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COLLECTIVE HAMILTONIAN DERIVED FROM THE PAIRING-
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The microscopic collective hamiltonian for the axial quadrupole vibrations was derived
from the QQ+ PP model. The generator coordinate method and the generalized gaussian
overlap approximation was used. The results were compared with the cranking estimates.
The zero-point correction to the potential energy was found important. The mass param-
eters for the full two-body hamiltonian are nearly the same as for the mean-field approxima-
tion to that hamiltonian.
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1. Introduction

The . microscopic collective hamiltonian is usually derived from the pairing-plus-
-quadrupole model (QQ+PP) [1] under the cranking approximation (e.g. Ref. [2]). Apart
from a great success this approach has some disadvantages.

First, one begins there with the time-dependent Schrédinger equation while the nuclear
vibration is a typical stationary process. Second, within the cranking model, one obtains
a classical Hamilton function only. A quantal collective hamiltonian is then obtained after
a somewhat arbitrary -quantization procedure (see e.g. discussion in Ref. [3]).

The method proposed by Brink and Weiguny [4] is free of these disadvantages. Using
the generator coordinate method (GCM) [5] and the gaussian overlap approximation
(GOA) they obtained directly the quantal collective hamiltonian. This approach was since
that time widely applied and discussed (Ref. [6]). A generalized version of the GCM + GOA
theory in which one assumes only that the overlap of generating functions can be trans-
formed to a Gauss function [7] is used in the present work.

There are two essential differences in the form of the collective hamiltonians in the
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cranking and in the GCM + GOA approaches. First, the metric tensor is assumed to be
equal to the mass tensor in the cranking model, while in GCM the tensor of the widths of
the overlap play the role of a metric. Second, the potential energy in GCM is determined
accurately and not just up to an arbitrary scalar function as in the cranking model. It is equal
to the Hartree-Fock energy, corrected by the so-called zero-point energy [8].

In Ref. [9] the mass parameters for the mean-field potential (MF) evaluated in both
the cranking and GCM approaches were compared. The GCM inertia reaches only about
2/3 of the magnitude of the cranking masses. Also it was shown there that in the case of the
hamiltonian with MF the GCM zero-point correction to the potential energy is identically
zero. It was proven in the paper [10] that the particle number and angular momentum
projection does not influence, in GOA, the magnitude of the mass parameters. The pro-
jection affects the potential energy only.

The aim of the present work is to investigate how the mass parameters and the zero-
-point energics are changed, when we take hamiltonian with two-body interaction instead
of the mean field hamiltonian. For the pure pairing hamiltonian the effect was appreciable
[11]. Now we take the pairing-plus-quadrupole hamiltonian [1]. Using the eigenfunctions
of the axially deformed mean-field hamiltonian as the generator functions we construct
the collective hamiltonian for the axial quadrupole vibrations.

The mass parameters for QQ+ PP hamiltonian are rather close to those evaluated
with the mean-field hamiltonian. They are almost equal, apart from small higher order
and exchange terms, in all selfconsistency points. On the other hand, the zero-point correc-
tion does not vanish, as it did for MF. It has a magnitude of the order of 1 MeV and oscil-
lates with deformation.

Results of our investigations can be easily generalized to the hamiltonians containing
a two-body long range interaction in the local approximation [12], and the formalism
presented here can be then applied to any multipolarity vibration, or spontaneous fission
process [13].

The paper is organized as follows. Sect. 2 contains the description of our model and
all useful formulae. The results and discussion are in Sect. 3 and at the end of the paper
some conclusions are drawn.

2. The model

a) The pairing-plus-quadrupole hamiltonian
Following paper [l] we have assumed the hamiltonian in the form:

H = Hsp+HQQ+Hpairs (1)

where H +p 18 the spherical single-particle hamiltonian of the Nilsson type [14] and ﬁQQ is the
quadrupole- quadrupole long range interaction and A pair Stands for the pairing hamiltonian.

The term A, qq contains the interactions among neutrons (nn), protons (pp) and between
neutrons and protons (np):

HQQ = _% {Xan:Qn +an(é: Qp +Q:Q“) +XPPQA:QAP}. (2)
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For simplicity we took only the axially symmetric component of @ operators
0 = ¥ riYyo(i), 3

where the sum runs over all protons (p) or neutrons (n). This approximation is not severe
when one discusses axially symmetric vibrations because the missing components of Q
appear in exchange terms only.

The pairing term Ffpai, is taken in the usual form:

o P, (4)
with

The form of hamiltonian H, and its parameters are standard [15]. Two ‘major shells
N = 4, 5 for protons and N = 5, 6 for neutrons, were included in the calculations.
The strength of the quadrupole-quadrupole forces was taken

Yon = Xnp = Xpp = 250/4°" MeV )
and that of the pairing interaction was equal to:
G, = 22/AMeV and G, = 27/A MeV. 6)

It is the standard choice of parameters for rare-earth.region calculations 11
Using the Hartree-Fock-Bogolubov approximation the hamiltonian A (1) can be
written in a linearized form:

ﬁMF = ﬁsp"(lnn(én>+an<Qp>)Qn—Gn(<P: >f)n+<ﬁn>ﬁ:)
= (Hap< 0> + 2ppl OpD)0p — Go({ Py YB,+{P,YP}). @)

It is the so-called mean-field hamiltonian. The averaging { ) in (7) is taken over the BCS
wave function:

iBCS) = [] (u,+v,a)a))|vac.) ®)

v>0

‘which is composed of eigenstates of a deformed single-particle hamiltonian:

N h?
Hy(p) = — >m 4+% mwgrz[l =28Y,4(9, ¢)]

—&[20 - 5+ u(@—H0] )]

The hamiltonian #%(B) is identical to A,,, in (1) when the quadrupole deformation is § = 0.
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It is worthwhile noting here that the selfconsistency condition for the mean-field
hamiitonian (7) reads:

HonC Qo> + 20p<@p> = B
TopC Q> + 2pp< Bp> = BmadS . (10)
We assume in the paper the same frequéncy w, for protons (p) and neutrons (n):
hw, = 41]4'3 MeV. (11)

Further on we have assumed f to be thegener ator coordinate. The BCS wave function
(or better to say the product of the BCS wave function for protons and neutrons) composed
of the single-particle states of H,(B) is taken as the generator function |B). The pairing
energy gap 4 and the Fermi level 4 are obtained from the set of BCS equations and they
depend here.on . It means that these parameters of the mean-field pairing hamiltonian
are not taken as the independent generator coordinates (refer also to paper [11]).

b) The form of the collective hamiltonian

The generator coordinate method ailows one to derive the collective hamiltonian H.,
when one assumes that the overlap of thé generator functions can be transformed into
gaussian form [4, 6-8]. We quote here the equation for H,, when only one generator
coordinate (f) is present:

~

Hen = 3 \/ \/v(ﬂ)/m(ﬁ) Ve (12)

a more general multidimensional form is given e.g. in Ref. [9]. The GCM mass parameter
is equal to:

H-— 13
Y<8l T lﬁ)] (13)

m~(f) = [(ﬂ! AT !ﬁ>L (ﬁlHdﬂz |BoL+ /3

where index L denotes the linked matrix element [8]. The width of the overlap (y) plays
the role of a metric in (12) and is given by:

d d
Y(B) = <P TR, 18> (14)
The collective potential:
V() = <BIHIB>—eo(B) (15)

is corrected by the so-called zero-point energy [8]:

eo(B) = [dﬁ <ﬁIH;i-Blﬁ> <l‘3lHdﬁ2 lﬁ){l- (16)
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¢) The microscopic expressions for the matrix elements

The matrix elements appearing in Egs. (13, 14, 16) have to be evaluated microscopically.

. d
The derivative EE is, in the BCS picture, the two-quasiparticle operator:

‘—{B B> = Z ayal B, a7

v,u>0

where the sum runs over all neutron and proton orbitals and

<vt — lu>
B A4 di e—id4
A, = Ev+Eu - (uyv,+u,w,)— v“(Ef i + Ef dﬂ) (18)
The matrix elements (B|H|8), (BIH——U?>, <Bl-—-—H [B> and <B!H lﬁ)

ap dag  dp dﬂz
were evaluated after transforming of the pairing-plus-quadrupole hamiltonian (1) into the
quasiparticle (x,) picture.
The expectation value of the hamiltonian (1) is equal to:

. 2
BHIB = Z 2(V|H vy — g(z 2<v1in>vi>
L ,
-G (Z uvv,) -G z vd— 5 Z QI (uyv, +u,0,). (19)

x and all operators here are expressed in intrinsic units [1, 14]. The last term contains
the exchange part of the Hyq interaction.

The expression for the other matrix elements of H (1) are rather long and we will not
quote them here for lack of space. It is worthwhile to write them down at the selfconsistent
points, where the equations simplify significantly:

d 5 )
Bl — i dﬂ !B>L X2+ .. (20)
pE
<ﬁ!H3§2 BoL = —xZi+ ... 2y
where
£= Y O e @)

Vi
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We have omitted in (20-21) all higher order and exchange terms and that containing the

derivati dA d da
ves ~— and —.
erivative 7 s

Using the notation (22) one can write down the equation (14) for y in a very short
form:

B = Z,. (23)
The selfconsistency condition (10) can be written in a different foim [12]
dp = xd<pI0if> (24)

which leads to an estimate of the quadrupole-quadrupole strength
1= L pioipy = 2 25)
X = ap P = Lag.

Using the last estimate of y and the formulae (20-23) we ca get a simple estimate of the
collective mass parameter m (13):

2(Z,)?
m(p) = = (26)
1
and the zero-point correction (16) to the potential energy
' Y 2y
=1 = . 27
fo(ﬁ) 2m 4(2.2)2 ( )

The formulae (26) and (27) are valid at the selfconsistent points only.
The expression (26) for collective inertia is essentially the same as that w hichone gets
[10] taking the average mean field plus pairing hamiltonian

Hg = Hy(B)+ Hppire (28)

instead of the full pairing-plus-quadrupole hamiltonian (1).

The numerical calculations reported in the next section are based on the exact expres-
sion for all matrix elements entering the equations (13)~(16). The validity of the approxi-
mate formulae (20)-(22) and (25)—(28) is tested too.

For the sake of completeness we cite here the equation for the cranking inertia:

B(f) =23 A AE+E) ", (29)

d4a
where A,, is defined in (18). Neglecting in (18) the terms containing the derivatives ;B—

d
and EE the expression (29) can be written in an even simpler form:

B(f) = 2, (30
where 2, is that of Eq. (22).
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3. Results of the calculation

The numerical calculations were performed for a few nuclei in the rare-earth region.
The results presented here are based on a typical representative of well deformed nuclei:
166Er. All parameters of the calculation are standard [1, 2] and they are cited in Sec. 2 of the
paper. .
The expectation value of the pairing-plus-quadrupole hamiltonian (1) is plotted in
Fig 1 as a function of deformation parameter §. It is equal to the selfconsistent energy
V. [8] in the equilibrfium configuration. Also in this point the selfconsistency condition

PO . d :
B = x{PIH|B> is satisfied and the linear term {B|H EE 18> (see Egs. (13) and (16)) vanishes.

Please note that contrary to Ref. [8] the linear term vanishes in the selfconsistent points
only.

The zero-point correction &, and the exchange term contributing to the collective
potential ¥ (Egs. (15)<(16) and (19)) are drawn in Fig. 2. The zero-point energy is of the
order of 1 MeV and fluctuates with growing deformation B. The amplitude of its oscilla-
tions is of the order 0.5 MeV. The fluctuation of the exchange term is much smaller.

Mev MeV T T T T T ¥ T
\")
0 L -
2 -
5 -
_[‘ b= -
...6 — —
o+ 8} % »
i ™\ no exch.
0 & e corn
-5 2k I\ |
———— "’——-\eo ST
0 b pu
2k exchange ]
-0 1 i | 1 H 1 i
0 02 04 B
Fig. 1 Fig. 2

Fig. 1. The expectation value of the pairing-plus-quadrupole hamiltonian, selfconsistent energy (Fsc),

the linear term <ﬂ

H 71? ﬂ> and the expectation value of the selfconsistent field x<f1QIf> as
functions of quadrupole deformation g
Fig. 2. The collective potential (V) with and without the zero-point correction (z,) and the exchange terms
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The proton (p), neutron (n) parts and the whole (tot) width of the overlap of the generat-
ing functions is plotted in Fig. 3. It oscillates strongly as function of § suggesting that the
The arrows indicate the

curvature correction to m, Eq. (13) can be nonnegligible.

equilibrium deformation.
The curvature correction, exchange terms and higher order pairing contributions

to the collective mass parameter m are presented in the bottom part of Fig. 4. They are
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Fig. 3. The width of the overlap (¥) as well as its proton (p) and neutron (n) parts
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Fig. 4. The GCM masses for the full and the mean-field (MF) pairing-plus-quadrupole hamiltonians are

compared with the cranking inertia. The contributions to the GCM mass due to exchange and higher order
terms, as well as the curvature correction are plotted in the bottom part of the figure
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especially predominant at deformation § ~ 0.45. This effect is mainly connected with the
small single-particle basis (see Sect. 2a) of the calculations.

In the upper part of Fig. 4 the mass parameters evaluated in the GCM approach for
the full' QQ+ PP hamiltonian (GCM; Eq. (13)) and the average mean-field hamiltonian
(GCM —MF; Eq. (26)) are compared with the cranking estimate of the inertia (Eq. (30)).
The GCM + MF mass is always smaller than the cranking one, while this is not true for

" the GCM mass for the full hamiltonian. Also both the GCM estimates are nearly the same

MeV

_‘.00 —

Fig. 5. The matrix elements entering the formulae for the GCM masses and zero-point energy

in the selfconsistent points. It means that the approximations (20)-(21) are really satisfied
at these points.

The effect of the exchange and the higher order pairing terms on the magnitude of the
matrix elements (20) and (21) entering the formula (23) for the mass parameter is presented
in Fig. 5. This effect is.usually smaller than 109/ of the magnitude. The upper curves repre-
sent the accuracy of the approximations made in (20)-(21) and the estimate (25) of the
coupling strength y. If these approximations are accurate both curves should coincide.
The deviations are smaller than 5% which is a measure of the quality of the approxima-
tions.

5. Conclusions

The following conclusions can be drawn from our investigations:
— the mass parameters evaluated in GCM + GOA model for the full pairing-plus-quadru-
pole hamiltonian and for the average mean-field potential are close to each other apart
from the points in which the shell effects are large,
— the GCM masses are on the average by 209, smaller than the cranking inertias,
— the exchange and higher order pairing terms do not influence significantly the magni-
tude of the GCM mass parameters,
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— the curvature correction term to the GCM inertia is equal to zero in all selfconsistent
points and it is small for deformation g < 0.4,

— the zero-points correction to the potential energy is of the order of 1 MeV and oscillates
with an amplgtude of a 0.5 MeV as a function of deformation.
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