Vol. B18 (1987) ACTA PHYSICA POLONICA No 11

HIGHER-DIMENSIONAL COSMOLOGY AND THE GAUSS-
BONNET TERM*
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We study cosmological consequences of the effective higher-dimensional action of gravity
as resulting from superstring theories. Non-trivial fix points are found. Collapse of the com-
pact space is seen to be possible for certain initial conditions, but for this to occur the Gauss-
-Bonnet term does not appear to be of direct importance.

PACS numbers: 98.80.Cq

1. Introduction

Superstring theories [1] are promising candidates for a finite unified quantum theory
of gravity and all matter interactions. Most of the interest in superstring theories results
from their internal consistency properties, like the absence of anomalies. Conclusive experi-
mental tests are not available and might not be easy to find, however, masses and coupling
constants would be calculable by quasi’assical methods if strings would be weakly coupled
(which they might not). Large classes of static compactified solutions to the effective low
energy field equations are known to exist, Calabi-Yau spaces [2] as well as solutions with
torsion [3], all preserving N = 1 supersymmetry. It is, however, not clear how to select
a particular compactified solution. In any case no completely realistic example has been
found so far.

In view of the absence of conclusive low energy tests, cosmological considerations
may provide additional information. Various groups [4] have studied the evolution of
cosmological scale factors in the framework of the 10-dimensional effective field theory,
including higher derivative curvature terms. For the terms quadratic in the curvature the
Gauss-Bonnet combination R zcp—4R55+ R? is usually taken, because it is this combina-
tion which leads to a ghostfree gravitation propagator near flat space [5]. String calcula-
tions of the low energy effective action are consistent with the appearance of the Gauss-
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-Bonnet combination, but these calculations are in fact not conclusive since neither the
R2, nor the R? term does actually contribute on linear Einstein shell [6], but can be removed
by local field redifinitions. For compactified dynamical solutions these terms are of course
relevant. We shall adopt the Gauss-Bonnet prescription in the following. Justification
or disproval from string theories would require a better understanding of their offshell
formulation.

An expanding 4-dimensional radiation-dominated universe combined with an almost
static Calabi-Yau space has been shown to be a stable solution of this model [4]. However,
this observation does not provide any clue to the question of why the corresponding scale
factors behave so differently, since the 10-dimensional Friedman universe is also a stable
solution. There is a well-known solution [7] to this problem in usual Kaluza-Klein theories.
Positive curvature of the compact manifold typically drives a universe starting from a Fried-
man singularity towards a Kasner singularity, i.e. the higher dimensional compact space
will collapse after a finite time. This solution is not available in the present case, however,
since Calabi-Yau spaces are Ricci-flat. In the following we shall essentially address the
question of whether Kasner-type singularities nevertheless appear. We shall restrict our
attention to the simplest case with a static dilation, no torsion, and the background gauge
potential always identified with the spin connection of the Calabi-Yau manifold. More
complex situations will be discussed briefly in Chapter 4.

It has become clear recently that Calabi-Yau spaces are not exact solutions to the tree
level string equations of motion [8, 9]. There remains the possibility of systematically con-
structing solutions by computing higher and higher corrections to Calabi-Yau spaces.
If these corrections should turn out to be small Calabi-Yau spaces would still provide
a useful starting point for cosmological considerations. At present this is not clear, however.
These corrections could very well diverge in such a way that the corresponding series
could not be used to define exact solutions. In the following we assume that flat Calabi-Yau
manifolds do provide a good approximation to solutions of the string equations of motion.

2. The model

The bosonic part of the effective action derived from the heterotic superstring theory
[14] is given by

1
S = Jd“’x\/—g272 {—R—% 04D D — L5 e PH 45 H**C

%I
+ e P2 (—tr F gF*® + R 45 pR*®P 4+ aR ;z,RA% + sz)} . ¢))

The indices A4, B, ... = 0,1, ..., 9 label the 10-dimensional space time with the metric
g4p> Rupcp» Rap and R are the corresponding curvature tensor, Ricci tensor and curvature
scalar. D is the dilaton field, whereas F 45 and H 5 represent the field strength of the Yang-
-Mills and antisymmetric tensor field, respectively. The 10-dimensional gravitational con-
stant is denoted by k> = 8nG,,, the inverse string tension by z’. We only consider the tor-
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sion-free case H, gz = 0, and set a = —4, b = 1 (Gauss-Bonnet) as discussed in the intro-
duction. Furthermore, we search for solutions with a constant field D = D,.
Under these assumptions the action simplifies to

|
S=[d%~-g: e { —R+s(—tr FgF*® 4 R pcpRPP—4R ;R +RH)}  (2)

with % = %' - exp (— Do/2)/2. We further identify the Yang-Mills vector potential with
the spin connection of the 6-dimensional compact manifold with metric §,,ﬁ (@, =4,...,9).
In particular, this leads to the relation

tr (F*,F 35) = Ry02,Rp™ 3

with Raﬂdv the Riemann tensor constructed from the metric §,,,. Under these conditions
Calabi-Yau spaces yield static solutions to the vacuum equations of motion. é,,, is not
explicitly known because of the complicated structure of Calabi-Yau spaces. Fortunately,
we do not need any detailed information about §aﬂ.

We now consider an incoherent matter contribution (e.g. thermal radiation) described
by the energy-momentum tensor

Ty = (p+guupg+PLas 4

as a perfect fluid. Solutions to the modified Einstein equations will now be time-dependent,
and may be found by the usual metric ansatz

gap = (=1, ai(0gy;, a3(1)gep) &)

with g;; = J,;. These equations of motion derived from the effective action (2) are given
in the appendix. Using the Ricci-flatness I?aﬂ = 0 of the Calabi-Yau spaces, and with
space dimensions d; = 3 and d, = 6, resp., we find the following equations

3+ 15u+ 18u% — w(72u + 540u® + 720u> + 180u*) = o/y} (6a)
34 12u+21u + 3, /y3[2 — w(48u +120u) ]+ ¥, /y1[6 — w(24 +240u
+240u2) ]~ w(48u + 324u® + 720u® + 420u*) = —p, [y} (6b)

6+15u+ 15u> + §,/y2[3—w(12 + 120u + 120u2)] + y /¥ 1[5 — w(60 -+ 240u
+12042)]— w(12 + 180u + 540u® 4+ 600u> +- 180u*) = ~p,/y3, (6¢)

where we have defined y; = d,/a,, u = y,/y; and w = ky}. This system of equations contains
one constraint equation (6a) and two first order non-linear differential equations for y;, y,.
They will be discussed further in the next chapter.

3. Various solutions

There are a number of interesting questions to be asked at this point, all concerning
the influence of the Gauss-Bonnet corrections. The first one is whether it would destabilize
previous solutions. Another one is the possible appearance of qualitatively new asymptotic
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solutions. We first have to decide which equation of state p{p) to use. Since our approach
is essentially perturbative in xy? it is reliable only for temperature well below the Planck
mass. String contributions to the equation of state are exponentially small in this case,
such that only massless particles are relevant. The equation of state will therefore be either

p1=p2= 09 (7a)
or
pi=2¢73 p.=0 (7b)

depending on whether the size of the compact manifold is large or small compared to the
inverse temperature. We start with a discussion of the symmetric case (7a). String theory
fixes the sign of » to be positive. In order to get rid of any explicit dependence on the
string tension x we redefine y; = \/xy; and f = //x. The flow diagram for trajectories
in the y,, y, plane is shown in Fig. 1. Since we are interested in an expanding 3-universe
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Fig. 1. ¥, > 0 — half plane (x > 0) for the e quation of state (7a). We show groups of trajectories with equa

initial data »$ but different ¥3. P is the attractive fix point, S the isolated singularity. The asymptotics of a, b

and c are given by: a: 5, = —0.17 %13 b: ¥, = —0.76 ¥1; ¢: ¥2 = —3.06 y,. The shadowed areas are the
forbidden regions as determined by the constraint (6a) with zero r.h.s.
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we consider only the half-plane y, > 0. There are two allowed regions (I, II), i.e. regions
with positive energy .density. The boundaries are found from the constraint equation (6a)
with zero r.h.s.. In region (I) all trajectories are attracted by either of the fix points (y,, y>)
= (0, 0) or (0.15,-0.15). Between them, there is an isolated singularity at (y;, y.)
= (0.109, 0.109). The first fix point leads to a power-like symmetric expansion of all
space dimensions. Higher curvature terms soon become irrelevant. The second one could
be quite interesting since it leads to a de Sitter-like expansion at zero matter density ¢. The
existence of this second fix point is related to the observation of Boulware and Deser
[10] that a pure gravity theory with Gauss-Bonnet term (but no gauge field condensate)
has flat as well as anti de Sitter vacuum solutions. The gauge field condensate changes this
into flat and de Sitter solutions. The de Sitter fix point could provide a useful source of
inflation if an efficient exit mechanism could be found. Quantum instability of the de Sitter
space [11] has been conjectured in this context but this question is not settled. The fact
that terms quadratic in the curvature may simulate an effective cosmological constant
has also been emphasized by Starobinsky [12]. We note in passing that for the other sign
of »(x < 0) one finds a fix point at y, = 0.87, y, = —0.14. This would correspond to

>

Fig. 2. The corresponding trajectories (cf. Fig. 1) for the equation of state (7b)
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a universe with exponentially expanding 3-space, and exponentially collapsing compact
6-space. However, this model is unphysical in leading to naked singularities, and from
the point of view of string theories » < 0 is the wrong sign.

We turn the discussion of region (II) of Fig. 1. With initial conditions in this region,
all trajectories flow towards infinity. The situation is qualitatively the same as for the Kasner
singularity found with the Einstein term alone, a will shrink to zero within a finite time.
One could hope that string corrections would stabilize a, against collapse, but this cannot
be decided at present.

In Fig. 2 we present the corresponding flow diagram for the effective 3-dimensional
equation of state (7b). The allowed regions are the same as in the case (7a). The axis y, = 0
is a stable solution of the equations of motion for the case » = 0. The Gauss-Bonnet cor-
rection, however, drives the trajectory with initial data y, = 0 into the y, > 0 region
towards the fix point at y, = 0, y, = 0. Fig. 2 shows that the axis ys = 0, nevertheless;
attracts the trajectories with the appropriate initial conditions (region I). The region of
initial data for trajectories tending to (0, 0) is larger than for the case of the equation of
state (7a) (cf. Fig. 1). The qualitative behaviour of the scale factors in region IT is unchanged.

4. Summary and outlook

Our discussion has been limited to the simplest possible situation, i.e. no torsion,
a constant dilaton field and a Yang-Mills background field strictly identified with the spin
connection of the Calabi-Yau manifold. Under these restrictions we have found that
‘compactified’ solutions (y, = 0) are stable against small perturbations (in agreement
with previous results [4]) but not globally. If the perturbation:is large enough the solu-
tion will approach symmetric de Sitter expansion. This is the new qualitative feature
introduced by the Gauss-Bonnet term. Other solutions will in general appear if further
higher derivative terms will be included in the effective action. Kasner-type solutions of the
Einstein equations are only slightly modified by the Gauss-Bonnet term.

The major unanswered question is how the initial conditions could be realized such
that an effective 3-dimensional universe would result from the following evolution. This
can only be studied by going closer to the critical temperature, including string effects
in the equation of state, and considering corrections to Ricci-flat compact spaces. This
last point should also solve a problem raised by Weiss [13] that solutions with static Ricci-
-flat 6-space become unstable when the universe becomes dust-dominated. Interesting
effects could also be caused by fermion condensates and gauge field condensate temporarily
not at their static values. Work along this line is in progress.

APPENDIX

We give some useful formulae necessary to obtain the equations of motion of the
scale factors a,(1) and a,(z). The general D = d, +d, -+ 1-dimensional case is considered
with the metric ansatz (3). The two subspaces (g, g.p) are not specified further. Latin
indices run from 1, 2, ... to d,, greek indices from d,+1, ... to D=1. The equations of
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motion derived from (2) are
(Ras—% 848R)+ #(5 gAB(RCDEFRCDEF - 4RCDRCD +R?)
—2R, CDERBCDE +4R 4cR g+ 4RPRcpp—2RR,p) = —81GoTyp (A.1)

The convention Risep = —I*spc+ --» Rap = Roycp R= R%, is used. Inserting
the metric (3) into the curvature tensor terms we get non-zero components:

Rapcp: Ry = d1‘11§ij

Riup = &202~g1ﬁ

Rijpa = G%Rukz"a%éf(gkiéﬂ_gnéjk)

Rapys = agﬁaﬂya—aidg(éaygaa‘“éaaéﬁy)

R,ig; = —dldzalazéaﬁéij (A.2)

R,p: R, = did\Ja;+d,d,/a,
R;; = ﬁij—((dl_1)‘321"*'&1“1+d2d1d2a1/02)§ij
Ry = Roy—((dy—Dd3+d,0,+d1d1dra50a))8  (A3)
R: R = —(d d|a,+d,d;]a,)

+(RM —d,(dy— )di +d,ay +dad d20,/a3))]a}

+(R®P —dy((dy — 1)d3 + dra; +d;d,6,0,/a,))]a3. (A4)
All tensors with tilde “~ " are built from the metric g;;, g, respectively, R is the curvature

d
T a(t). Combined with the energy-mo-

mentum tensor we find the equations of motion:
A=B=1t:

scalar of the d;-dimensional subspace and d; =

3 d’f/afdl(d; — 1)+ adjadd,(d; — D+ dydy(fa,a.)d,dy —F RVjat - RP)a;
—x{dfjatd, (=34 d,—3d] +3 d))
+ddd,f(aday)d,(4d, —6d d, +2d,d})

+d}d3/(ala3)3d,dy(1 ~dy —d, +dydy)
+d,d3/(a,ad)d,(4d, —6d,d, +2d3d,)
+d3atd, (=345 dy,—3d5+5 d3)

1 5 pabyd; 4, 1 B Rkl 4
Sty RapyaRaBy a3 ++4 RijjR"™ (a7
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—2R, ;R a3 —2R;;RV[a} + dT R ja}(— 6+ 5d, —d?)
+d2RP)ad(—~6+5d,—d3)
+d,d,f(aga,) (RV/aX(4dy—2d,d,)+ RP[aj(4d, —2d,d;))
+d2RM(a?ad) (d,—d2)+ a2 RP|(a%a3) (dy —d?)
+1 RV et 4+ L R a5+ RVRY(atad)} = 81Go(0—T})
A=i B=j:
gi(d,fa, (d—D)+d?ja®(1 -3 d,+1 dD)+d,d,/(a,a,) (—dy+dydy)
+dyjayd,+adjai(—L dy+4 d2)—1 RVjal -1 RPad)+ R,
—x{d;fa,[g;(d}/a%(12—22d, +12d} —2d3)

+a2ja2(—2dy+2d,d, +2d%—2d,d3) + d,d,/(aa,) (—8d, +12d,d, —4did))

+RWa?(—6+d,)+ RPjad(=2+2d,))+ R, j(4—4d,)]
+dyjay[ g (d3]al(—4d, +6d,d, —2d1d,)
+d2[a(—4d, +6d% —2d3)+d dy(a,a,) (—4d,y +4d,d, +4d5 —4d, d3)
+2RWjal + R®|ja3(—4+2d,)) —4d,R;;]
+g,lat/at(—12+25d, — 3 d} +5d7 5 dY)
+adla,/(aday) (12d,—22d,d, +12d}d, —2d}d,)
+d2d2/(a%a?) (6d,—9d,d,+3d?d, —6d} +9d,d3 —3did3)
+d,d3/(a,ad) (4d, —4d d, —6d% +6d,d3+2d3—2d,d3)
+dtlad(3d, 1L di+3d3 -1 dY)
+d2RMa*(8—7d, +d3) +d2R®|a3(6—5d;, +d3)
+a2R®)(a%a?) 2=3d, +dD) + iRV |(a}a}) (—d,+d3)
—1 Ropos R a3 — % RijuR™a} + 2R s R? a3
+2R; ;R[at + d,d,RV|(alay) (—6d,+2d,dy)
+d,d,R®(a,al) (4—4d, —2d,+2d,d;)
—1 RYat -1 R®[a§— RVRP(a}a3)]
+R;jjai[d2[al(—24+14d, —2d%)+ d,d,[(a,a,) - (4d, —4d,d,)
+d2ja2(2d, —2d3) +2R™V)a} +2RPjal]

- 4ﬁilﬁj/at +2Riklmﬁjum/af +4Rmniéminj/a‘1} = 87[G10(P1§ij + Ti?/ai)

(A.5)

(A.6)
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with

T,fB = % gABFCDFCD - FACFCB'

The A = «, B = f§ — equations of motion are obtained from (A.6) by interchanging the
indices 1 2 and i,j,... <o B, ....
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