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Energies and widths of the substitutional (p3/2, p3/2-")gn states in $2Be and *3C are
determined by solving single particle equations with a complex X potential, containing the
Lane potential v, and a charge independence breaking part vcg. Magnitude of v, and vcp
compatible with experimental data on $2Be and '£C are discussed. Radial oscillations of
the isospin distribution in *2C are demonstrated.
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1. Introduction

A number of £ hypernuclear levels have been observed in the (K-, n) reactions on
12C both by Bertini et al. [1] at CERN with the recolless production method, and by
Yamazaki et al. [2] at KEK with the stopped K- method.

In the case of the (K-, n*) reaction, the only possible elementary process, Kp — Z-nt,
leads to the formation of the hypernucleus £2Be, i.e., the !'B+X- system. In the case
of the (K-, n~) reaction, two elementary processes are possible: (I) K-p — Z-n+ and (1)
K-n — X%, At first sight, one would expect in process (I) the formation of the hyper-
nucleus $7C, i.e., the 1'B+X+ system, and in process (II) the formation of the hyper-
aucleus 13C, i.e., the 1*C+ Z° system. In fact, however, because of the presence of the charge
mixing £’s symmetry (Lane) potential, the £ hyperons do not preserve their charge identity,
and the T hypernuclear states produced in the (K-, n~) reaction are expected to be super-
positions of the two charge states ?C and }5C, for which we use the symbol 2C. Instead
of charge, one may use the isospin T in_describing the states of '2C. However, because of
the Coulomb interaction and mass differences, also the isospin is not an exact quantum
number of these states.

Thus the first question, investigated in the present paper, is whether the states of
2C are better approximated by charge states or by isospin states. Obviously the answer
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depends on the strength of the Lane potential. It also depends on the isospin invariance
of the IN interaction, and the second question considered in the present paper is a possible
breaking of this invariance. (The need of an isospin symmetry breaking component in
the IN interaction in the description of the observed levels of *2C and }2Be was noticed
in [3] where, however, the Lane coupling was not considered.)

In the present paper, we apply the single particle (s.p.) picture, and restrict ourselves
to the substitutional states with the configuration (p3/2, p3/2-');n. The nuclear cores
1B and !!'C are considered to be rigid, i.e., undisturbed by Z. In discussing the isospin
T, the nuclear cores are assumed to have isospin T° = 1/2.

All our conclusions are obtained by solving the system of coupled s.p. Schrodinger
equations for T in the charge basis. This approach gives not only the energies and widths
of the levels, but also the corresponding wave functions which reveal interesting features,
in particular the isospin oscillations (described briefly in [4]).

The paper is organized as follows. InSect. 2 the s.p. equations describing the motion
of T in the substitutional states of *2C and 12Be are derived. The procedure of solving
these equations (coupled in the case of *2C) with complex eigenvalues is outlined in Sect. 3.
In Sect. 4 the charge and isospin distribution in '%C, in particular the isospin oscillations,
are discussed. The input quantities of the calculations, in particular the £ absorptive poten-
tial, are described in Sect. 5 which then presents the numerical results: general features
of the solutions as functions of the strength of the Lane potential (Sect. 5.1); a discussion
of a possible breaking of the charge independence of the IN interaction and the comparison
with the data obtained at CERN (Sect. 5.2) and KEK (Sect. 5.3). Sect. 6 contains a sum-
mary and comments on the problem of formation of hypernuclear states.

The main results of the present investigation were presented in-[5].

2. Equations describing *2C and ;%Be
2.1. Derivation of the equations

We apply the rigid nuclear core model, with the nuclear cores 11B(7° = 1/2, T35 = —1/2)
and “C(T ¢ = 1/2, TS = 1/2). By T° and T3, we denote the isospin of the nuclear core and
its third component. We use the convention in which the third component of the proton
(neutron) isospin is 1§ = 1/2 (15 = —1/2).

The £ hypernucleus in its CM system is described by the hamiltonian (which includes
rest masses)

H = Hc+Hz+Hcs, 2.1

where H is the hamiltonian of the nuclear core C, Hs is the hamiltonian of an isolated
I (i.e., its rest mass), and Hy is the hamiltonian of the relative CZ motion,

Her = —(B2p)4+ ¥z + V5, (2:2)

where py is the CE reduced mass, 4 acts on the relative CZ position vector r (with the origin
in the CM of C), and V¢ is the Coulomb and ¥ ¢y the strong interaction between C and X.
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We approximate ¥ ¢z by a spin independent (centra I)s.p. potential of the form (¢£* de-
notes the isospin of IZ):

Vex = ¥V e(r)+o(NTE, (2.3)
where the second term is the charge mixing Lane potential.

We work in the charge basis. In our rigid nuclear core model, the three charge states,
12Be, L2C, and LC, are described by the wave functions:

Y:- = R(OVB)Y pp-(n, 27 = x(*'Br(E"), 249
oo =R(B) Pyee(n), 27 = 2("'BiE”),
¥so = R('OrPpso(r), 1@ = x(1'OE"), (2.5

where R(*'B) and R(*!C) are normalized wave functions of the nuclear cores *'B and !'C,
and y are the isospin wave functions.
To see how the hamiltonian H acts on the functions ¥;, we notice that

TEL = 5200 T = 412,

T = — P2+ 2012, (2.6)
and obtain

H¥; = {M("'B)+ M(E) ~(h)2p )4+ ¥ 5- D+ (DR +VE@¥s,  27)

HY;. = (M(M'B)+M(E") =125 )4+ ¥ 5. (r)

— (12 + Vg (M} ¥z + (120 ()R B Pz (1)
H¥50 = {M("'C)+M(E®) —(1?[2u50) A+ ¥ 5o(r)} ¥go
+(1/2Dr (MR O o), (2.8)

where M denotes mass x c2. Notice that in the case of isospin invariance, we have
V'g- =¥y = ¥yo (disregarding effects due to differences in nuclear cores).

2.2. The ;*Be hypernucleus

To determine the r part z-(r) of the wave function ¥z- of the +?Be hypernucleus,
we insert ¥;- into the Schrédinger equation

HYs- = [M(3?Be)—ily-[2]¥;-. (2.9)

The appearance of M(32Be) in (2.9) is the consequence of our form of H which includes
Test masses. Since ¥y~ is complex (its imaginary part describes the absorption of Z~ due
to the Z-p — An process), the energy eigenvalue is also complex, and its imaginary part
is equal to —I'y-/2 with I's- being the width of the state.

For the left hand side of Eq. (2.9), we use expression (2.7), multiply the whole equation
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by R*(*'B)y'7’*, integrate over all coordinates éxcept r, and obtain the Schrédinger
equation for ys-(r):

{=(W* (285 )4+ Y 5- (D) +0(N[2+ V5= ()} ps-(r) = [Eg- — iz [2]p- (1), (2.10)
where
Ey- = —By- = M{32Be)—-M("'B)—M(Z"), (2.11)

where B;- is the binding (or separation) energy of - in the state of 22Be considered.
In presenting experimental results obtained in the (K, ) reactions, one usually gives
AM, the mass difference between the hypernucleus and the target nucleus,

AM(z2Be) = M(32Be)— M('>C). (2.12)
To connect AM(32Be) with E;-, we use the first of the relations

M(**C) = M(*'B)+M(p)—B,

M*'C)+M(n)-B,, (2.13)
where B, = 15.96 MeV and B, = 18.72 MeV [6] are respectively the proton and neutron
separation energies from 2C. We get
AM(3?Be) = Ey- 4+ M(Z7)—M(p)+B,
= Ey_+275.02 MeV. (2.14)

2.3. The '2C hypernucleus

Here, the two charge components, 1B+ Z+ represented by ¥y, and 1'C+Z° represent-
ed by ¥y, are mixed by the Lane potential v,, as is seen in Eqs (2.8). Thus the wave function
¥ of 'C is a superposition of the two charge states:

q’ = q]z+ + q’zo. ’ (2.15)

(Since yg(r) in Eqs (2.5) are not normalized, there is no need of introducing any coefficients
on the right hand side of Eq. (2.15)).

To determine the functions us.(r) and go(r), we insert ¥ into the Schrodinger
equation

HY = [M(2C)—ilj2]¥, (2.16)

where I' is the width of the ¥ state of 1§C. For the left hand side of Eq. (2.16), we use
expressions (2.8), multiply, the whole equation first by R*(1'B)y’* and second by
R*(A1Q)y@* and in both instances integrate over all coordinates except . Here, we make
the approximation:

R(*'C) = R('B), Q.17
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which concerns the coupling term with v,. Without this approximation, this term would
be multiplied by the overlap integral between R(**C) and R(*'B), which would slightly
diminish the coupling.

The resulting system of coupled Schrédinger equations for yg.(r) and wgo(r) is:

{ = 2p5 )4+ 5+ (1) = 0(1)[2+ Vs (1) } g (1)
+(UNDo(P)pso(r) = [Egs —il[2]ps(r),
{ = (B*2p50) A+ 5o(F) } pso(F)

+(1//2)v(r)ys+(r) = [Ego— il [2]pso(r), (2.18)
where
Esi = —Bg: = MG*C)—M(M'B)—ME™Y),

Eyo = —Bgo = M(3*C)—M('C)— M(Z°), (2.19)

where Bz« and Byo are respectively the energies needed to remove X+ and X- from the
¥ state of '*C, i.e., By. and Byo are the respective separation (binding) energies.

Relations (2.13) lead to the following connection between AM(*2C) = M(*}C)
.—M(2C) and Ez:(oy:

AM(3*C) = Eg++M(Z*)— M(p)+ B, = Ey. +267.04 MeV

. = Eyo+M(Z°)—M(n)+B, = Ez+271.61 MeV. (2.20)
Notice that

E}:+ —EEO = Bzo“B}:+ = 'yO, (2.21)
where
70 = M(Z%)-ME")+M("'C)—M("'B)

= M(Z%)~ME")—M(n)+M(p)+B,~ B, = 4.57 MeV, (2.22)

and we have Ez+ > Ejo, i.e., Byo > Bg+, which means that it is easier to remove I+ from
2C than X°. This conclusion is not quite obvious as it depends on the masses of X°, =+, n,
and p.

We expect that the system of two coupled equations (2.18) has two solutions for
E—ir[2 and ¥. When v, — 0, one of them goes over into a state of 12¢C, and we call it the
“X+” state. The other one goes over into a state of 33C, and we call it the “Z°” state. The
two states are not orthogonal because ¥’y is complex.

3. Procedure of solving equations for vy

Whereas ;- is determined by a single Schrédinger equation, Eq. (2.10), the wave
functions s+ and ygo are determined by system (2.18) of two coupled equations which
become uncoupled in the region beyond the range of »,. Consequently, also in the case of
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wg+ and ygo we have to know the asymptotic behaviour of the solution of a single Schrédin-
ger equation. For this reason, we start with a short discussion of a single Schrédinger
equation with a complex potential and eigenvalue:

{—(?*2wA+7 @)+ VD) = E(r), (3.1)

where #°(r) is complex, and
& = E—il|2. (3.2)

The Coulomb potential ¥ is assumed to be that of an equivalent uniform charge
distribution of radius rcy, which has the same RMS radius as the mass distribution o(r)
(normalized to A) of the nuclear core:

V() = (ZZ'¢*2rcy) [3~(r[rew)®]  for v < rews
ZZ'eZ/r for r> rey, (3.3)

where Z is the number of protons in the nuclear core, and Z’ = 3.
For a given orbital momentum of Z, specified by (/, m), we write

p(r) = [u(@/r]Ym), (3.4)
and get for u(r) the equation
d*uldr® +[Qu/h®) (& —¥ - V) =11+ 1)[r*lu = 0. (3.5
For r > R = range of ¥", Eq. (3.5) may be written in the form:

d2ulde?+[1—2aj— 11+ 1)/¢*Ju = O, (3.6)
where
0 =kr, o= puZZ'e*hk, 3.7

where the complex momentum (in units of h) k = kg + ik; is defined by h%k?2u = &, i.e.,
E = hAK2—k®)2u, T = —2h2keh/p. (3.8)

For exponentially damped solutions (for which we search) k; > 0, and consequently
(see the second of Eqs (3.8)) kg < 0. Thus we have

ke = — VU[E+EX + (T[22 1A,

ki = —pI[2h%kg = V[ —E+vE2 +(T[2)*]/h. (3.9)
We follow Fréberg [7], and write # in the form

u(e) = u(g) exp [i(¢e—aln )] (3.10)
and obtain from (3.6)

d*i/de® + 2i(1 — o/ o)dii[do + i1 + i) — I(1 +1)]it/@* = O. (3.11)
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Notice that in the exponent in'(3.10), we put ¢ —« In ¢ in place of the standard expres-
sion ¢—aln ¢g—/n/2+arg I'(ie+1+1). The difference amounts to a r-independent factor
which is irrelevant here — it is absorbed by the constants 4 and B in Eq. (3.16). Notice
also that in the present case both ¢ and « are complex.

Expanding u in powers of 1/o, we get

u(e) = 1+[(ix—1) (ia+1+1)/2i]/e0
+{(Ga =D (ja—141) (e + 1+ 1) Ga+14+2)/212) )% + ... (3.12)

Notice that if u(g), Eq. (3.10), is a solution of Eq. (3.6) then

u*(e) = u*(o) exp [—i(e—In )] (3.13)

is also a solution of Eq. (3.6) (the expressibn for u*(g) is obtained from the expression for
u(g) by changing all factors i on the right hand side of (3.12) into —1i). Two independent
solutions of (3.5) are thus

uy(r) = u(e), - uy(r) = u*(o). (3.14)
They satisfy the Wronskian relation
uydu,fdr —uydu, fdr = —2ik. (3.15)

For k; > 0, the solution u, is exponentially decreasing, and the solution u, is exponentially
increasing with increasing r.

In the asymptotic region, any solution u of (3.5) is a linear combination of u, and u,,
u(r) = Auy(r)+Buy(r), (r>R). (3.16)
The relations (obtained with the help of (3.15))
A = —(1)2ik) {udu,/dr—u,duldr}, . 7,
B = (1)2ik) {udu,[/dr—u du/dr},.5, 3.1

enable us to determine the constants 4 and B for any solution w.
Let us notice that in the case of a = 0 (¥ =0, ie, L = %) we have

uy = "' (e)e,  uy = (=)' H{Pe)e. (3.18)

Eq. (2.15) for yx- is of the form of Eq. (3.1) with ¥ = ¥g_+v/2, u = pg-. To
determine the’ complex eigenvalue &5- = Ez- —il's-/2 and the (regular) eigenfunction
yz- (or ug-), we assume a value of &5- and solve Eq. (3.5) with the initial condition
us-(r - 0) ~ #**1, and determine the (complex) constant B = B(&z-). We repeat it a few
times till we get

B(¢x-) = 0. (3.19)
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This value of &;-, which satisfies the bound state condition, Eq. (3.19), is the desired
eigenvalue, with the corresponding uy- being the eigenfunction.

In the case of the coupled functions g+, wgo, We write both of them in form (3.4),
and for the respective radial functions wug«(r), uzo(r) we get from Eqs (2.18):

Pug. [dr’ +[QRus+ /M) (Esc =V g+ +0/2 = Ve )~ I+ 1)/r* Jug.
—(/2 pg+ WD)z = 0,
d*ugofdr® +[(2ugel h?) (B30 — ¥ go) — I+ 1)/r*]uzo
—(J2 pzo/hH)vugs =0, (3.20)

where €5+, = Eg+0) —iIf2. Notice that because of relation (2.21), only one of the two
complex energies, e.g. &y+,%s independent.

To determine the bound state solution of Egs (3.20) we proceed as follows.

We start by assuming a value of &+, and find two independent solutions, (4., uto)
and (ug+, ufo), which are regular at r = 0. (In the actual calculations we were finding them
by solving numerically Egs. (3.20) with the following initial conditions at a negligibly
small distance » = ¢:

ugs = dug./dr =0, up =&Y, dulo/dr = (I+1)¢, and
u =& dulojdr = (141,  u" = du'dr = 0)
We write the general solution (regular at the origin) as
Uge = aups +bugs, g = augo+bulh. 3.21)

Asymptotically (r > R) system of Egs (3.20) decouples into two independent equations
for uz+ and ugo of the form of Eq. (3.5), and for r > R we have for J = I, II and
T =320

uy = Ajug i +Byus 5, (3.22)

where u; | and u;, are the functions u, and u, of Eq. (3.14)'with k = kg determined in
Eqs (3.9) with E = Ey and & = g, and with « = pg. Ze?/h2ky for T = X+ and a = 0 for
L = Z° Notice that if we know w3, we may easily determine the constants A and B] by
applying Egs. (3.17).

By combining Eqs (3.22) and (3.21) we see that asymptotically (for £ = =+, 29)

uz = (ady+bAF)uy ; +(aBy+bBYuy ,. (3.23)

For a bound state, the exponentially increasing part of the wave functions in both
channels X+ and £° must vanish,

aBy+bBY =0 for I =33 (3.24)
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This system of equations has a nonvanishing solution for a and b only if its (complex)
determinant vanishes
Det = Bz« Bjo— B} Byo = 0, (3.25)
which is the bound state condition.

‘Notice that Det depends on &;. (and &z which is determined by &y.),
Det = Det (8y+). In general our starting value of &g+ leads to a nonvanishing determinant
Det. To find the €igenvalue &3+ (and &'yo), wWe repeat the whole procedure a few times till
we get Det (£5+) = 0,

For &5+ being the eigenvalue, we may determine a and b (up to a constant factor)
from (3.24). E.g., we may put

a=1, b= —B;./B}. = —By/B5. (3.26)

With these values of a and b, (3.21) give the final expression for the eigenfunctions u;+ and
uyo. Their asymptotic form is (see Eq. (3.23)):

ug ~ Ags;, for T =3% 3° 3.27)

where

Ay = Ay — ASBL/BY. (3.28)

4. Charge and isospin distribution in *2C

We consider the state ¥ = ;. + ¥y of 3°C with X orbital momentum /. The two
charge components ¥y are of the form (Eqs (2.5), (2.17)

Prr =Ry Ppra(r) = Ry [uge(1)r] Yim(,
¥go = Ry pso(r) = Ry [uso(r)/r] Yim(?). .

We denote by pg+(r) and pgo(r) and probabilities of finding respectively =+ and Z° in the
unit interval Ar, and p(r) the probability of finding any hyperon (Z+ or X%):

pz+(r) = lu;+(r)|2, Ppro(r) = |“z°(7')12,

p(r) = pg+(r)+ po(7). 4.2)
The corresponding total probabilities are:
Py = [drpse(r), Ppo = [ drpgo(r) = 1—Ps.. (4.3)

We assume here that ¥ is normalized, (¥|¥) = 1, which implies that {drp(r) = 1.
To make the relative abundance of X+ and Z° more visible, we define the relative
‘probabilities

5+ (r) = ps+(D/p(r),  wso(r) = pyo(r)/p(r) = 1—7z4(7)- 449
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To discuss the isospin T of the state ¥, we decompose the charge states '™ and x**’ into
eigenstates x' of the total isospin (7, 7). Whereas two values of T = 1/2 and T = 3/2
are possible for the assumed value of 7° = 1/2, the third component T = 1/2 is fixed
and dropped in our notation. Since 75 = — 4 for !B and T3 = 4 for 1'C, we have

X(+) - \/1_/‘3'){3/2_\/2% X”z,
£ = V273 P 4V13 (2, (4.5)

where we add the isospins in the order T = T+t (in the case of the reversed order, the
coefficients at x'/> would have opposite signs).
After substituting decomposition (4.5) into (4.1), we may write

Y=V ,+% (4.6)
where the T = 1/2 and T = 3/2 components of ¥ are

¥r = Ry"pr(r) = Ry [ur(r)/r]Yiu(F), 4.7
where:
Uy = \/T/_3 uzO“\/2/—3 Ug+,
Uz = \fﬁ “20+\/m Ugs. (4.8)

For the probability pr(r) = |uz(r)!? of finding in the unit interval Ar our system in the
isospin 7 state, we get

P32(r) = Pre(r)/3+2peo(1)3+2 v/ 2Pz (r)psol(r) c0s $(r)/3,

P1/2(r) = 2pz+(r)/34 pro(){3=2 N 2p5 (1) psalr) cos $(r)/3, (4.9)
‘where
¢(r) = arg {uso(r)/uz+(r)}. (4.10)
The corresponding total probabilities Py = [ drp(r) are
Py, = Py./3+2P5/3+1,
P, = 2P5.[3+Pso/3—1, (4.11)
where k
I = (22/3) | dr V pg+(r)pso(r) cos o(r). (4.12)

For the relative probabilities n,(r) = p4(r)/p(r), we get expressions analogous to (4.9)
with p’s replaced by 7’s. v

It is instructive to discuss the asymptotic behaviour of the probabilities p aad =. In
the remaining part of this Section, we shall restrict ourselves to such big values of r that
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(for £ = X+ X%

ug ~ Ag exp (ikgr). (4.13)
Here, we neglect all terms of order equal and higher than 1/r, and the slowly varying loga-
rithmic term in the exponent of uy. (see Eq. (3.27)). For the real and imaginary parts of

ky, ksp and kg, we have expressions (3.9) with E = Egyand u = py. Notice that Ey. > Ej,,
Eq. (2.21), and thus

k):OR > k:"’R’ k);ol > kZ*l' (4.14)
Eq. (4.13) leads to the following asymptotic form of ¢, Eq. (4.10):
¢(r) ~ Akgr+68, 0 = arg(Ayo/As+), (4.15)

where Ak = kgo—ky.. Relations (4.14) imply that both the real and the imaginary part
of 4k is positive, 4kg > 0 and 4k > 0.
Coming back to expressions (4.9) for p; we see that in the asymptotic region p;,,(r)

and p,,,(r) oscillate with the amplitude 24/ §p2+ir3pxo(r),/3 and with the wave length

A = 2m]Aky (4.16)

around the values ps+(r)/3+2pso(r)/3 and 2p;+(r)/3+pso(r)/3, respectively. Since both
pz+(r) and pso(r) are decreasing (exponentially), the amplitude is also decreasing. Thus
the isospin oscillations, i.e., the oscillations in p,(r), are damped.

More visible and easier to discuss are the oscillations in «the relative probabilities
n{r). Eq. (4.13) leads to the following asymptotic expressions for ny and my:

Tgs = 1 =1z ~ 1/[1+ B exp (—24k)], (4.17)
where
B = |Ago/Ax-+}, and
3)2(r) = mg(r)[3 +2m5o(r)/3 + 5#(r) cos 2nr/A+9),
74,2(r) = 275+ (r)/3 4+ ngo(r)f3 — A (r) cos (2nr{A+9), (4.18)

where the amplitude
() = 2V 25 (Dmge(r) 3 = (2 /2/3)B exp (— Aky)/[1+ B exp (—24k)]. (4.19)

Expressions (4.17-19) lead to the following behaviour of the relative probabilities for
r— oo:

Ty + = 1, Tyo ~* 0, T3 — 1/3, Ty = 2/3. (4.20)

This is obviously what one should expect when the separation energy of Z° is bigger than
that of £+ (Eq. (2.21). Because of the tighter binding of £° than that of £+, the wave function
us+ spreads much further than ugo, and at sufficiently big distances r the state is practi-
cally a pure I+ state with the corresponding probabilities n;,, = 1/3 and n,,, = 2/3.
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Before reaching the limiting values, Eq. (4.20), the relative probabilities 7, oscillate
with the wave length 4, Eq. (4.16), and the amplitude 7, Eq. (4.18). Since 27(r) decreases
(exponentially) with r, the oscillations are damped. For nz+(r) = nzo(r) = 1/2 (i.e., for
Bexp (—dkyr) = 1), the amplitude reaches its- maximum value &y, = /2/3 = 0.47,
for which the probabilities n; oscillate between 0.03 and 0.97. For (rng-, 7zo)
= (59 [, )] we have & = 4/9 and 75, oscillates between 1/9 and 1 [0 and 8/9]," and
74, oscillates between 0 and 8/9 [1/9 and 1]. These numbers are of course approximate
because within the wavelength A, the probabilities 7y change their values (especially for
a strong damping, i.e., for a big value of 4k%;).

Instead of working in the charge basis, we could work from the beginning in the isospin
basis, qu (4.6-7). Instead of Egs (2.18) we would have the following system of equations
for 3., and yy)p:

{~(M?2mA+¥ +v,/2+ V):C+/3}1P3/2 +(\/§/3) (yo— V2C+)‘l’1/2
= (E3/2_iF/2)"I)3/2,
{~(W220) A+ — v+ 2V [3}91,3+(213) (90— Ve )wsp2

= (E1)2—il'[2)y1)2, (4.21)
where

Ey ) = 2 Ege+% Epo, Ez; = 5 Eg++% Exo. (4.22)

Notice that E;,,—E;;,= yo/3.

Eqs (4.21) may be easily obtained from Egs (2.18) by expressing in them 5+ and wgo
through 3, and v, ,,, and by properly combining the resulting equations. For the sake
of simplicity, we assume here that ¥'y+ = ¥'yo =¥  and make the approximation
Ps+ = HUzo = M.

Although in the isospin basis the coupling due to the Lane potential v, has disappeared,
but in place of it the coupling due to mass differences (the y, term) and the Coulomb
interaction appears in Eqgs (4.21). In contradistinction to Eqs (2.18) for yy+ and g,
which decouple into separate equations for yy. and yy when r — oo, Egs (4.21) for
93,2 and v, always remain coupled because of the constant (in space) coupling due to
mass differences. The asymptotic form of Eqs (4.21) for r — oo is:

{—(hz/Zu)A—(E3/2—iF/2)}1p3,2+(\/§/3)y01p1,2 = 0,
{—(h*)2p)—(Ey )2 —iT[2)}yy )2 +(\/§/3)?o1l’1/2 = 0. (4.23)

The exponentially decaying solutions (y,,2, ¥3/2) of Eqs (4.23) are just the linear combina-
tions of [exp (ikg+r)/r]Y,, and [exp (ikgor)/r]Y,, consistent with expressions (4.8) and
(4.13). Thus the coupling due to mass differences, present in the Schrédinger equations
for y; (and absent in the equations for uy), is responsible for the oscillations of 7.
Less formally, we may explain the oscillations of n; by noticing that in the asymptotic
region yy. and yso, as solutions of the Schrédinger equation, describe the physical states
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of £+ and X° (bound to the nuclear core). On the other hand, neither ;3 , nor v,,, are
separately even in the asymptotic regions solution of the Schrodinger equation. Thus
they do not describe single physical states, but are superpositions of two physical states,
py+ and yg. Consequently, the probability || reveals oscillations caused by the inter-
ference between the two components, pz. and ¥so.

The isospin osciilations discussed here are of the same nature as the oscillations of the
neutral K meson, known since a long time. A special feature of the isospin oscillations
in T hypernuclei is that they appear in a bound state. Necessary for their appearance
is a nonvanishing imaginary potential (which in £ hypernuclei describes the absorption
due to the TN — AN process).

5. Numerical results

In all calculations, we consider only the substitutional states with the configuration

(Ps/z, p3/2 -l)r.N-
For the density of the nuclear core, the modified harmonic oscillator density is used,

o(r) = o(0) [1+a(r/c)*] exp [ ~(rjc)*], (5.1)

with ¢ = 1.69 fm and a = 0.811, determined by electron scattering on ''B [8]. The central
density ¢(0) = 0.185 fm—3 is determined from the normalization

A = [dro(r) = o(0)n**(1+3 a). (5.2)
The root mean square radius of distribution (5.1) is
P = [H6+15a)/(4+6a)]'* = 2.42 fm. (5.3)

To calculate the Coulomb potential, Eq (3.3), we use an equivalent uniform charge
distribution of radius

ren = V5/3 (r*y'? = 3.12fm. (5.4
The coupling (Lane) potential v(r) is assumed in the form
v(r) = Vie(r)/eo, (5.5

where g, = 0.166 fm~3 is the equilibrium density of nuclear matter. The depth V, (estimated
by Dover and Gal [9] with Model D of the Nijmegen baryon-baryon interaction to be
equal 5MeV) is treated as a free parameter.

The real part of

¥y = vgt+iwg (5.6)
is assumed in the form
vg(r) = Veo(r)/ 00, (5.7

with the depth Vy (expected to be about — (20-30) MeV) treated as a free parameter.
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To calculate wy, we consider a T hyperon moving with momentum k; in nuclear
matter of density o, for which the absorptive potential wyy(0, ky) was calculated in [10]
(see also [11] and [12]) with the result

wam(0s k) = —3 o(h?2p5)v{ QkynGD, (5.8)

where sy is the TN reduced mass, kgy is the relative ZN momentum, ) indicates averaging
over nucleon Feyni motion, Q denotes the exclusion principle operator for final nucleon
states in the AN channel, v = v(g) (with v{(g,) = 0.7) is the ratio of the effective to the real
mass (assumed to be the same for nucleons and the A particle), and

¢ = 7 {[1+(N-2)/A)Jo(Zn)+[1 —(N —Z)/AJo(Zp)} (5.9)
is the average total XN — AN conversion cross-section. We have:
+[1—=(N-2)/A]e(X"p —» An) for X7,

G

i

11 +(N—-2)/AJe(=n - An)+ L [1=(N~Z)/A]Jo(Z°p - Ap) for Z°
1[1+(N-2)/Alo(E*n —» Ap) for E*. (5.10)

Assuming isospin invariance of the N — AN transition matrix, and neglecting mass
differences, we have

o(Z°n — An) = o(°p > Ap) = L a(Z7p = An) = L (X% n - Ap), (5.11)
and 6 may be written as
¢ =1[1-2T3™3/A)a(Z"p » An), (5.12)

where T3™ = (Z— N)/2 is the third component of the total isospin of nuclear matter. For
o(Z-p = AN), the parametrization given by ‘Gal et al. [13] is used.

Expression (5.8) differs from the semiclassical one by the appearance of the Q operator
and the factor v, which take care of the most important many-body effects: the exclusion
principle and binding effects. The Q operator is a function of the final nucleon momentum
(in the conversion process), determined by the energy conservation which involves the s.p.
energies of N, A, and X in nuclear matter. The effective mass approximation is applied
to all the s.p. energies as in [10], except for two differences: (a) we drop the unnecessary
approximation of the s.p. nucleon potential in the Fermi sea by its average value; (b) we
assume that M*(Z) = M(X). Point (a) is motivated by the analysis of the absorptive nuclear
optical model potential [14]. Point (b) concerns the least known of the three s.p. energies
and is introduced to avoid possible complications in finite systems (» — dependent effective
mass). The two modifications, (a) and (b), affect only slightly the resulting wyy. For the
width of the ground state of ¥ in nuclear matter I'yy = —2wnm(00> kx = 0), we get
5.4 MeV, compared to 5.9 MeV obtained in {10].

The present calculation of wy, follows exactly that of [15] in which the binding energies
of T hypernuclei with 4 < 20 (without the Lane potential) were calculated in the local
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density approximation for the absorptive potential, wy = wyy,(0, l~<z). A detailed comparison
with the experimental data was not completely satisfactory. In particular, for the energy
of Z-in {?Be, we obtained in [15] Ex- ~ 1 MeV, compared with the experimental results
E;- ~ 2 MeV [1], [2]. Higher positive results for £; could be obtained easily with a stronger
absorption wy.

Some points of [15] require a more careful analysis: () Surface effects, neglected in the
local density approximation, may be important. (i) To account for the finite range of the
=N interaction one should probably fold in the ZN interaction into nicleon density which
would lead to a spatial extension of ¥y exceeding ¢(r), and to an increase in Ey [16). (iif) The
calculation of wyy, requires input data (o, effective masses) which are not accurately known.
Furthermore, taking into account a realistic momentum distribution in nuclear matter
would also affect wyy (as in the case of the nuclear optical model potential [17]).

Instead of analyze quantitatively all these difficult problems, we introduce a cor-
rection factor x (to be fitted to the experimental data), and write wy in the form

wg = wy(r, Eg) = waM(Q(r); k.):("))a (5.13)
where the local momentum
kx(r) = (Mg/ug) [2ux(Es— V3(r))]'/2, (5.14)
where
V() = v(r)+ V() + () T315. (5.15)
-20 T T T T : T
— -
Wz ‘ ™
MeV] Batty et al. .
-10 [ N .
| x :’ 2 -
T - — X
| L‘\:\». -
I x=1 - R “ .
-_\x\\ - ., v
I \\x\\\v‘; |
] i ] —— —
0
0 r [fnl 5
Fig. 1. The absorptive potential wg of £- for Ex- = 2 MeV, Vg- = —30 MeV, ¥V, = 0, compared with

the potential of Batty et al. [16] (with a1 = 0.2fm, Ry = Rg = 0.8 fm)
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The factor My/u; takes care of the difference Between the relative ZC momentum and the
T momentum kj in the rest frame of nuclear matter. For points r where Ez— Vi(r) < 0,
we put ky(r) = 0.

The potential wy in the case of X~ with Eg- = 2MeV, V- = —30MeV, V, =0,
is shown in Fig. 1 for two values of x = 1, 2, together with the potential wg of Baty, Gal
and Toker [16], adjusted to K- atomic data. Since these authors assume that wy ~ ¢ their
absorptive potential inside of the nuclear core is much stronger than our potential in which
Pauli blocking and binding effects are taken into account.

5.1. General features of the solutions

To see the dependence of the solutions on the coupling (Lane) potential, in this sub-
section we fix Vg = Vyo = Vy:. = —30 MeV, x = 1.5, and show our results as a function
of V,. Following the estimates of {9] and [18], we concentrate our attention on positive
values of V,.

Fig. 2 shows the calculated masses (more precisely mass differences) AM, Eqs. (2.14)
and (2.20), and the widths I" of the substitutional p states in z’gBe (which we shall refer
to as the I- state) and in '3C (here we have two states, “T+” and “Z°”, defined at the end
of Section 2). ’

Predictably (see Eq. (2.10)), AM(XZ-) increases linearly with ¥,. Similarly, for small
values of V,, AM(*Z+") decreases linearly with V,, and A M(*%°”) remains approximately

AM

275

270

0

Fig. 2. AM and I’ as functions of ¥, for Vy = —30MeV, x = 1.5. All numbers are in MeV
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unchanged. For bigger values of V,, AM(*“Z+”) starts decreasing faster than linearly, and
AM(“Z°”) starts increasing. The reason for this behaviour of AM(“Z*+”) and AM(*“Z°")
is that in the equation for y;so (the second of Eqs (2.18)) v, enters only as the coupling with
s+, and thus it affects the energy only in the second order. On the other hand in the
equation for yy+ (the first of Eqs (2.18)) v, appears not only in the coupling with g0 but
also as a potential in the T+ channel and thus affects the energy already in the first orderf

With the increase (decrease) of the mass, i.e., of the energy, we see in Fig. 2
a corresponding decrease (increase) of the width I' of the respective state. This behaviour

P12

P32 Py

[T TR SN N RS SN SRS S SN NN

0
0 5\ (Mev) 10

Fig. 3. The probabilities Py and Pr of the “Z+” state for Vx = —30 MeV, x = 1.5

is easily understood. As the energy of a T hypernuclear state increases, the wave function
of X spreads more and more outside the nuclear core, and because of the small overlap
of X with nucleons, the decay probabih'ty (~TI) of the state decreases.

In discussing the isospin structure of '2C, we start with the “T+” state. The dependence
of the probabilities Py and P, Eqs (4.3) and (4.11), on V, is shown in Fig. 3. For V, =0
the “Z+” is a pure !B+ X+ state: Py, = 1, Pyo = 0, Py, = 2/3, P,;3 = 1/3. With increasing
V., the admixture of the 1!C+X° state increases, i.e., Pyo increases and correspondingly
Py, decreases. At the same time P, /2 increases and P;; decreases. In the limit of a very
strong coupling ¥;, we would expect that P,,, — 1, P5,, — 0 and consequently Ps. — 2/3
and Py — 1/3. For a sufficiently strong coupling (¥, 2 5 MeV) P, ;2 > P+, and the state
may be called a “7 = 1/2” state rather than a “I+” state.
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Fig. 4. The distribution of charge and isospin in the “Z+” state for Vg = —30 MeV, x = 1.5, V; = 5 MeV
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Fig. 5. The relative probabilities #x and it for the “Z+” state for Vg = —30 MeV, x = 1.5, ¥, = 5 MeV
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The radial distribution of the probapbilities py, pr and ny, 7, are shown in Figs 4 and 5
for the “X+” state at ¥, = 5 MeV. Within the nuclear core (whose RMS radius is 2.4 fm)
the coupling diminishes 7z + from its original value 1 at ¥, = O to ny+ 2 0.8. Asrincreases,
niy+ approaches the limiting value 7g+(r & ) = 1, Eq. (4.20). Of course, ngo = 1 —nz+
decreases from the value 0.2 at r = 0 to the value nzo(r — o0) = 0. The relative proba-
bility 7,,,(r) = 0.97 at r = 0, and with increasing r it decreases to my,,(r — o) = 2/3.
This decrease is not monotonic but is accompanied by damped oscillations, in agreement

PB/ 2

P2

01111!:1!11111

0 5 10 iMeV)

Fig. 6. The same as Fig. 3 but for the “X° state

with Eq. (4.18). Similarly 75/, = 1—mn,,, is increasing (with oscillations) from 73,,(r = 0)
= 0.03 to 73,,(r — ©) = 1/3. At the value of ¥; = 5 MeV considered, the resulting proba-
bility Pz+ = 0.88 and P,,, = 0.89.

Now, let us discuss the “Z°” state. The dependence of the probabilities P; and Py on
V, is shown in Fig. 6. Up to the strength of ¥, ~ 3-4 MeV, the situation is analogous to that
of the “L+” state. For ¥, = 0 the “X°” state is a pure 1!C+X° state: Pgo = 1, Pg+ = 0,
Py, = 2/3, Py, = 1/3. When V, increases, the admixture of the ''B+ X+ state increases,
i.e., Py+ increases and Pyo decreases. At the same time P;, increases and P, decreases.
However, for V¥, 2 4 MeV the probability P,,, starts decreasing again.

One difference between the “X°” state and the “Z*” state is that in the “Z%” case we
cannot increase V, indefinitely. As V, increases, the energy (mass) of the ‘““£°” state increases
(see Fig. 1). For ¥, bigger than a certain critical value (14.8 MeV in the present case)
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Fig. 8. The same as Fig. 5 but for the “X°" state
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no bound, i.e., exponentially decaying state exists. For a strong coupling V, (but not
exceeding the critical value) the system in the “X°”’ state becomes only loosely bound (in
contradistinction to the “X+” state whose binding increases with %), and the tail of the
wave function spreading far away from the nuclear core becomes important. One may
say that in the limit of zero binding, the hyperon spends all the time outside of the nuclear
core, and does not feel the coupling potential v,.

For V, = 5 MeV, i.e., for an intermediate strength of the coupling, the radial distribu-
tion of the probabilities px, pr, and ny, 7y are shown in Figs 7 and 8. At r = 0, the coupling
diminishes nyo from its original value 1 for V|, = O to ng(r = 0) = 0.8. As r increases
Tzo decreases towards the limiting value of ngo(r — ) = 0. Of course, my+(r) = 1—nso(r)
increases from ng+(r = 0) = 0.2 to ng.(r —» o) = 1. Consequently, 7nyo and ny. are
of a comparable magnitude in an appreciable range of r’s (this does not occur in the “X+”

' |{' | ) > —"""
| *lr JrHT [
g .| ?‘ 3| {1 %’\ "{\ N
) 3‘ ““ R H{ }“(V?)S

T T

@!zf L{l‘ ‘321} 1\,.5) 1? %‘l | ; 1 |
M i | >ef | 1‘1(31 _
® i i 1NN I\
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}U 'l lf‘f‘f\j

| SR (523
}i ! l/ 1! k“l Vi li
™4 { Y v
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\J v \&‘“‘*Vﬁn(zm _‘__—
. 100 200 ¢ (fml 300 400

Fig. 9. The same as Fig. 8 but for V, = 12.7 MeV

state), which makes the amplitude of the isospin oscillations big. The probability 73, is close
to 1 within the nuclear core. As r increases, m;, must reach eventually the limit
of m3,,(r - ) = 1/3. However, before reaching this limit, it oscillates with only a weak
damping and with a big amplitude. The probability =,,, = 1—=n;,, behaves corre-
spondingly, and in certain regions m,,, > 7;,,. The resulting total probabilities are:
Py = 0.74 and P;;; = 0.86. One factor which certainly increases Py. (and decreases
Pso) is the bigger depth of the attractive real potential V3 — ¥/2 in the £+ channel.

The relative probabilities 7z and = in the case of a strong coupling ¥, = 12.7 MeV
is shown in Fig. 9. Their behaviour agrees with the discussion in Sect. 4. The resulting



972

TABLE 1

Comparison of the “Z+” and “X%” states for V; = 5(12.7) MeV, Vg+ = Vgo = —30 MeV,
x = 1.5. All energies are in MeV, momenta in fm~!, and 4 in fm

g wgon
r 6.0(8.3) 3.2(0.7)
FExo 0.2(~2.8) 3.6(4.7)
Ez+ 4.8(1.7) 8.2(9.3)
kgor —0.30(—0.25) —0.46(—0.51)
ks+r —0.53(~0.41) ~0.67(—0.71)
ksop 0.28(0.46) 0.10(0.02)
kst 0.15(0.28) 0.06(0.01)
Aky 0.13(0.18) 0.04(0.01)
Akg 0.24(0.17) : 0.22(0.20)
i 26.4(37.5) 29.0(30.7)

total probabilities are: Pyo = 0.63, P;,, = 0.61. Consequently, the state is certainly not
an approximate 7T == 3/2 state.

The relevant parameters which determine the different properties of the “Z+” and
“%9” states for ¥, = 5 and 12.7 MeV are collected iin Table 1.

5.2. Comparison with CERN data

The experimental data obtained by Bertini et al. [1] in the (K-, n¥) reactions on 12C
were interpreted by the authors in the following way:

() The peak in the n* distribution, observed in the (K-, n+) reaction on *2C at
AM = 279 MeV (with I' = 4+ 1 MeV) was assigned to the (p3/2, p3/2-');-, configuration
of ;2Be. The corresponding energy E;- = 4.0 MeV.

(ii) The peak atAM = 270 MeV, observed in the (K-, n-) reaction at px- = 400 MeV/c
and 450 MeV/c was assigned to the (p3/2, p3/2-');+, configuration of 12C. The correspond-
ing energy Ey. = 3.0 MeV.

(iii) The (less visible) peak at AM = 275 MeV, observed in the (K-, n~) reaction
at px- = 450 MeV/c was assigned to the (p3/2, p3/2-*)so, configuration of 12C. The cor-
reéponding energy Fyo = 3.4 MeV.

It was pointed out in [3] that the interpretation of the peaks (ii) and (iif) as correspond-
ing to pure charge states implies breaking of charge invariance of the IN interaction.
If one splits each of the energies Ey into nuclear (E3) and Coulomb energies, then assuming
that the Coulomb energy of - in ;°Be is the same (except for sign) as the (posi-
tive) Coulomb energy Ec of I+ in ;7C, one gets

Ey- = EY- —Ec, Ej = Eyo, Ez. = Ey.+Ec. (5.16)

Relations (5.16) imply that (EY-+Ej+)/2 = (Ex-+Eg+)2 =3.5 MeV. Simce Ep
= 3.4 MeV, we see that Eyo = Epo = (E}- +E)/2, which suggests that

Eg_ - E£°+ECB’ Eg-). = E}:OTECB9 (5'17)

where Ecg is the charge invariance breaking (CB) part of E3.
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In the three hypernuclei considered, we have two nuclear cores: **B with 75 = —1/2,
and *'C with 75 = 1/2. It appears then that the simplest way of obtaining relations (5.17)
is to assume for the depth parameter Vy, Eq. (5.7):

Vy = Vo+ VeaT5t3, (5.18)
i.e.,

Vz- = V0+VCB/23 Vzo = Vo, V2+ = VO_VCB/Z‘ (5.19)

If we wanted to derive the s.p. potential v¢(r) from the underlying two-body =N interac-
tion vgn(ren), We could do it by assuming a charge independence breaking part of vgy,

{ven}en = vea(ren)B3 13- (5.20)

Notice that the breaking of the charge (or isospin) invariance introduced by expres-
sions (5.19) and (5.20) preserves the charge symmetry.

In what follows we shall consider Vg as a phenomenologlcal parameter which we
shall try to adjust to the experimental data.

In [3] only the pure charge states were used. However, the full s.p. potential, Eq. (2.3),
contains the Lane term which couples the charge states. This coupling was not considered
in [3] although it is expected to be important. This point was discussed by Dover, Gal and
Millener [18], who applied the mass matrix method [19]. The method involves simpli-
fying approximations (constant matrix elements, real ¥") and predicts only mass splitting.
Here we shall analyze the CERN data [1] by applying the theory outlined in Sect. 2 with
the full s.p. potential, Eq. (2.3), which includes the Lane coupling and the CB term, Eqs
(5.18-19).

To reproduce the best established state of ;2Be, the peak observed by Bertini et al.
[1] at AM(Z-)g = 279 MeV with I'(T-) = 441 MeV, we find it necessary that

Vot V2= Vepl2 = —21.4 MeV. (5.21)

Furthermore, we fix the value of x at x = 2 which leads to I'(Z-) = 3.1 MeV.

The energy of the “I+” and “Z°” states is calculated as a function of ¥, in two cases:
Iy with Vg = 0; (IT) with Vg fixed at each value of ¥, by the requirement that the calcu-
lated energy of the “Z+” state agrees with the position of the peak at AM(Z*)g = 270 MeV.

Results obtained for 4 M are shown as solid curves (case I) and broken curves (case IT)
in Fig. 10. In both cases results for AM(Z-) coincide with the CERN valué AM(Z-)p.
In case II results for A M(“%+”’) coincide with AM(E+);. Numbers below the V, axis indicate
values of Vg obtained in case IT at the corresponding values of V.

The best agreement (AM(*“X%”) = 275.4 MeV) with the CERN data is obtained at
Vi=0, with a strong Ve = 179MeV (Vg = —39.3MeV, Vo = —30.4 MeV,
Vy- = —21.4 MeV), in accordance with [3]. Here, the calculated widths are: I'("“Z°”)
= 7.1 MeV, I'(“T+”) = 10.2 MeV. At ¥V, = 5MeV (the value calculated in [9]) the
agreement is worse (AM(“Z°”) = 275.9 MeV) but still acceptable. Here the required
Ve = 11.7MeV (Vge = —35.6 MeV, Vro = —29.8 MeV, Vi- = —239), and the
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Fig. 10. Results for AM (x = 2) compared with the CERN data. All numbers are in MeV _

widths are: I'(“X%’) = 6.2 MeV, I'(“Z*”) = 10.4 MeV. Clearly the strength of the Lane
coupling and the magnitude of the CB interaction necessary to reproduce the data are
interrelated. As is seen in Fig. 10 without the CB interaction one cannot reproduce the
peak at 275 MeV seen by Bertini et al. [1] — even for a very strong V, = 10 MeV one gets
AM(“Z°”) ~ 278 MeV,

Let us notice that for ¥V, = Vg = 0, we have Eyo—FE5- = 3.14 MeV and Eg«—FEpo
= 3.15 MeV. This would suggest that the Coulomb energy* Ec = 3.1 MeV.

5.3. Comparison with KEK data

These data were obtained at KEK with negative kaons stopped in !*C. At the 1985
Brookhaven Symposium, Yamazaki et al. [2] reported the observation of three peaks in
both n* and n— distributions, denoted by A, B and C. The positions and widths of the
A peaks, interpreted as predominantly the (p3/2, p3/2-)sn States, are: AM(Z), = 277.4
+0.4 MeV, AM'2C), = M(Z*/%), = 271.2+0.4 MeV, with I', = 6+0.5 (the same for
both peaks). We also quote the position and width of the peak B in the n~ distribution:
AM(E" /%0 = 277.64+0.4 MeV, I'y = 4+0.5 MeV. This peak appears to be a candidate
for our ““X°” state, although in [2] it was tentatively interpreted as the (pl/2, p3/2-1)gy state.

In the interpretation of these data, we proceed as in the case of the CERN data.
The lower value of AM(Z-), compared to the CERN result, permits the use of a smaller
factor x. Actually, we use two values of x: 2 and 1.5. On the right hand side of condition
(5.21) we have now — 26.1 MeV for x = 2 and. —23.8 MeV for x = 1.5, which leads to
I'(Z) = 5.6 MeV for x = 2 and I'(Z-) = 2.3 MeV for x = 1.5, Our results are shown
in Fig. 11 for x = 2, and in Fig. 12 for x = 1.5.

. The AM(Z°'*), peak (together with the AM(Z-), peak) may be reproduced without
breaking the isospin invariance with ¥, = 7.7 (8.6) MeV for x = 2(1.5). Here, the cal-
culated width I'(“T*+°) = 9.9(6.7) MeV for x = 2(1.5). To reproduce the AM(Z" "), peak
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with ¥, = 5 MeV, a relatively small Vy is required: Vg = 4.4(5.5) MeV for x = 2(1.5).
Here, the calculated width I'(“Z+”) = 9.7(6.4) MeV for x = 2(1.5).

As far as the “X°%” state is concerned, we see in Fig. 11.that for x = 2, ¥V, = 11 MeV,
and Vg = —5.6 MeV, our calculated AM(“Z°”) coincides with AM(Z‘."“’)B Here, the
calculated widths are: I'(“X°”) = 2.5 MeV and I'(“Z*”) = 104 MeV. Thus for x = 2,
we are able to reproduce all the three peaks (except for the width I'(“Z*”’) which appears
too big), provided the AM(Z™*/ %)g peak is interpreted as our “X%” state, and assuming a very
strong Lane coupling. On the other hand, Fig. 12 hints at the possibility that the “Z%”
state might not exist. Namely, with x = 1.5 no “Z°” bound state exists for ¥, > 10 MeV,
as indicated by the short vertical line at the end of the broken “X°” line. This situation
would be consistent with a different interpretation of the 4AM(Z% *)g peak, e.g., the configu-
ration (pl/2, p3/2-1)gy suggested in [2].

6. Concluding remarks

The last Section may be summarized as follows:

(i) In interpreting experimental data, the Lane potential is important, as was first
pointed out by Dover, Gal and Millener [18].

(if) The KEK data appear compatible with a reasonable magnitude of the Lane po-
tential and with a relatively weak breaking of the isospin invariance of the XN interaction.
The CERN data suggest a serious breaking of isospin invariance and a rather weak Lane
potential.

" (#i{) More precise and consistent data’ are needed for a conclusive analysis.

A novel aspect of the present work are the radial oscillations of the isospin distribu-
tion in the substitutional states in '2C. The occurrence of these isospin oscillations affects
the probability Py of finding *%C in the isospin T state. In particular, the “Z°” state is not
an approximate 7 = 3/2 state. E.g., in the case considered in Section 5.1 (Vz = —30 MeV,
x = 1.5) for V, = 5 MeV/12.7MeV P, ,(“T*”’) = 0.89/0.98 and P;,,(“Z°”) = 0.86/0.61,
contrary to the values P,,,(“Z+”) = P;3,,(“Z°”) = 0.99 suggested in [18]. The probleni
of ‘a direct experimental detection of the isospin oscillations in '3C is difficult because
they occur outside the nuclear core and a process sensitive to the isospin probably would
involve interaction of £ with the nuclear core. It would be probably easier to detect the
effects of the coupling of the two charge states in X atoms (e.g., in the *He-Z~ atomic
system coupled with the 3H-Z° system, or in the *C+X- atomic system coupled with
the 1'B+X° system) which are presently investigated.

In the present paper, the formation of the -, “X°” and “Z+” states has not been discus-
sed, nevertheless a problem with the formation should be mentioned here.

In all cases considered in this paper, we have AM(32Be) > 275.0 MeV, and conse-
quently Esz- > O (see Eq. (2.14)). (An exception is a small range of negative values of ¥, in
Fig. 2). This means that our I~ states are the “‘unstable bound states embedded in the
continuum” (UBS), first noticed by Stepien-Rudzka and Wycech [20] and discussed in
detail by Gal et al. [13]. For the “Z°” and “X+” states, we have Ez. > 0 for AM(*30)
> 267.0 MeV, and Ezo > 0 for AM(*2C) < 271.6 MeV (see Egs (2.20)). Consequently
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for all our “X°” states considered Ej. > 0 and Ego > 0, and thus all our “X°” states are
of the UBS type. With the “X+” states the situation is such that although we always have
Ez+ > 0, but some of our “Z+”’ states have Eyo < 0 and are not completely of the UBS type.
Recently, the identification of the UBS with the peaks in the pion distribution observed
in the (K-, nt) reaction has been criticized by Morimatsu and Yazaki [21]. Their work,
however, involves an approximate expression for the formation cross-section in terms of an
approximate Green function. Furthermore, their criticism does not apply to bound states,
and the properties of the £ hypernuclear states discussed in the present paper do not
change drastically when E; become negative — the situation expected in hypernuclei
heavier than '2C. ‘

All the computations of the present work were performed on the Olivetti M2i Personal
Computer with an essential help of Dr J. Rozynek.
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