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The starting point of the paper are Lorentz equations of motion in a given background
field in General Relativity as well as the corresponding to them differential equations of the
first and the second electromagnetic deviations derived recently by the authors (Acta Phys.
Pol. B18, 601 (1987)). Certain first integrals to all these equations are now derived under
the assumption that the space-time admits symmetries. A characteristic feature of the method
used here for deriving these integrals is its certain universality which manifests itself in being
in principle the same procedure leading to the integrals in the case of every one of the equations
considered. It is also shown that a Killing vector field or a symmetric Killing tensor field
generate along a Lorentzian world line a field of a natural first electromagnetic deviation.

PACS numbers: 04.20.Cv

Introduction

The connection between symmetries of space-time and first integrals of several types
of equations of motion is well established. However, in the case of the geodesic deviation
equations in general relativity, the form of an integral generated by a Killing vector field
was recently found by Fuchs [1]. The first integrals discussed in the past (cf. e.g. [2-5])
were usually of a different type, just securing the compatibility of constraint relations which
one must impose on the initial data for the geodesic deviation equations on one side with
the accepted differential equations of geodesic deviation on the other.

The objective of this paper is to derive a number of first integrals to the first and the
second electromagnetic (e.m.) deviation equations, which are a generalization of the geodesic
deviation equations to the case of both electromagnetic and gravitational tidal forces (see
[6] for details). The existence of these integrals is a consequence of symmetries of space-
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-time in a broader sense, i.e. of those which are generated not only by Killing vector fields,
but in a sense by the second order symmetric Killing tensor field as well.

In Sect. 1 we formulate some technical lemmas which enable a uniform approach
to deriving the first integrals.

In Sect. 2 it is shown that under certain very natural conditions on the electromagnetic
field the Killing vector field &%, when restricted to a Lorentzian world line, satisfies the natural
first e.m. deviation equations (in terminology introduced in [6]): The same property enjoys

a8
also the vector {* := j{Iﬁ uzl , where u” is tangent to a Lorentzian world line and K,
uu
is a symmetric Killing tensor admitted by the space-time. An application of the lemmas
formulated in Sect. 1 and of the properties of £* and {* mentioned above is the derivation
of the well-known integrals of the Lorentz equations of motion.

In Sects 3 and 4 the same lemmas and properties are used to deriving first integrals
of the first and second e.m. deviation equatjons. The specialization of these integrals for
different types of the first and second deviations is given, and a simple connection between
first integrals of the Lorentz equations and those of the first and the second e.m. deviation
is obtained. In the limiting case of geodesic deviation equations, one of the integrals passes
over into that found by Fuchs [1]. The remaining were however not known so far even in
the limiting case of geodesics world lines.

1. Some technical lemmas

The procedure of deriving several first integrals of the Lorentz as well as of the first
and the second e.m. deviation equations in an arbitrary parametrization is simplified when
one makes the following observations.

PROPOSITION 1.1. If a vector a* defined along an arbitrary curve I' in V, fulfils
the equations of transport of the form

Da*
dt

1= a%uf = b%, [¢R))
where b° is another vector field along I', and if there exists a vector field 1* such that
bi*+a,— = —, 1.2
T

where @, is a scalar function of the parameter 7, then
a,1*—@,(t) = const 1.3)

along I'.
The proof is obvious and will be omitted.

-4

If, in particular, a” is the vector u” := = tangent to an arbitrary (i.e. not necessairily
i1

geodesic) non-null world line I' parametrized by a scalar parameter 7, then the differential
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equations (1.1) may be always represented in the form

Du*

= b* .= Ju*+g% 1.4
o g (1.4)
ub® d T a B e « _ Ul i
where A 1= — = —In \/[ulu [, 8% 1= hb", I®p 1= 6%~ 7 » and where the assumption
uu d’l’ uu

u,u* # 0 is accepted anywhere along I
PROPOSITION 1.2. If along a world line I' defined in V, by Eqs (1.4) there exists
a vector field * such that

D* g.1" do,
a) U, — = 0, b) —_— = T, (1'5)
dt \/lu}‘u}'! dt

where &, is a scalar function of t, then

u”
— &,(7) = const (1.6)

NI

along I.
Proof. Contracting (1.4) with 1, and adding the result to Eq. (1.5a) yield

D
—(uala) = gala+}“(uala)'
dt

Dividing this expression by N m and taking into account (1.5b), after recalling the
definition of A, complete the proof.

PROPOSITION 1.3. If along the world line I" defined in V, by Eqgs (1.4) the vector
field »” fulfils the equations

D*n® ) Dn* i
s +Rﬁy,,unu = A = +m?, a.7n

and there exists a vector field i* for which

) D% L ke 5 D K b ma*—nk*  dd; (18)
a) — i = ) — = —, .
PR L dt J;u,u dr
where @, is a scalar function of t, then
1 ( Dn* Dl’) &) . (1.9)
e | 1, — ~n, — } — @;(1) = cons .
Vuu? dr dt

along I
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Proof. Contracting (1.7) with 1, and subtracting from the result Eqs (1.8a)-multiplied

by n, yield
D Dn* D* 2 Dn* Di* . o
— i, — —n,— ) =1, —— —n, — | = —n,k*.
de\"ar " dr D e I

Dividing then this by N, |u;u*| and taking into account Eq. (1.8b) as well as the definition
of A complete the proof. Obviously, Props 1.1-1.3 are trivially satisfied if ¢,, ¢, and @5
are constant. , .

The scheme used in the proofs of Props 1.1-1.3 forms a background of a general
and simple method of finding first integrals for several equations of motion of the form
(1.4) and for several laws of transport of the form (1.1) or (1.7) of some vector fields. In
particular, if in an arbitrary ¥, a world line I is defined by Egs (1.4) with a constraint

[ 4

condition A = 0, i.e. = g*, where 7 is a mew parameter, then the vector field +* = «*

T
satisfies the conditions (1.5) and generates the first integral of the form N, luu*| = const.
It is not difficult to see however that in some pseudo-Riemannian manifolds there are
vector fields i, other than 4, which have the properties mentioned in Props. 1.1-1.3.
PROPOSITION 14. If a pseudo-Riemannian manifold V, admits a Killing vector
field &7 ie., if

£§g1ﬂ = 0 = ia;ﬁ_‘-‘sﬁ;aw (1.10)

then along the world line I' defined by Eqs (1.4) the vector field «* = ¢* fulfils Eq. (1.5a)
and Eqs (1.82) with k, := &,,8°.

The proof of: Eq.(1.5a) is straightforward. To prove the validity of Eqs (1.8a), one
must use the integrability conditions

Copy = Raﬂyééa (1.11)

of the Killing equations (1.10).
PROPOSITION 1.5. If a pseudo-Riemannian manifold ¥, admits a symmetric Killing
tensor field K,; of the order two, determined by the equations

Ky =0, (1.12)
then along a world line I' defined by Eqs (1.4) the vector field

[
(i Kast (1.13)

]

\/l“;.“)'i

. — D
fulfils both Egs (1.8a), with &k, := \/ Ju u [?
4

K, ufg?
( _C"__) _ DendlE , and Eq. (1.5a) pro-
Viugdl)  Vlugd|

vided

Kaﬁga“ﬁ = 0. (1.14)
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The proof of Eq. (1.52) follows from Eqs (1.12), (1.14). To prove the validity of (1.8a)
one must use the equality
Koppst®ulu® = K, R u'u"u’ (1.15)
which follows from the integrability conditions
Kﬂﬁ;}'a - Kéy;ﬂa = KlﬁRaévﬁ + KﬂeReé)’a + KyeReaéﬁ + K&sReayﬁ

of Egs (1.12).

Thus the vector i in Props 1.1-1.3 may be replaced by a Killing vector £° or by the
vector {* which generate the first integrals of Egs (1.1), (1.4) and (1.7) provided conditions
(1.2), (1.5b) and (1.8b) are satisfied correspondingly.

2. The Lorentzian world lines

Now, let us restrict ourselves to the case of a general relativistic Lorentz equations
of motion in an arbitrary parametrization [6], which may be written in either one of the
two equivalent forms:

D u’ p
— = = oF%u .10
dT \ juu|
or
Du* —
= Aut4a v uut| Fruf, 2.2
dt
where F,; = —F), is the electromagnetic field tensor and ¢ = 12 is a constant. Then
uc

the following statements are true.
THEOREM 2.1. If in V, from Prop. 1.4 the curve I' is defined by the Lorentz equations
(2.2) and if additionally the antisymmetric tensor field F,, satisfies the conditions

£§Faﬂ = 0, (2.3)

then the Killing vector field &* fulfils along the Lorentzian world line I' the natural first
e.m. deviation equations' in an arbitrary parametrization

D*¢& De —— (s Def
e +R“Mau”§"u" =4 o +o \/[ulull (F ﬂ;},uﬂ§7+F°‘p =) 2.4

The proof follows from an immediate computation in which Egs (2.2), (2.3) and Prop.
1.4 are taken into account.

! That is, the general first e.m. deviation equations (cf. (3.2)) supplemented by the constraint condition
Dg*
dr

Uy = 0.
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COROLLARY 2.1. A Killing vector field £* is along an arbitrary Lorentzian world
line a field of a natural first e.m. deviation provided the electromagnetic field tensor F; satis-
fies Eqs (2.3).

COROLLARY 2.2. In the particular case of a geodesic world line (ie. for ¢ = 0)
Eqs (2.4) assume the form

Dzéd
dr?

DEx
dt’

+R%,ufE° = 4 (2.5)

or in other words, any Killing vector £* is along a geodesic world line a field of a natural
first geodesic deviation.

THEOREM 2.2. If in V,, from Prop. 1.5 the curve I' is defined by the Lorentz equations
(2.2) and if additionally the tensor fields F,; and K4 satisfy the conditions

Frapn = 0, (2.6)
Ky(aFﬂ)y = 0, (2.7)

then the vector {* fulfils along the Lorentzian world line I the natural first e.m. deviation
equations in an arbitrary parametrization

Dlra D” —— D B
>+ R W = C i || (F“s;-.»“”C“rF“ﬁ }é) (2.8

dr? dt

The proof follows from an immediate computation which makes use of Egs (2.2),
(2.6), (2.7) and of Prop. 1.5.

COROLLARY 2.3. A symmetric Killing tensor K,; generates along an arbitrary Lo-
rentzian world line a field {* of a natural first e.m. deviation provided the tensors F,; and
K,p satisfy Eqs (2.7).

COROLLARY 24. In the particular case of a geodesic world line (i.e. for ¢ = 0)
Eqs (2.8) read

DZCa D'Ca

T +R% P’ = & k 2.9

In other words, any Killing tensor K,; generates along the geodesic a field of a natural
first geodesic deviation.

It must be noted that Corollaries 2.2 and 2.4 are generalizations to the case of an arbi-
trary parametrization of already known properties of {* and K,z (cf. e.g. [8-11]).

Now we are prepared to prove the following theorems.

THEOREM 2.3. If a pseudo-Riemannian manifold ¥, admits a Killing vector field &*
and if additionally the electromagnetic field tensor F,; admits a vector potential 4, which
satisfies the conditions?

£A, =0, (2.10)

2 Let us note that conditions (2.10) are equivalent to conditions (2.3) (cf. [8]).
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then there exists a first integral of the Lorentz equations of the form

&, <ﬁ;:?l +6A°‘) = C,. (2.11)

The proof follows either from (1.3) or from (1.6). Indeed, setting 1* = £ and applying
Prop. 1.1 to Egs (2.1) or Prop. 1.2 to Eqgs (2.3) yield

@,(7) = D,(1) = — 04,8,

and that ends the proof.
THEOREM 2.4. If V, admits a symmetric Killing tensor field K,ﬁ and the conditions
(2.7) are satisfied, then there exists a first integral of the Lorentz equations of the form

Ku,,u“u"

— = C,. (2.12)

u,u
The proof follows either from (1.3) or from (1.6) after setting 1* = {* and taking into
d d
account that, due to Eqs (2. 7), (7 @, =0.

Obviously, in the case of the natural parametrization of the Lorentzian world line the
first integrals (2.11) and (2.12) reduce to customary forms quoted in [8, 11].

3. The first e.m. deviation

Now, let us supplement the Lorentz equations (2.1) by the first e.m. deviation equations
in an arbitrary parametrization derived in [6} which may be represented in either one of the
two equivalent forms

D h Dr 1 0+ o (F* vy Fe Dr G.1)
—_— | =t — ] = : wru’+o By .
dt \/iulu"] dt \/lulu Ko it P de
or
D*r® Dr* d (u; Drf
+Ra B.7,,0 = 2 4 _ﬂ -
d? ot T dt M dr (u u’ dt
—— Dr? u, Dr?
to | | F ufr' + Fy — +Fuf =5 =) |, 3.2
o Vluu l[ sl T dt ot uu’ de (3.2)

where r* is the first e.m. deviation vector. Then the following statements are true.

THEOREM 3.1. If V, admits a Killing vector field ¢* and if additionally the electro-
magnetic field tensor F,; fulfils the conditions (2.3) and (2.6), then there exists a first integral
of the system of the Lorentz and the first e.m. deviation equations of the form

B 3
1 (h w0 D¢

‘/W;.“)'I o

‘EL’— dt) —oFaﬂﬁ"rﬂ = C3. (33)
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Proof. The proof follows either from (1.3) or from (1.9). Indeed, Eqs (3.1) take the
same form as Eqs (1.1). Therefore, after setting 1* = £%, applying Prop. 1.1 and making
use of Egs (1.10), (1.11), (2.3) and (2.6), we obtain

.33
rl

@ = =
1(1?) \/|“,1uli dr

+OF 5E%r",

and that finishes the first part of the proof. On the other hand after setting n* = r* Eqs
(3.2) may be rewritten in the form (1.7). Applying, therefore, Prop. 1.3 and making use
of Eqs (1.10), (2.4) and (2.6) yield

ul* [ u, Drf
—— —— | +0F &,
(uyu"’ dt s

\/I“Au;l

D;(7) =

which thus completes the proof.
COROLLARY 3.1. If r} is a natural first e.m. deviation vector, then Eq. (3.3) takes
the form

NI

e it " dt

1 Dr, D¢, e p
c re —0F &% = Cs. 3.4

For a first e.m. deviation vector 7, which satisfies the constraint condition

u, Drl

—2— — = gFu’r%, 3.5)
Viuu?) de

an therefore preserves its inclination w,? with I', Eq. (3.3) reduces to

1 Dr* koF , ufr? D
g (B I WD &l = Cs, (3.6)
| dt N de ’

where the positive sign of k = 1 corresponds to timelike Lorentzian world lines.
COROLLARY 3.2. In the particular case of the first geodesic deviation equations
following from Egs (3.1) or (3.2) for ¢ = 0, Egs (3.3) take the form

L (b2 Dga) c (3.7)
_— — —r,— | = Cj, .
NI TR ?

and Eqs (3.5), (3.6) merge into a single expression

1 ¢ Dr* D¢ c
e, = . =) =,
Viugi\“dr "t :

which for timelike geodesic parametrized by the natural parameter s was derived in [1].
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THEOREM 3.2. If V, admits a symmetric Killing tensor field K,; and the conditions
(2.7) are fulfilled, then there exists a first integral of the system of the Lorentz and the
first e.m. deviation equations of the form

u® Dr? DK
—— Kk —— - %) = C,. 8
ulu‘( #T T dr r dt 4 (3-8)

Proof. The proof follows either from (1.3) or from (1.9). Setting :* = (%, applying
Prop. 1.1 to Egs (3.1), and making use of Eqs (1.12), (1.15), (2.1) and (2.7), we obtain

urf DK,5

|u,1u| dt

®4(7) =

and that finishes the first part of the proof. On the other hand applying Prop. 1.3 to Eqgs
{3.2) and making use of Eqs (1.5a), (2.1), (2.6) and (2.7) result in

,,u"'u” ‘u, Dr’ Kg* D u”
§b3(‘l') ( . ——},
luuty \uu* do \/114;.“1 dr Vi ut
which completes the proof.
In the particular case of o = 0, the system of the geodesic and the first geodesic devia-

tion equations admits the first integral of the same form as (3.8).
COROLLARY 3.3. If r; is a natural first e.m. deviation vector, then Eq. (3.8) takes

the form
u® Dr# DK
K, — -2 = ¢, 3.9

ulul< # d dr ) * (3.9)

For a first e.m. deviation vecior r?, which satisfies the condition (3.5), Eq. (3.8) reduces to

u® Dt koF su'r’ DK o
-7[1@,3( S et 'f) —f “”] = C.. (3.10)

ulu dT \/Iulull | dT

Let us observe that in the framework of the Z-approach to families of Lorentzian
world lines which was developed in [6] there exists a simple relation between first integrals
of the Lorentz equations and those of the first e.m. deviation as it may be restated in the
form of the following lemma.

LEMMA 3.1. If for each curve I', from a one-parametric family Z of Lorentzian
world lines the Lorentz equations admit the first integrals (2.11) and (2.12), i.e., if

& ( i_s).,—* oA, s)> C,(e), (3.11)
VIuy(z, eul(, o)

K, pu’(z, eub(t, ¢)
u,(z, e)u’(z, &)

= C,(e), (3.12)
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where C,(¢) and C(e) are regular functions of the parameter ¢ then the first integrals (3.3)
and (3.8) follow from differentiation of Eqs (3.11) and (3.12) with respect to the parameter ¢.
The proof follows from inspection, after the definitions

D ou* aC
20 =0t A=, 6=
68 58
Ci=1% 0Ca(®) ,
de

o a

D
and the relations S = are taken into account.
&

ot

4. The second e.m. deviation

Let us supplement the system of the Lorentz and the first e.m. deviation equations
by the second e.m. deviation equations in an arbitrary parametrization [7] which may be
also represented in either one of the two equivalent forms

D [ h% Dwﬁ> 1 { e Boas
—_— —— e—— = e { = ﬂ,;u wu +(Ruﬂ6;
dr (Jiulull do ) ! .
Drf Dr* d [‘u, Dr
« 8. .0 a 5 et Bl Bl
+R%, 50" u'r’r' +4R pyagr—u’r +2 Tr I (uyu" dr)

N d[ 1 N Drf Dr? +R u; Drf\?
u* —) — rru —_— T
deLug\ * ac o ~\wu’ de
a B
+0{F“ﬂ;y6u”r7r"+F By [ w7+2— r'+2u 7<u I ):l

+(F%R?, 3 — R s FP )rr0u® + F°, wﬁ+ br!
AT v op dt uu’ dr

u? Dr' Dr’ .
e (g e Rt ]} D

or
D2wa
d -

Dr* ‘Dw* d — Dr* [ u; Drf
+4R%, s — u'r® — —1In u g )
b1 gy U7 * dt dt Vi dt (uyu" dt

. d 1 ,DrﬂDr Dv*
"rua'u———hﬂyd 7 +RB758 rru+u—d;—

+R%,suPwu® = (R%,5,.+ R%s, pufutr’r




993

1 DN T
-, — 0 N |[uut {F% ufrr? + F%, | ufw?
I

Drf U5 Dy’ 5
+2 o ¥+ 2ufr? ” +(FR? 5, — R 5 FF )rrlu

T uu® dt
LR Dw# +2Drﬂ u, Dr’ N u? ; Dr’ Dr?
i il - — |, =
Pl oar dr \uu® dt wp*\ " dr dr
Dw”
+ Ryt P r U’ + 1, v o , 4.2)

where w®is the second e.m. deviation vector. Analogously to Sect. 3 the following statements
are valid.

THEOREM 4.1. If V,, admits a Killing vector field £* and if additionally the electro-
magnetic field tensor F,,; fulfils the conditions (2.3) and (2.6), then there exists a first
integral of the system of the Lorentz, the first, and the second e.m. deviation equations

of the form
1 DW DI‘B u Dr’r
— 1 2 Uy IR 0,7
‘/W;.“Al{ ot [ dr dt <”Au dt >:| +2R 5y 1T u®
. éa Drﬂ br’ By uﬂ Drﬁ Déa
— u;. hﬂ? d d +Rﬂ768u r'r u 2r uy dT _‘_i?

b
-—Zfa;ﬂra '_} - O'[(F,ﬂwp + Faﬂ;.yrﬂry)éa + éa;ﬁFayrﬂry] = C5. (4.3)

dt

Proof. The proof follows again either from (1.3) or from (1.9). Setting 1* = &%, applying
Prop. 1.1 to Egs (4.1), making use of Egs (1.10), (1.11), (2.1), (2.3), (2.6), (3.1) and of the
relations £ F,;, = 0 and £ R,,; = 0, provided the Ricci and the Bianchi identities are

g ¢

taken into account, we obtain

1 Drf [ u, Dr
D,(1) = ———=<2h «D — ) -2R by
1) \/Iulu l{ i dz (u,m’l d1> ap1a®

. ag’ P Dr® Dr? bk R ) u, Drf\] D&
vl U Brmirm s Bl ROl i

D’
+2&,,1" —} A+ OL(F WP + F o P 1) 4 £ g F 1P 17],

dr



994

and that finishes the first part of the proof. Analogously, setting 1* = (%, applying Prop. 1.3
to Eqs (4.2) and making use of the equations mentioned above yield

1 & ug Dw? D& i
———— u — — —_— —_—
NI wu’ du Ve e 1(®),

which completes the proof.
COROLLARY 4.1. 1f r? and wi are natural first and second deviation vectors, then Eq.
(4.3) takes the form

1 Dw" D¢, Dr’
(éa + 2R s rhru’ — wi ¢ —2¢,.4% i)

D3(7) =

W dt dt Cxsln dz
—o[(F aﬂW£ +F ap;yrﬁrz)é‘“ +&ppF ayrg":] + Cs. 4.4)
For vectors r® and w? which satisfy the constraint conditions (3.5) and
u, Dw{ s B
\/m I = gF qu’w; “.5)

correspondingly, i.e. both conserve their inclinations with I, the subsequent form of first
integral follows from Eq. (4.3), after inserting in it Eqs (3.5) and (4.5).

COROLLARY 4.2. In the particular case o = 0, the system of the geodesic, the first.
and the second geodesic deviation equations admits a first integral of the form

L 5 Dw? 2Dr" u, DINT e syt
‘ 8 2= =3 =) | +2Repsl"
NI # dt dr \uu* dt prss 110

u, e’ Dr? Dr? u;, Drf\ D&
- = (n —— 4+ Rypufrrut ) — [ w,—2 g
uut < 4 dv prol T u) I: " (ulu dr )| dr

. Dr? ]
— 285t T = Cs. (4.6)
If r* and w* are the natural first and second geodesic vectors, then (4.6) reduces to
L (. Dvi_ LDk syt 2 D\ _ “n
— | £, — o Pl —2&, ore , Ty
NI dr " dr #ve e s

and for the first and the second geodesic deviation vectors ry and w{ fulfilling conditions
(3.5) and (4.5) in the limiting case o = 0 Eq. (4.6) takes the form

1 [5 Dw* DE, . Drf

B.v,,8
— w SErErIu® =28 pry ——
Vu | Y ode > dt w0 et =S de

u D¢ Dy? ,
Tt \BP T ar Tar +Rypporiru’ | | = Cs. (4.8)
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THEOREM 4.2. If V, admits a symmetric Killing tensor field K,; and the conditions
(2.7) are fulfilled, then there exists a first integral of the system of the Lorentz, the first,
and the second e.m. deviation equations of the form

u® Dw? DK Dr# s DK u, Dr?
Koph?, —— —wf —2 42Ky —— 74 2 2
ulu‘{ Y dr 5 de dr \uu* dt
. K‘,“,,u‘i Dr' Dr? ¢ x
—(Kaﬂ;7&+KazR [iy&)rﬁuyré— ll;.ul (h-yé E 'g;‘ +R'yést yr‘sr u
K gh*, Dr* Dr’ u® D DK Dy
il (&, 27 pp PR (e =Cs.  (49)
uu” dr dr uu? dz dt u,u’ dt

Proof. The proof follows again either from (1.3) or from (1.9). Applying Prop 1.1 to
Egs (4.1) and making use of Eqs (1.12), (1.15), (2.1), (2.7), (3.1), we obtain

u* DK Drf DK, [ u, Dr
®,(1) = W = DK, —— = T
uu’| dz " dt dr \uu® drt

K’ Dr” Dy®
+ (K ygons+ Ko R s)rPur® + =22 —_
( afiyd o ﬂvé) uiul ¥é dr dt

wut dr dr uut

. DK,,,,) u; Dr’
dt uu® de)’
and that finishes the first part of the proof. Analogously, applying Prop. 1.3 to Eqs (4.2)
and making use of the equations mentioned above yield

u® u, Dw’ s DK
P =— | g uf [~ — ) -w 22| + 0,00,
3@ ]u,lu’lll: st (usu‘z dt ) dt 10

which completes the proof.
COROLLARY 4.3.If r} and w are the natural first and second e.m. deviation vectors,
then Eq. (4.9) reads

K, sh*, Dr* Dr’ u, Dr’
+Ry58,u7r"r‘u’>:| S — 43 ( sh®, —

n +2K,
“# g dt 5 g

u, Dw,  , DK, Drﬂ
l: W £ (Kaﬁ BZ4

uut

K,, Dr® Dif
+KnR‘m,s)rﬁuvrﬁ] s Nt e, P o (4.10)
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The subsequent expression for the vectors » and w! satisfying the constraint conditions
(3.5) and (4.5), correspondingly, follows from (4.9), after inserting there these conditions.

In the particular case of o = 0, the system of the geodesic the first, and the second
geodesic deviation equations admits the first integral of the same form as (4.9).

Similarly like in Sect. 3 there is a simple relation between the integrals of the Lorentz
equations and of the second e.m. deviation equations as it follows from the following
lemma.

LEMMA 4.1. Under conditions of Lemma 3.1, the first integrals (4.3) and (4.9) foliow
from Eq. (3.11) and (3.12) after performing a twofold differentiation with respect to the
parameter ¢, in which the definitions

or 9%C,(2)

9%C,(e)
w1, 8) 1= 5;(‘c,g—;), Cs:= __a_sz_., C6:=% 2

de*

and the Ricci identity

2, a 2,.a
Du _ D*u = R,
dedr o By
must be taken into account.
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