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A METHOD FOR NUMERICAL CALCULATION OF LARGE-n
PROBABILITIES FROM AN ANALYTICALLY GIVEN
GENERATING FUNCTION
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A method for numerical calculation of large-n probabilities from an analytically given
form of a generating function is proposed. The method, which uses the Cauchy integral
formula, is found to be relatively quickly convergent and gives good control of errors of cal-
culations.

PACS numbers: 13.85.-t

In phenomenological models of particle production one can often relatively easily
derive the closed analytic formula for the generating function ¢(z) of the multiplicity distri-
bution. It is then easy to calculate the multiplicity moments of low order (related to the
derivatives of ¢(z) at z = 1) and probability distribution for small » (related to the deriva-
tives of ¢(z) at z = 0).

However, large-n probabilities, that is high-order derivatives of the generating function,
though in principle calculable even analytically, are not calculable practically due to the
increasing complication of formulae with increasing n.

The aim of this paper is to propose a simple method for numerical calculations of
large-n probabilities based on Cauchy formula. The proposed method is very efficient
even when implemented on personal computers. Furthermore, it provides simple and reliable
way for estimating errors of the calculation. It was checked practically in Ref. [1] and found
rather efficient. :

To begin with, we remind some classical results in statistical analysis [4]. The generating
function of a probability distribution, defined as follows:

¢(z) = io Pz", zeC, 1)
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is always at least analytic in the open circle {r! < 1 and continuous in its closure due to the

positiveness of P, and normalization condition: Y P, = 1.
. n=0
This fact allows one to use the Cauchy integral formula [2] to calculate derivatives
of ¢ at z = 0 (which are related with P,’s):

qﬁ(")(O) = nlP, = i_ ﬁ(fz df 2)
mi ) ¢
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where C, is the circle centred at 0 with the radius 0 < r < 1. Usual substitution { = re'®
gives:

9)p =04 ). (3)

Discretization of this integral for numerical integration by dividing the circle into N > n
equal parts yields:

2=ik _ 2mink
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This is of course only approximation of the Riemann integral of (3).
To determine what we in fact calculate in the approximation sum (4) we substitute
(1) in the right-hand side of the last formula and get:
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due to the fact that:

Z eZ;_"(,_")k 3 {N when /—n is divisible by N,

0 in the other case.
k=0

Even if ¢ is not analytic in the closure of the unit circle, the formula (2) still holds and gets
a simpler form:
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One can see now that if N is large enough, the right-hand side of (6) gives the estimation
for P, with the deviation equal to P, y+P,.,y+ ... . In practice, the P,’s drop very fast
with increasing n, so to calculate P, with deviation beneath 1% it is enough to take N ~ 3n.
In [2] we have calculated the derivatives up to the 200™ one of moderately complicated
generating function taking N = 500.

The importance of N is due to the fact that it counts the number of points in which
we have to evaluate ¢. Computer-time consuming problems require N not to be taken too
large; especially when a single evaluation of ¢ takes too much time. On the other hand,
in order to improve the exactness of P,’s one has to enlarge N.

Another source of errors of the results for P,’s is the finiteness of floating-point arith-
metic carried out on computers. It influences the calculations in such a way that it decreases
the reliability of all the obtained P,’s due to the accumulation of errors during the addition
of large number of terms. This kind of errors, however, may be easily estimated looking
at the imaginary part of the result of (6) which has to be equal to zero in exact calculations.

The method has straightforward generalizations for calculation of the probability
distribution of pairs (and more) of natural numbers from the generating function of two
and more variables. It may be of interest when calculating the correlation of pairs, triples
etc. of produced particles. . )

The proposed method was applied in Ref. [2] for calculating multiplicity distribution
of particles and related quantities in the Giovannini-Van Hove model (Ref. [1]) with identi-
cal clusters. Although this model gives rather complicated generating function, it was
possible to calculate, with very good accuracy, the first two hundred derivatives. Also, the
backward-forward correlations in the above-mentioned model were easily calculated using,
as previously, a personal computer (Ref. [6]). ’

In conclusion, we would like to stress the fact that the proposed method enables one
to calculate numerically, with sufficient accuracy, probability distribution from a given
analytical form of the generating function up to reasonably large n. The values of systematic
errors may be reliably estimated.
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