wHo—— dz <\/ulu ) dt i

\/ulu‘

+ A (W AW + WP du®) hy, Dr® Dy 4R u”r’ru) u,
0A,.s(uAw u)— [ —L — —
# Y uu* dv dt broe
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2h, D[ u, Dr\ _ 2h,, - Drf _Dr* 1 -
c ( . )Au“+ l a— r*ur'u’4R 4,

" Jugt dt \ua® dt N R RN

2 o _

- \/—— — R s r' i Ar* 4+ r°r'ul AuP) — ar*APru’ A Regys
U U

- “Raﬁya(Aﬂ" "W Ar + rrul AP + P APW ArY + rAPr Aud)

Dr* D
aAA, S+ OUPIA, , + 204, ,,(rﬂA 711 + g'lm )
T

_ _ _ d
+ aA,;m,(r” rAu* +u*r Arf 4 utrP A7) + 7 (L351)] dr.
T

Applying the definitions (1.7), (1.8) and dw*(z) : =
(1.9), (2.6), (2.9) and of the relation

0), making use of Eqs (1.5),

Aw* = W4T ",,,w”éé’,

we get the complete variation of the action (3.2) to be equal to

5W2 = - }t [(LZ[Wa} - g¢)5§“+2 Ll[rajgra + L[éa]zwa}dt

+ (P +2n,0r" + p, oW, (3.4
where
2. Dr' Dr? . B
g, = [u id (I e oo + R 5o " 1%r u’) ~2R,y,,pr7r6] L[]
au
) Lir] _ LIE] u, Drf u, Dr*
\/ulu wut dv ) \ugu? dc )’
h, D 2u°
P = - dw +R¢ﬂy,,r"r”( — +aA’5)
\/uzu T Vu,u
2 Dr, u,, Dr? u, hg, Dr’ Dr
\/ulu‘ dv \ui? dr Vuut Luw® dv de
1 . uy Drf\?
+ 1;;'71 R,,y,eupryr"u -2 (;‘;;1 7{) +O’Au;BWﬁ

+0Aa;ﬂyr‘gry+21”’,,an #2075, p. W,
ng: = gi—1# waPsl"s

and p, and =" are given by Eqs (1.11) and (2.8), correspondingly.
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The most common application of the expression (3.4) is again the Hamilton stationary
action principle formulated now in the following form:

THEOREM 3.1. The complete variation 6, of the functional (3.2), generated by the
variations 6&% 6r%, dw” and Jt satisfying the conditions

ot = 88%(r0) = 88°(xy) = 8r(to) = 81°(zy) = BW(xo) = Sw(z)) = 0

and being otherwise arbitary, is equal to zero if and only if x* = £*(z) fulfil the Lorentz
equations (1.1), r* = r’(7) the equations of the first e.m. deviation (2.1), and w* = w*(z)
the second e.m. deviation equations (3.1) in an arbitrary parametrization.

The proof follows from (3.4) and from the vanishing of g, under the conditions of the
theorem.

Thus, in the approach based on the unified action principle (3.2) with the Lagrangian
defined by (3.3), the dynamical properties of the second e.m. deviation are not being sepa-
rated from those of the first e.m. deviation and of the motion determined by the Lorentz
equations.

A second applicati-on of Eq. (3.4) concerns again the Noether identity. The variations
é1(7), 8¢&° (‘c), dr’(r) and Ow'(r), treated as given functions of 7, will be generators of
a dynanucal symmetry iff the complete variation oW, caused by these generators is
equal to

d
oW, = j - (6F3)d, (3.5)

Dr*  Dw* th

——, W, —— , the param-
dr a P

eter 7, and the generators. If the requirement (3.5) is satisfied, Eq. (3.4) imposes a condi-

tion on the generators of a symmetry in the form of a Noether identity

—[@,.[w,]— 200 +2 L, [r,]4r* + L[£*]Aw"]

where 6F, is a function of the dynamical .variables &% %, r*,

d (DT 2 3 T..X
+ - (708" +2n,8r% + p,dw* + Lydt—0F,) = 0. (3.6)
T

Leaving the discussion of the conservation laws which follow from (3.6) for a future publica-
tion, let us confine ourselves to some particular cases when 51(1), 5¢%(z), 6r(r) and dw’(7)
are given in terms of an arbitrary function of 7.

First, let us examine for which Lagrangians L the action (3.2) satisfies the condition
(3.5) under the transformations of the form

Tei=f(r), Vyapepp =p TV,3rer=r, TV,3webw=w
or
T=f(1), &@O=&@, r@=r@, »EH=»[ (3.7

depending on one arbitrary C, function f describing an arbitrary reparametrization of the
Lorentzian world line and of the vector fields r and w along it. It may be simply checked
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that the infinitesimal generators of the transformations (3.7) are defined by an arbitrary
variation 61(), by the variations 6£°(t) and 6r%(z) given in the form (1.16) and (2.14) cor-
respondingly, and by

ow' = — — §1.
dz

Substituting these expressions into (3.6) and taking into account that ynder the transforma-
tions (3.7) we have 6F, = 0, one obtains

Dr* Dw*
|ab-gowes 210 5 4L o

d dr® aw®
— | ==Pu*~2n,— —p,— +L3 ot | = 0.
M= [( e gr TPy 3) T]

In virtue of the arbitrariness of éz, one gets from the expression above the following strong
identities

D#* __ Dw*
(Lo[w.]—gu*+2L[r,] — +L[¢{]— =0, (3.8)
dt dt
dar® dw”®
Ly = 2@ om0 4 p 20 (3.9)
dt dt

satisfied independently of whether the functions &%, r*, and w” are or are not solutions of the
Lagrange and the Jacobi equations correspondingly. Thus, we have proved the following
statement:

ProPOSITION 3.1. A unified action of the form (3.2) transforms under a z-reparam-
etrization in accordance with (3.5) iff (3.8) and (3.9) are satisfied as strong iden-
tities.

COROLLARY 3.1. If I is a Lorentzian world line defined by the Lorentz equations (1.1),
then the vector fields r* and w* satisfy the strong identity

Dr*
(Low, ] —j)u*+2L,{r,] =0 (3.10)
where
u; Drf
jaz — L [ a] (JV T )
\/uz“ uu’ dt

independently of whether or not they are solutions of Eqs (2.1) and.(3.1) correspond-
ingly.

CoroLLARY 3.2. If I is a Lorentzian world line defined by the Lorentz equations (1.1)
and r® is the first e.m. deviation vector defined by Eqs (2.1), then the vector field w* satisfies
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the strong identity
Ly[wJu* =0 3.11)

independently of whether it is or is not a solution of Eqgs (3.1) (see also [4]).

Secondly, let us suppose that the parametrization of a world line I' is fixed, but the
vector fields r* and w*, in accordance with Prop. 6.1 (if) from [3], undergo the gauge trans-
formations

ti=1 V,3peop =p TV,3r or =r+xu,
Dr — d —
TV,2w b w = w+2x — +rc2(cr\/u-ulf'u+u_ln\/u-u)
‘ dt dz
or

t=1, U@=00, 7@ =rE+de),

wi(D) = w(D)+2x(r) %rt— (@) +x(x) [0 Vu (@) Foy(au(x)

+u%0) % Inv ul(r)u‘(t)] (3.12)

depending on one arbitrary C, function x(r). Replacing the function x(z) by dx(t) gives
the following infinitesimal generators of the transformations (3.12)

a

- Dr
6t=0, &6%=0, orf=ux, oW =2 y
T

oK. (3.13)

Inserting (3.13) into the action (3.2) with the Lagrangian determined by (3.3), up to an
approximation of terms of the order (0x)?, one obtains that

Dr*
OF, =2 (p,, T +o‘Aa;,,u°‘r”> oK. (3.14)
T

Substituting now Egs (3.13) and (3.14) into the Noether identity (3.6) and making use of the
arbitrariness of the function dx, we receive the strong identity

Da

y
dr

Llrju*+L[&] 0, (3.15)
which was already obtained in Sect. 2, but as a consequence of reparametrization invariance
of a different action.(2.2). Hence, the following proposition is true:

PROPOSITION 3.2. The unified action (3.2) transforms under the simultaneous gauge

x

D U
D:: +x%(1) (a\/ ut Fol +

transformations r* & r*+x(u®* and w* > w4 2k(7)
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d — . . . .
s Inv ulul) generated by an arbitrary, differentiable function x(r) in accordance with
T

(3.5) iff the strong identity (3.15) is satisfied.
CorOLLARY 3.3. If I' is a Lorentzian world line defined by the Lorentz equations (1.1),
then the vector field r* satisfies the strong identity

Ly[r,Ju*=0 (3.16)

independently of whether it is or is not a solution of Eqs (2.1).
Thirdly, let us suppose that not only the parametrization of I" but also of the vector
field r* along I’ is fixed, and the vector field w® undergoes gauge transformation, i.e.

tei=1 V,3pbp =p TV,3rsr =r,

TViaw e w = wtyu
or

t=1 F®=0@, 0=, W@ =wE+pou), (3.17)

where (t) is an arbitrary C, function. Replacing ¢(7) by d¢(7) results in the following
form of infinitesimal generators of the transformations (3.17)

5t=0, &6%=0, or"=0, W= uy, (3.18)
and inserting (3.18) into(3.2) with the Lagrangians (3.3) gives
O0F, = pu®oyp. (3.19)

Substituting Eqs (3.18) and (3.19) into (3.6) provides, due to the arbitrariness of Sy, the
strong identity (cf. also (1.17), (2.21))

L[¢]Ju* =0 (3.20)

independently of whether &% is or is not a solution of Egs (1.1).

PROPOSITION 3.3. The unified action (3.2) transforms under the gauge transformation
w* > w4+ p(t)u” generated by an arbitrary, differentiable function ¥, in accordance with
(3.5) iff the strong identity (3.20) is satisfied.

An additional application of Eq. (3.4) concerns again a method of deriving the
Hamilton-Jacobi equations which correspond to the action (3.2). Let us consider again
a family of Lorentzian world lines x* = &%(t) all of which for t = 1, pass through the same
point &g = £%(t,). Along every of these lines one can take the families of the first and the
second e.m. deviation vector fields, with the components r* = r*(z) and w* = w'(x) cor-
respondingly, such that every of their members takes the same values rg = r’(zo) and
wo = w*(1,) at the point & for different Lorentzian world lines passing through &5. By
means of such a family the functional (3.2) can be turned into a function U, : TV, x TV,
X R - R analogous to the principal Hamilton function. The values U, (x, r*, w® 1) of this
principal function are defined by the integral of the form (3.2) in that the upper limit is re-
placed by the value t € I, and the integration is carried out along the curve I which joins
the initial point (&3, r§, wg) with the point (x*, r*, w®) entering the argument of U,. Then,
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due to the assumptions about I', the integrand in Eq. (3.4) vanishes, and the differential
of the principal function U, is equal to

Thus

and

dU, = nPdx*+2n,dr*+ p,dw.

é
“2_0 (3.21)
ot
U, h,ﬁ Dw*f v r ( u’® A") 2 Dr
s 2 r r —_—
ox \/u ut dt e \/ulu \/u,w‘1 dt
uy, Dif e [ hsy DD 1
) (__ti} _L) B _“:: [&1 i + = Ryyaet’rr'u®
uu” dr Vutlu® doodv o ouu
u; Drf\? ‘ hgs Dr’
- = AW + Ay Py + 2% | = —
(u,lu’1 dt)]+a( g+ Ay )+ 2 e Juut de
+0A3;,,r") r"'+I'p,,¢( ) w?, (3.22)
\/ulu
ou h,y Drf
2 2( 2" +o4, ,,r"\) (3.23)
or \/u;‘u dt
oU
he +04,. (3.24)

awa - \/ulul

From a formal point of view, Eq. (3.21) could be considered again as the Hamilton-Jacobi
equation on U,. Eqs (3.22)-(3.24) give relations between the partial derivatives of U,
and the generalized momenta Do 2n, and 7? determined by the action (3.2). The algebraic

relations fulfilled by —== and #4,; result now in three partial differential equations on

\/ulu

a single function U,:

U oU
o 2 A, ) —3% —04,) =1 3.25
(6w’ ¢ a)( owf ¢ p) ’ (3.25)
ouU, U
afp 2 —
g (61- —20A,, )(aw” -—aA,,) = 0, (3.26)
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or*

U
x( 2 —-aA,)r”éyi 3 (3.27)

.
ow® ow'

ou ouU
] —%. gaﬂ ( 2 ~—20‘Aa;7r7) (—a-r%,—za'Ap;éré) ___R“ﬂ"a

which form a system of equations for the function U, depending, because of Eq. (3.21),
in general on twelve variables x* r* and w*.

To reveal the connection of Eqs (3.25)-(3.27) with the Hamilton-Jacobi equations
from the previous sections, let us observe that this system of equations admits the separa-
tion of variables x%, " and w", which can be achieved by representing U, in the following
form (cf. also [1])

LU U ov
U (x5 5w = w'— +r7? [ — ] +2¢° +W, (3.28)
ox 0x* /.4 O0x*

where U, V and W are functions of x" alone. Differentiating then (3.28) with respect to
w, r and x°, one gets

oUu, oU ou, U\ , ov
—_—— =, _— = 2 r + E
ow* ox" or® 0x* /.4 ox”
ou, s oU ou ouU

= —_— e _— w — ) A
" (ax" >;«+ "o T (ax?),,a r

oUu oU av
B 3 B 3 B
+rya ('b?);ﬁr?r +Fva (};ﬁ);ér?r +2 (EF);:‘

i

ov ow

U S T G

and this after substituting into (3.25)~(3.27) and taking into account the Ricci identity,
shows that U, ¥ and W must satisfy the following equations

U ouU
ap .
g (6x“ -—aAa>(———-axﬁ ——O'Aﬂ) =1, (3.29)
oU oV
ad —0A4, )~ =0 3.30
U ow oV ov
af . [ af — T 3.31
8 (6x°‘ 7 ) ox? ox* ox" 330

in which the first two coincide obviously with Eqs (2.28), (2.29).
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